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CONNECTION OF BALANCING NUMBERS WITH SOLUTION OF
A SYSTEM OF TWO HIGHER-ORDER DIFFERENCE EQUATIONS
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Abstract. We provide some theoretical justifications pertaining to the representation for the solu-
tion of the system of the higher-order rational difference equations

xn+1 =
1

6− yn−k
, yn+1 =

1
6− xn−k

, n,k ∈ N0.

where N0 = N∪{0}, and the initial conditions x−k, x−k+1, . . ., x0, y−k, y−k+1, . . ., y0 are non
zero real numbers such that their solution is related to Balancing numbers. We also study the
stability character and asymptotic behavior of this system.
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1. INTRODUCTION

The notion of Balancing numbers was first suggested by Behera and Panda [4]
in relation to a Diophantine equation in 1999. A positive integer n is known as a
Balancing number if

1+2+ . . .+(n−1) = (n+1)+(n+2)+ . . .+(n+ r)

for some r ∈ N. Here r is known as the balancer corresponding to the Balancing
number n. Behera and Panda [4] demonstrated in a joint study that the Balancing
numbers satisfy the following recurrence relation

Bn+2 = 6Bn+1−Bn, n ∈ N,

where B1 = 1 and B2 = 6. The Binet’s formula for Balancing numbers is given by

Bn =
αn−βn

α−β
, n ∈ N0,

where
α = 3+2

√
2, β = 3−2

√
2.
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We always have the quotient of two consecutive terms of Balancing numbers tends
to α, that is

lim
n→∞

Bn+1

Bn
= α.

Many papers have been published previously focusing on the forme of the solution of
system of difference equations, see for example [1,2,5–8,10,12,15,19,20]. Curiously,
some of the solution forms of these systems can even be expressed in terms of well-
known sequences such as Fibonacci numbers, Horadam numbers, Padovan numbers,
Lucas numbers and Pell numbers, see for example [3, 9, 11, 13, 14, 16–18] .

In this paper we provide some theoretical justifications pertaining to the represent-
ation for the solution of the system of the higher-order rational difference equations

xn+1 =
1

6− yn−k
, yn+1 =

1
6− xn−k

, n,k ∈ N0. (1.1)

where N0 = N∪{0}, and the initial conditions x−k, x−k+1, . . ., x0, y−k, y−k+1, . . ., y0
are non zero real numbers such that their solution is related to Balancing numbers.

2. AUXILIARY RESULTS

To prove our main results in Sections 3 and 4, we will need the following two
lemmas.

Lemma 1. Consider the two homogenous second order linear autonomous differ-
ence equations

yn+2−6yn+1 + yn = 0, n ∈ N0, (2.1)

Sn+2 +6Sn+1 +Sn = 0, n ∈ N0. (2.2)
Then, we have for all n ∈ N0

yn =−y0Bn−1 + y1Bn, Sn = (−1)n(S0Bn−1 +S1Bn).

Proof. As is well-known, the equation

yn+2−6yn+1 + yn = 0, n ∈ N0,

where y0 and y1 ∈ R, is usually solved by using the characteristic roots α and β of
the characteristic polynomial ϕ2−6ϕ+1, so

α = 3+2
√

2, β = 3−2
√

2,

and the formulas of general solution is

yn = c1α
n + c2β

n.

Using the initial conditions y0 and y1 with some calculations we get

c1 =
y0β− y1

β−α
, c2 =

y1− y0α

β−α
.
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So

yn = y0
αn−1−βn−1

−(α−β)
+ y1

αn−βn

α−β
.

Hence
yn =−y0Bn−1 + y1Bn.

By the same argument, we get

Sn = (−1)n(S0Bn−1 +S1Bn).

�

Lemma 2. Consider the linear system of second order linear autonomous differ-
ence equations

tn+2 = 6pn+1− tn, pn+2 = 6tn+1− pn, n ∈ N0. (2.3)

Then, we have for all n ∈ N0{
t2n =−p0B2n−1 + t1B2n, t2n+1 =−t0B2n + p1B2n+1,

p2n =−t0B2n−1 + p1B2n, p2n+1 =−p0B2n + t1B2n+1.

Proof. From (2.3) we get the following system{
tn+2 + pn+2 = 6pn+1− tn +6tn+1− pn,

tn+2− pn+2 = 6pn+1− tn−6tn+1 + pn.

So {
tn+2 + pn+2 = 6(pn+1 + tn+1)− (tn + pn),

tn+2− pn+2 =−6(tn+1− pn+1)− (tn+− pn).
(2.4)

By posing the following changes of the variables

Rn = tn + pn, Sn = tn− pn. (2.5)

System (2.4) becomes

Rn+2 = 6Rn+1−Rn, Sn+2 =−6Sn+1−Sn.

which are in the form of equations (2.1) and (2.2). Then it follows from Lemma 1
that {

R2n =−R0Bn−1 +R1Bn, R2n+1 =−R0Bn−1 +R1Bn,

S2n = S0Bn−1 +S1Bn, S2n+1 =−S0Bn−1−S1Bn.

From (2.5), we have

tn =
1
2
(Rn−Sn), pn =

1
2
(Rn +Sn).

So

t2n =
1
2
(R2n−S2n), t2n+1 =

1
2
(R2n+1−S2n+1),
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p2n =
1
2
(R2n +S2n), p2n+1 =

1
2
(R2n+1 +S2n+1).

Hence

t2n =
1
2
(B2n−1(−R0−S0)+B2n(R1−S1)) ,

t2n+1 =
1
2
(B2n(−R0 +S0)+B2n+1(R1 +S1)) ,

p2n =
1
2
(B2n−1(−R0 +S0)+B2n(R1 +S1)) ,

p2n+1 =
1
2
(B2n(−R0−S0)+B2n+1(R1−S1)) .

So 
t2n =−p0B2n−1 + t1B2n,

t2n+1 =−t0B2n + p1B2n+1,

p2n =−t0B2n−1 + p1B2n,

p2n+1 =−p0B2n + t1B2n+1.

�

3. MAIN RESULT

In this section we give the explicit formula of solution to system (1.1) in terms of
Balancing numbers.

From (1.1), we can write
x(k+1)(n+1)− j =

1
6− y(k+1)n− j

,

y(k+1)(n+1)− j =
1

6− x(k+1)n− j
.

Let
x( j)

n = x(k+1)n− j, y( j)
n = y(k+1)n− j, j = 0,1, . . . ,k−1.

So, the system (1.1) becomes

x( j)
n+1 =

1

6− y( j)
n

, y( j)
n+1 =

1

6− x( j)
n

, n ∈ N0. (3.1)

To find the form of the solution of the system (3.1) we consider the following
changes of variables

x( j)
n =

Wn

Un+1
, y( j)

n =
Un

Wn+1
.

So

x( j)
n+1 =

Wn+1

Un+2
, y( j)

n+1 =
Un+1

Wn+2
.
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Hence
Wn+1

Un+2
=

1

6− Un

Wn+1

,
Wn+1

Un+2
=

Wn+1

6Wn+1−Un
,

Un+1

Wn+2
=

1

6− Wn

Un+1

,
Un+1

Wn+2
=

Un+1

6Un+1−Wn
.

So the system (3.1) becomes

Un+2 = 6Wn+1−Un, Wn+2 = 6Un+1−Wn.

Then it follows from Lemma 2 that
U2n =−W0B2n−1 +U1B2n,

U2n+1 =−U0B2n +W1B2n+1,

W2n =−U0B2n−1 +W1B2n,

W2n+1 =−W0B2n +U1B2n+1.

So,

x( j)
2n+1 =

W2n+1

U2n+2
=
−W0B2n +U1B2n+1

−W0B2n+1 +U1B2n+2
=

−W0B2n +U1B2n+1

U1
−W0B2n+1 +U1B2n+2

U1

.

Hence

x( j)
2n+1 =

−x( j)
0 B2n +B2n+1

−x( j)
0 B2n+1 +B2n+2

,

and

x( j)
2n =

W2n

U2n+1
=
−U0B2n−1 +W1B2n

−U0B2n +W1B2n+1
=

−U0B2n−1 +W1B2n

W1
−U0B2n +W1B2n+1

W1

.

So

x( j)
2n =

−y( j)
0 B2n−1 +B2n

−y( j)
0 B2n +B2n+1

.

By a similar calculation, we find y( j)
n . We have

y( j)
2n+1 =

U2n+1

W2n+2
=
−U0B2n +W1B2n+1

−U0B2n+1 +W1B2n+2
=

−U0B2n +W1B2n+1

W1
−U0B2n+1 +W1B2n+2

W1

.
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So

y( j)
2n+1 =

−y( j)
0 B2n +B2n+1

−y( j)
0 B2n+1 +B2n+2

,

and

y( j)
2n =

U2n

W2n+1
=
−W0B2n−1 +U1B2n

−W0B2n +U1B2n+1
=

−W0B2n−1 +U1B2n

U1
−W0B2n +U1B2n+1

U1

.

Hence

y( j)
2n =

−x( j)
0 B2n−1 +B2n

−x( j)
0 B2n +B2n+1

.

According to all the above, we have the following theorem.

Theorem 1. Let
{

x( j)
n ,y( j)

n

}
n≥0

be the solution to system (3.1). Then for n ∈ N
and j = 0,1 . . . ,k

x( j)
2n+1 =

−x( j)
0 B2n +B2n+1

−x( j)
0 B2n+1 +B2n+2

, x( j)
2n =

−y( j)
0 B2n−1 +B2n

−y( j)
0 B2n +B2n+1

,

y( j)
2n+1 =

−y( j)
0 B2n +B2n+1

−y( j)
0 B2n+1 +B2n+2

, y( j)
2n =

−x( j)
0 B2n−1 +B2n

−x( j)
0 B2n +B2n+1

.

The following corollary is our main result which give the explicit formula of solu-
tion to system (1.1).

Corollary 1. Let {xn,yn}n≥0 be the solution to system (1.1). Then for n ∈ N and
j = 0,1 . . . ,k 

x(k+1)(2n+1)− j =
−x− jB2n +B2n+1

−x− jB2n+1 +B2n+2
,

x(k+1)(2n)− j =
−y− jB2n−1 +B2n

−y− jB2n +B2n+1
,

y(k+1)(2n+1)− j =
−y− jB2n +B2n+1

−y− jB2n+1 +B2n+2
,

y(k+1)(2n)− j =
−x− jB2n−1 +B2n

−x− jB2n +B2n+1
.

Proof. We have

x( j)
n = x(k+1)n− j, j ∈ {0,1,2 . . . ,k}.

So
x( j)

2n+1 = x(k+1)(2n+1)− j,
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and
x( j)

0 = x− j.

Then

x( j)
2n+1 = x(k+1)(2n+1)− j =

−x− jB2n +B2n+1

−x− jB2n+1 +B2n+2
,

and

x( j)
2n = x(k+1)(2n)− j =

−y− jB2n−1 +B2n

−y− jB2n +B2n+1
.

We have
y( j)

n = y(k+1)n− j.

So
y( j)

2n+1 = y(k+1)(2n+1)− j,

and
y( j)

0 = y− j.

Hence

y( j)
2n+1 = y(k+1)(2n+1)− j =

−y− jB2n +B2n+1

−y− jB2n+1 +B2n+2
,

and

y( j)
2n = y(k+1)(2n)− j =

−x− jB2n−1 +B2n

−x− jB2n +B2n+1
.

�

4. GLOBAL STABILITY OF THE SOLUTIONS TO SYSTEM (1.1)

In this section we study the global stability character of the solutions of system
(1.1). It is easy to show that (1.1) has two real equilibrium points given by

M = (x,y) =
(

3+2
√

2,3+2
√

2
)
, M′ =

(
x′,y′

)
=
(

3−2
√

2,3−2
√

2
)
.

Theorem 2. The equilibrium point M =
(

3+2
√

2,3+2
√

2
)

is locally asymptot-
ically stable.

Proof. The linearized system about the equilibrium point M =
(

3+2
√

2,3+2
√

2
)

is given by
Xn+1 = JXn,

where
Xn = (xn,xn−1, . . . ,xn−k,yn,yn−1, . . . ,yn−k)

t
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and

J =



0 0 . . . 0 17−12
√

2
1 0 . . . 0 0
0 1 . . . 0 0
...

...
...

...
0 . . . 17−12

√
2 . . . 0 . . .

...
...

...
...

0 . . . . . . 0 1


.

The characteristic polynomial of J is

P(λ) = (−λ)2k+2−
(

17−12
√

2
)2

.

Now, consider the two functions defined by

ϕ(λ) = (−λ)2k+2 , φ(λ) =
(

17−12
√

2
)2

.

We have
|φ(λ)|< |ϕ(λ)| , ∀λ ∈C : |λ|= 1

So, according to Rouche’s Theorem ϕ and P = ϕ+φ have the same number of zeros
in the unit disc |λ| < 1, and since ϕ admits as root λ = 0 of multiplicity 2(k + 1),
then all the roots of P are in the disc |λ| < 1. Thus, the equilibrium point is locally
asymptotically stable. �

Corollary 2. The equilibrium point M is globally asymptotically stable.

Proof. Theorem 2 states that, M is locally asymptotically stable therefore, it must
be demonstrated that this point is globally attractive. To do this we use the Corol-
lary 1.

We have

lim
n→∞

x(k+1)(2n)− j = lim
n→∞

−y− jB2n−1 +B2n

−y− jB2n +B2n+1
= lim

n→∞

−y− j
B2n−1

B2n
+1

−y− j +
B2n+1

B2n

.

Using the following two limits

lim
n→∞

(
B2n+1

B2n

)
= α, lim

n→∞

(
B2n−1

B2n

)
=

1
α
= β,

we get

lim
n→∞

x(k+1)(2n)− j =
−y− jβ+1
−y− j +α

=
−y− j(3−2

√
2)+1

−y− j +3+2
√

2

=
−3y− j +2

√
2y− j +1

−y− j +3+2
√

2
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=

(
−3y− j +2

√
2y− j +1

)(
−y− j +3−2

√
2
)

(y− j)2−6y− j +1

=
3
(
(y− j)

2−6y− j +1
)
−2
√

2
(
(y− j)

2−6y− j +1
)

(y− j)2−6y− j +1

= 3−2
√

2 = x.

However, we have

lim
n→∞

x(k+1)(2n+1)− j = lim
n→∞

−x− jB2n +B2n+1

−x− jB2n+1 +B2n+2
= lim

n→∞

−x− j
B2n

B2n+1
+1

−x− j +
B2n+2

B2n+1

=
−x− jβ+1
−x− j +α

,

Using the following two limits

lim
n→∞

(
B2n+1

B2n

)
= α, lim

n→∞

(
B2n−1

B2n

)
=

1
α
= β,

we get

lim
n→∞

x(k+1)(2n+1)− j = 3−2
√

2 = x.

So lim
n→∞

x(k+1)n− j = x. By a similar argument, it can be shown that lim
n→∞

y(k+1)n− j = y.
Hence

lim
n→∞

(
x(k+1)n− j,y(k+1)n− j

)
= (x,y).

�
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