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Abstract. In this paper, we introduce generalized circular surfaces, a generalization of general-
ized tube surfaces and circular surfaces. Moreover, we define a special dual quaternion by using
the moving frame along the spine curve of generalized circular surface. We then show that the
screw motion obtained by this dual quaternion can be used to construct generalized circular sur-
faces. We also prove that these generalized circular surfaces can be expressed by homothetic
motions. Finally, we provide some examples of generalized circular surfaces with figures.
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1. INTRODUCTION

A tube surface or a pipe surface is formed by the envelope of the spheres whose
centers lie on a curve in three-dimensional real vector space R3 (which is called
a spine curve) and whose radius are constant [15]. Generalized tube surfaces [16]
and circular surfaces [19] were defined by generalizing tube surfaces according to
different variables, then these kind surfaces attracted attention of many researchers.
There are many objects in the world take form of these surfaces.

Real quaternions are defined as a four-dimensional number system [17]. This num-
ber system has a practical method in the performing of rotation since they rotate a vec-
tor around any axis in R3 [24]. Recently, real quaternionic and matrix representations
of surfaces have been extensively studied by many researchers. [2,3,5,6,9,23,26,27].
Similar problem has been also considered in Minkowski and (pseudo-) Galilean
spaces by using split quaternions [4, 13, 21] and (split-) semi quaternions [28].

Dual quaternions are introduced as a number system isomorphic to the tensor
product of real quaternions and dual numbers [10]. In the following years, this num-
ber system has been used in the rigid body motions (i.e., screw motions) [1,7,14,18,
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29]. Dual quaternions have been applied in dynamics, computer graphics, robotics
and spacecrafts, etc.

In this paper, we introduce generalized circular surface by generalizing of a gener-
alized tube surface and a circular surface. A generalized circular surface (i.e., a tube
surface, a generalized tube surface or a circular surface) is constituted of a spine curve
and a rotation part. In [3], the rotation part of a tube surface was generated by a real
quaternion. We combine the spine curve and the real quaternion in a dual quaternion.
To do this, we define a dual quaternion whose translation part is a spine curve in R3

and rotation part is a real quaternion. Then, we prove that screw motion obtained by
this dual quaternion generates a tube surface, a circular surface, a generalized tube
surface or a generalized circular surface in R3.

2. PRELIMINARIES

In this section, some basic concepts will be given to provide a background to the
main results of this paper.

Symbols

a : Scalar
a : Real vector in R3

d : Line in R3

θ : Real angle

A : Dual number
Â : Dual vector
q : Real quaternion
Q : Dual quaternion

2.1. Real quaternions

A real quaternion can be represented as

q = a0+a1i+a2 j+a3k, (2.1)

where a0, a1, a2, a3 are real numbers and i, j, k are mutually perpendicular unit
vectors satisfying i2 = j2 = k2 = i jk = −1, i j = − ji = k, jk = −k j = i, and ki =
−ik = j. The set of real quaternions is often represented by H.

A real quaternion q can be also expressed as q = S(q)+V (q), where S(q) = a0 is
the scalar part and V (q) = a1i+a2 j+a3k is the vector part of q. If S(q) = 0, then q
is called a pure real quaternion (i.e., a real vector in R3). Quaternion product of real
quaternions q = S(q)+V (q) and p = S(p)+V (p) is

q⋆ p = S(q)S(p)−⟨V (q),V (p)⟩+S(q)V (p)+S(p)V (q)+V (q)×V (p), (2.2)

where ⟨,⟩ and × denote the usual scalar and vector products in R3, respectively.
The quaternionic-conjugate of q can be defined as

q̄ = S(q)−V (q) = a0−a1i−a2 j−a3k, (2.3)

For the real quaternions p and q, the equality

p⋆q = q̄⋆ p̄ (2.4)
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can be given. The norm of q can be defined as

N(q) = q⋆ q̄ = q̄⋆q = a2
0+a2

1+a2
2+a2

3. (2.5)

q is called a unit real quaternion if N(q) = 1. A unit real quaternion q = a0+a1i+a2 j
+a3k for a2

1+a2
2+a2

3 ̸= 0 can be expressed in the form q = cosθ + sinθv, where

cosθ = a0, sinθ =
√

a2
1+a2

2+a2
3 and v = a1i+a2 j+a3k√

a2
1+a2

2+a2
3
.

Let p = a0+a1i+a2 j+a3k be a unit real quaternion and w be a vector in R3 (i.e., a
pure quaternion). Then,

ϕ : R3 → R3; ϕ(w) = p⋆w⋆ p−1 = p⋆w⋆ p̄. (2.6)

is a linear mapping. Matrix representation of this mapping can be given as

M =

 a2
0+a2

1−a2
2−a2

3 −2a0a3 +2a1a2 2a0a2 +2a1a3
2a0a3 +2a1a2 a2

0+a2
2−a2

1−a2
3 −2a0a1 +2a2a3

−2a0a2 +2a1a3 2a0a1 +2a2a3 a2
0+a2

3−a2
2−a2

1

 , (2.7)

which is orthogonal and represents a rotation in R3. Thus, linear mapping ϕ can be
given as

ϕ(w) = p⋆w⋆ p̄ = Mw. (2.8)
If p is in the form p = cosθ+ sinθv, then v is the rotation axis of the rotation in R3.
Moreover, ϕ(w) = p⋆w⋆ p̄ = Mw rotates the vector w in R3 around the vector v by
a real angle 2θ.

For more information about real quaternions, see [7, 17, 24].
A homothetic motion in R3 can be defined by

y(s, t) = h(s, t)M(s, t)x(s, t)+n(s, t), (2.9)

where y is the position vector of a point in the fixed space R′ and x is the position
vector of the moving space R. M is an orthogonal matrix, n is a translation vector
and h is a scalar and s, t are real parameters [8, 20].

2.2. Dual quaternions

A dual number A = a0 + εa1 is constituted of two real numbers a0, a1 whose real
unit is 1 and dual unit is ε ̸= 0 satisfying ε2 = 0. Addition and multiplication rules of
A = a0 + εa1 and B = b0 + εb1 are defined by

A+B = (a0 +b0)+ ε(a1 +b1) , (2.10)

AB = a0b0 + ε(a0b1 +a1b0) , (2.11)

respectively. The dual conjugate of a dual number A = a0 + εa1 is

A∗ = a0 − εa1. (2.12)

Module D3 on dual numbers is given by

D3 =
{

Â = a0 + εa1 : a0,a1 ∈ R3} . (2.13)
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Each element of D3 is called a dual vector. The scalar and vector products of Â =
a0 + εa1 and B̂ = b0 + εb1 are defined respectively by〈

Â, B̂
〉
= ⟨a0,b0⟩+ ε(⟨a0,b1⟩+ ⟨a1,b0⟩) , (2.14)

Â× B̂ = a0 ×b0 + ε(a0 ×b1 +a1 ×b0) . (2.15)

For further information about dual numbers, see [10, 22, 25, 29].
A dual quaternion can be represented as

Q = A0+A1i+A2 j+A3k, (2.16)

where A0, A1, A2, A3 are dual numbers and i, j,k are the same mutually perpendicular
unit vectors as in real quaternions. The set of dual quaternions is often represented
by H.

An alternative representation of a dual quaternion can be given as

Q = S(Q)+V (Q), (2.17)

where S(Q) = A0 and V (Q) = A1i+A2 j+A3k are, respectively, the scalar and the
vector parts of Q. If S(Q) = 0, then Q is called a pure dual quaternion (i.e., a dual
vector in D3). Quaternion product of any two dual quaternions Q = S(Q)+V (Q) and
P = S(P)+V (P) is introduced as

Q⋆P = S(Q)S(P)−⟨V (Q),V (P)⟩+S(Q)V (P)

+S(P)V (Q)+V (Q)×V (P). (2.18)

The dual conjugate, quaternionic conjugate, quaternionic-dual conjugate and norm of
a dual quaternion Q = A0+A1i+A2 j+A3k = q0 + εq1, where q0 = a0+a1i+a2 j+a3k
and q1 = a∗0+a∗1i+a∗2 j+a∗3k for A0 = a0 + εa∗0, A1 = a1 + εa∗1, A2 = a2 + εa∗2 and
A3 = a3 + εa∗3, can be given as

Q∗ = A∗
0+A∗

1i+A∗
2 j+A∗

3k = q0 − εq1, (2.19)

Q̄ = A0−A1i−A2 j−A3k = q̄0 + εq̄1, (2.20)

Q̄∗ = A∗
0−A∗

1i−A∗
2 j−A∗

3k = q̄0 − εq̄1, (2.21)

N(Q) = Q⋆ Q̄ = Q̄⋆Q = A2
0+A2

1+A2
2+A2

3, (2.22)

respectively. If N(Q) = 1, then Q is called a unit dual quaternion.
For more information about dual quaternions, see [1, 7, 10, 14, 18, 29].

3. GENERALIZED CIRCULAR SURFACES

In this section, we define generalized circular surfaces as a generalization of gen-
eralized tube surfaces and circular surfaces. Then, we show that these surfaces are
constituted of a spine curve and a rotation part. Moreover, we show that the rotation
part is generated by a real quaternion.
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Definition 1. (generalized circular surface) Let a1(t), a2(t) and a3(t) be or-
thonormal vector fields and {a1(t),a2(t),a3(t) = a1(t)×a2(t)} be an arbitrary frame
on a curve α(t) in R3 such as Frenet frame, Darboux frame, Bishop frame, moving
frame, etc. Then a generalized circular surface can be parameterized as

φ(t,θ) = α(t)+ r(t,θ)(cosθa1(t)+ sinθa2(t)) ∈ R3, (3.1)

where r(t,θ) ∈ R is a real variable determined by the real parameters t,θ ∈ R.

A generalized circular surface can be categorized as:
(1) If r(t,θ) is a real constant r ∈ R, then

φ(t,θ) = α(t)+ r(cosθa1(t)+ sinθa2(t)) (3.2)

represents a tube surface in R3 [15].
(2) If r(t,θ) is a real variable r(θ) ∈ R, then

φ(t,θ) = α(t)+ r(θ)(cosθa1(t)+ sinθa2(t)) (3.3)

represents a generalized tube surface in R3 [16].
(3) If r(t,θ) is a real variable r(t) ∈ R, then

φ(t,θ) = α(t)+ r(t)(cosθa1(t)+ sinθa2(t)) (3.4)

represents a circular surface in R3 [19].
For further information about tube surfaces, generalized tube surfaces and circular

surfaces, see [11, 12, 15, 16, 19].

Remark 1. A generalized circular surface is constituted of a spine curve α(t) and
a rotation part R(t,θ) as

φ(t,θ) = α(t)+ r(t,θ)R(t,θ) ∈ R3, r(t,θ) ∈ R (3.5)

where R(t,θ) = cosθa1(t)+sinθa2(t). In [3], the rotation part were generated by the
unit real quaternion p(t,θ) = cosθ+ sinθa3(t) as

R(t,θ) = p(t,θ)⋆a1(t), (3.6)

where a1(t) is a pure real quaternion. R(t,θ) = p(t,θ) ⋆ a1(t) represents a rotation
performed by the real quaternions. Thus, the generalized circular surface can be
expressed as

φ(t,θ) = α(t)+ r(t,θ)p(t,θ)⋆a1(t). (3.7)

4. REPRESENTATION OF GENERALIZED CIRCULAR SURFACES AS SCREW
MOTIONS

In this section, we define a dual quaternion surface whose rotation part is a unit
real quaternion surface and translation part is a spine curve α(t) in R3. We show
that screw motion obtained by this dual quaternion surface constructs a generalized
circular surface φ(t,θ) in R3.
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Let Qw = 1+ εw be a dual quaternion corresponding to the real vector w ∈ R3. A
dual quaternion P can be expressed as

P = p+
ε

2
α⋆ p, (4.1)

where p is a unit real quaternion and α is a real vector (i.e., a pure real quaternion).
p and α represent rotation and translation parts of P, respectively. Then the mapping

Ψ : H→H, Ψ(Qw) = P⋆Qw ⋆ P̄∗ (4.2)

can be given as

Ψ(Qw) = P⋆Qw ⋆ P̄∗

=
(

p+
ε

2
α⋆ p

)
⋆ (1+ εw)⋆

(
p̄− ε

2
p̄⋆ ᾱ

)
= 1+ ε(p⋆w⋆ p̄+α) , (4.3)

where Ψ(Qw) = 1+ε(p⋆w⋆ p̄+α) is a dual quaternion corresponding to the vector
p⋆w⋆ p̄+α in R3. If p = cosθ+sinθv, then p⋆w⋆ p̄+α means that p⋆w⋆ p̄ (which
is given by Eqs. (2.6)-(2.8)) rotates the vector w in R3 around the axis v by an angle
2θ, and afterwards p⋆w⋆ p̄+α translates the vector p⋆w⋆ p̄ along the same axis v
by translation vector α [1, 7, 14, 18, 29].

Definition 2. Let {a1(t),a2(t),a3(t)= a1(t)×a2(t)} be a moving frame on a curve
α(t) in R3. Then, using unit real quaternion surface p(t,θ) = cos θ

2 + sin θ

2 a3(t), dual
quaternion surface can be defined as

P(t,θ) = p(t,θ)+
ε

2
α(t)⋆ p(t,θ), (4.4)

where p(t,θ) is the rotation part of P(t,θ) and α(t) is the translation part of P(t,θ).

Theorem 1. Let {a1(t),a2(t),a3(t) = a1(t)×a2(t)} be a moving frame on a curve
α(t) in R3 and p(t,θ) = cos θ

2 + sin θ

2 a3(t) be a unit real quaternion surface. For the

dual quaternions Qr(t,θ)a1(t) = 1+εr(t,θ)a1(t) and P(t,θ) = p(t,θ)+
ε

2
α(t)⋆ p(t,θ),

the screw motion

Ψ(Qr(t,θ)a1(t)) = P(t,θ)⋆Qr(t,θ)a1(t) ⋆ P̄∗(t,θ) (4.5)

generates the generalized circular surface

φ(t,θ) = α(t)+ r(t,θ)(cosθa1(t)+ sinθa2(t)) ∈ R3, r(t,θ) ∈ R. (4.6)

Proof. We will not use the parameters t and θ for simplicity.
Using Eq. (4.3), Eq. (4.5) can be expressed as

Ψ(Qra1) = P⋆Qra1 ⋆ P̄∗

= P⋆ (1+ εra1)⋆ P̄∗

= 1+ ε(rp⋆a1 ⋆ p̄+α) . (4.7)
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Here Ψ(Qra1) = 1+ ε(rp⋆a1 ⋆ p̄+α) is a dual quaternion corresponding to the fol-
lowing equation

rp⋆a1 ⋆ p̄+α ∈ R3. (4.8)
From Eq. (2.2), we obtain

p⋆a1 ⋆ p̄ =

(
cos

θ

2
+ sin

θ

2
a3

)
⋆ (0+a1)⋆ p̄

=

(
−sin

θ

2
⟨a3,a1⟩+ cos

θ

2
a1 + sin

θ

2
a3 ×a1

)
⋆ p̄. (4.9)

Since ⟨a3,a1⟩= 0 and a3 ×a1 = a2, we get

p⋆a1 ⋆ p̄ =

(
cos

θ

2
a1 + sin

θ

2
a2

)
⋆ p̄

=

(
0+ cos

θ

2
a1 + sin

θ

2
a2

)
⋆

(
cos

θ

2
− sin

θ

2
a3

)
=−

〈
cos

θ

2
a1 + sin

θ

2
a2,−sin

θ

2
a3

〉
+ cos

θ

2

(
cos

θ

2
a1 + sin

θ

2
a2

)
−
(

cos
θ

2
a1 + sin

θ

2
a2

)
× sin

θ

2
a3. (4.10)

Since ⟨a1,a3⟩= ⟨a2,a3⟩= 0, a1 ×a3 =−a2 and a2 ×a3 = a1, we get

p⋆a1 ⋆ p̄ = cos2 θ

2
a1 + cos

θ

2
sin

θ

2
a2

− cos
θ

2
sin

θ

2
a1 ×a3 − sin2 θ

2
a2 ×a3

= cosθa1 + sinθa2. (4.11)

Using this equation in Eq. (4.8), we obtain

rp⋆a1 ⋆ p̄+α = α+ r (cosθa1 + sinθa2) . (4.12)

It is obvious that this equation represents the generalized circular surface

φ(t,θ) = α(t)+ r(t,θ)(cosθa1(t)+ sinθa2(t)) . (4.13)

This completes the proof. □

Theorem 2. Let φ(t,θ) be a generalized circular surface corresponding to the
screw motion

Ψ(Qr(t,θ)a1(t)) = P(t,θ)⋆Qr(t,θ)a1(t) ⋆ P̄∗(t,θ), (4.14)
where {a1(t),a2(t),a3(t) = a1(t)×a2(t)} is any moving frame on α(t), Qr(t,θ)a1(t) =

1+ εr(t,θ)a1(t), P(t,θ) = p(t,θ)+
ε

2
α(t) ⋆ p(t,θ) and p(t,θ) = cos θ

2 + sin θ

2 a3(t).
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Then, the generalized circular surface φ(t,θ) can be expressed by the homothetic
motion of a1(t) in R3 as

φ(t,θ) = α(t)+h(t,θ)M(t,θ)a1(t), (4.15)

where M(t,θ) is an orthogonal matrix satisfying p(t,θ)⋆a1(t)⋆ p̄(t,θ)=M(t,θ)a1(t),
h(t,θ) = r(t,θ) is a homothetic scalar, α(t) is a translation vector and t, θ are ho-
mothetic parameters.

Proof. From Eqs. (4.12) and (4.13), surface generalization φ(t,θ) can be ex-
pressed as

φ(t,θ) = α(t)+ r(t,θ)p(t,θ)⋆a1(t)⋆ p̄(t,θ). (4.16)
Using Eqs. (2.6)-(2.8), we get

p(t,θ)⋆a1(t)⋆ p̄(t,θ) = M(t,θ)a1(t). (4.17)

Using this equation in Eq. (4.16), we obtain

φ(t,θ) = α(t)+ r(t,θ)p(t,θ)⋆a1(t)⋆ p̄(t,θ)

= α(t)+h(t,θ)M(t,θ)a1(t). (4.18)

This completes the proof. □

Remark 2. If we take the real variable r(t,θ) ∈R as the real constant r, as the real
variable r(t) related to the real parameter t or as the real variable r(θ) related to the
real parameter θ in Theorem 4.2, then the screw motions

Ψ(Qra1(t)) = P(t,θ)⋆Qra1(t) ⋆ P̄∗(t,θ), (4.19)

Ψ(Qr(t)a1(t)) = P(t,θ)⋆Qr(t)a1(t) ⋆ P̄∗(t,θ), (4.20)

Ψ(Qr(θ)a1(t)) = P(t,θ)⋆Qr(θ)a1(t) ⋆ P̄∗(t,θ) (4.21)
(4.22)

generates a tube surface, a circular surface and a generalized tube surface, respect-
ively, as

φ(t,θ) = α(t)+ r (cosθa1(t)+ sinθa2(t)) , (4.23)

φ(t,θ) = α(t)+ r(t)(cosθa1(t)+ sinθa2(t)), (4.24)

φ(t,θ) = α(t)+ r(θ)(cosθa1(t)+ sinθa2(t)). (4.25)

Example 1. Let us take a curve in R3 as

α(t) =

(√
3t

2
,sin

t
2
,cos

t
2

)
(4.26)

and its moving frame vectors as

a1(t) =
(

0,−sin
t
2
,−cos

t
2

)
, (4.27)
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a2(t) =

(
−1

2
,

√
3

2
cos

t
2
,−

√
3

2
sin

t
2

)
, (4.28)

a3(t) =

(√
3

2
,
1
2

cos
t
2
,−1

2
sin

t
2

)
. (4.29)

Thus, we get the dual quaternion surface

P(t,θ) = p(t,θ)+
ε

2
α(t)⋆ p(t,θ)

=

(
cos

θ

2
+ sin

θ

2
a3(t)

)
+

ε

2

(
0+

(√
3t

2
,sin

t
2
,cos

t
2

))
⋆

(
cos

θ

2
+ sin

θ

2
a3(t)

)
, (4.30)

where p(t,θ) = cos
θ

2
+ sin

θ

2
a3(t). Then, screw motion Ψ(Qr(t,θ)a1(t)) can be given

as

Ψ(Qr(t,θ)a1(t)) = P(t,θ)⋆Qr(t,θ)a1(t) ⋆ P̄∗(t,θ)

= 1+ ε(r(t,θ)p(t,θ)⋆a1(t)⋆ p̄(t,θ)+α(t)) . (4.31)

Thus, generalized circular surface corresponding to this equation can be obtained as

φ(t,θ) = α(t)+ r(t,θ)p(t,θ)⋆a1(t)⋆ p̄(t,θ)

=

(√
3t

2
,sin

t
2
,cos

t
2

)
+ r(t,θ)(cosθa1(t)+ sinθa2(t)) , (4.32)

where a1(t) =
(

0,−sin
t
2
,−cos

t
2

)
and a2(t) =

(
−1

2
,

√
3

2
cos

t
2
,−

√
3

2
sin

t
2

)
.

φ(t,θ) can be given as tube surface with r(t,θ) = r =
1
3

as in Fig. 1a, generalized

tube surface with r(t,θ) = r(θ) =
θ

3
as in Fig. 1b, circular surface with r(t,θ) =

r(t) =
t
3

as in Fig. 1c and generalized circular surface with r(t,θ) =
tθ
3

as in Fig. 1d
for intervals −10 ≤ t ≤ 10 and −5 ≤ θ ≤ 5.
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Fig. 1a. Geometric representation of a tube surface

Fig. 1b. Geometric representation of a generalized tube surface

Fig. 1c. Geometric representation of a circular surface
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Fig. 1d. Geometric representation of a generalized circular surface

5. CONCLUSIONS

We introduce generalized circular surface as

φ(t,θ) = α(t)+ r(t,θ)(cosθa1(t)+ sinθa2(t)) ∈ R3, r(t,θ) ∈ R,

where {a1(t),a2(t),a3(t) = a1(t)× a2(t)} is an arbitrary moving frame (i.e., Frenet
frame, Darboux frame, Bishop frame, moving frame, etc.) on the spine curve α(t).

We show that the spine curve α(t) is the translation part and R(t,θ) = cosθa1(t)+
sinθa2(t) is the rotation part of the generalized circular surface φ(t,θ). The rotation
part of the generalized circular surface can be generated by a real quaternion as

φ(t,θ) = α(t)+ r(t,θ)R(t,θ)

= α(t)+ r(t,θ)p(t,θ)⋆a1(t),

where p(t,θ) = cosθ+ sinθa3(t) is a real quaternion.
Let {a1(t),a2(t),a3(t) = a1(t)× a2(t)} be a moving frame on the curve α(t) and

let p(t,θ) = cos θ

2 + sin θ

2 a3(t) be a unit real quaternion surface. We show that screw

motion obtained by using dual quaternions P(t,θ) = p(t,θ) +
ε

2
α(t) ⋆ p(t,θ) and

Qr(t,θ)a1(t) (which is a dual quaternion corresponding to r(t,θ)a1(t) ∈ R3) constructs
a generalized circular surface in R3 as

Ψ(Qr(t,θ)a1(t)) = P(t,θ)⋆Qr(t,θ)a1(t) ⋆ P̄∗(t,θ)

= 1+ ε(α(t)+ r(t,θ)(cosθa1(t)+ sinθa2(t))) .

This equation represents the generalized circular surface

φ(t,θ) = α(t)+ r(t,θ)(cosθa1(t)+ sinθa2(t)) .

If we take r(t,θ) as real constant r or as real variables r(t) or r(θ), then the screw
motion Ψ generates a tube surface, a circular surface or a generalized tube surface,
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respectively, as

φ(t,θ) = α(t)+ r (cosθa1(t)+ sinθa2(t)) ,

φ(t,θ) = α(t)+ r(t)(cosθa1(t)+ sinθa2(t)),

φ(t,θ) = α(t)+ r(θ)(cosθa1(t)+ sinθa2(t)).

Moreover, the generalized circular surface is expressed by homothetic motion as

φ(t,θ) = α(t)+h(t,θ)M(t,θ)a1(t),

where M(t,θ) is an orthogonal matrix satisfying p(t,θ)⋆a1(t)⋆ p̄(t,θ)=M(t,θ)a1(t),
h(t,θ) = r(t,θ) is a homothetic scalar, α(t) is a translation vector and t, θ are ho-
mothetic parameters.

Special dual quaternion and screw motion used in this paper can be studied in the
researching of some surfaces in Minkowski, Galilean or pseudo-Galilean spaces.
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[11] F. Doğan and Y. Yaylı, “Tubes with Darboux frame,” Int. J. Contemp. Math. Sci., vol. 7, no. 13-16,
pp. 751–758, 2012.
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