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Abstract. In this paper, we introduce the concept of the statistical convergence with respect to
solid topology and Riesz valued norms on lattice-normed locally solid Riesz spaces. Moreover,
we give the notions of statistically pτ-bounded and statistically pτ-dense sequence, and we intro-
duce statistically pτ-continuous and statistically pτ-bounded operators. We also investigate some
properties and examples of these concepts.
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1. INTRODUCTORY FACTS

Lattice-valued norms on Riesz spaces and statistical convergence of sequences
provide natural and efficient tools in the theory of functional analysis. A Riesz space
that was introduced by Riesz [20] is an ordered vector space having many applica-
tions in measure theory, operator theory, and economics [2, 3, 19, 23]. On the other
hand, a lattice-normed space is a lattice-valued norm, and it is enough to mention the
theory of lattice-normed vector lattices [11, 17, 18]. As an active area of research,
statistical convergence is a generalization of the ordinary convergence of a real se-
quence, and the idea of statistical convergence was firstly introduced by Zygmund
[16]. After then, Fast [13] and Steinhaus [21] independently improved that idea.
Several applications and generalizations of the statistical convergence of sequences
have been investigated by several authors [1, 5, 6, 8, 9, 14, 21, 22]. The main aim of
the present paper is to introduce the concept of statistical pτ-convergence on lattice-
normed locally solid Riesz spaces, which attracted the attention of several authors in
a series of recent papers [1, 5, 6, 9].

The concept of the statistical convergence in Riesz spaces was introduced by Er-
can [12], where the notion of the statistically u-uniformly convergent sequence was
© 2024 The Author(s). Published by Miskolc University Press. This is an open access article under the license CC
BY 4.0.

http://dx.doi.org/10.18514/MMN.2024.4308
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


128 A. AYDIN AND H. Ü. EROĞLU

introduced in Riesz spaces. Then Albayrak and Pehlivan extended the statistical con-
vergence to locally solid Riesz spaces with respect to solid topology [1]. Recently,
Aydın et al., have investigated some studies about the statistical convergence on Riesz
spaces and locally solid Riesz spaces [5, 6, 9].

We now turn our attention to some basic notions which will be used in this paper.
A real-valued vector space E with a partial order relation ”≤” on E (i.e. it is an
antisymmetric, reflexive and transitive relation) is called an ordered vector space
whenever, for every x,y ∈ E, we have

(a) x ≤ y implies x+ z ≤ y+ z for all z ∈ E,
(b) x ≤ y implies λx ≤ λy for every 0 ≤ λ ∈ R.

An ordered vector space E is called a Riesz space or a vector lattice if, for any two
vectors x,y ∈ E, the infimum x∧ y = inf{x,y} and the supremum x∨ y = sup{x,y}
exist in E. For an element x in a Riesz space E, the positive part, the negative part,
and the module of x are

x+ := x∨0, x− := (−x)∨0 and |x| := x∨ (−x),

respectively. In the present paper, the vertical bar | · | of elements of Riesz spaces will
stand for the module of the given elements.

By a linear topology τ on a vector space X , we mean a topology τ on X that makes
the addition and the scalar multiplication continuous. A topological vector space
(X ,τ) is a vector space X equipped with a linear topology τ. A linear topology τ on a
vector space E has a base N for the zero neighborhoods satisfying the following:

(i) Each V ∈ N is balanced, i.e., λV ⊆V for all scalars |λ| ≤ 1;
(ii) Every V ∈ N is absorbing, i.e., for every element x, there exists a positive

real λ > 0 such that x ∈ λV ;
(iii) For each V1,V2 ∈ N , there is V ∈ N such that V ⊆V1 ∩V2;
(iv) For every V ∈ N , there exists U ∈ N with U +U ⊆V ;
(v) For any scalar λ and each V ∈ N , the set λV is also in N .

In this article, unless otherwise stated, when we mention a zero neighborhood, it
means that it always belongs to a base that holds the above properties. In this paper,
neighborhoods of zero will often be referred to as zero neighborhoods.

A subset A of a vector lattice E is called solid if, for each x ∈ A and y ∈ E with
|y| ≤ |x| it holds y ∈ A. Let E be a Riesz space and τ be a linear topology on it. Then
the pair (E,τ) is said to be a locally solid Riesz space if τ has a base that consists of
solid sets; for much more details on these notions, see [2, 3, 23].

Definition 1. Let X be a vector space and E be a Riesz space. Then p : X → E+

is called an E-valued vector norm whenever it satisfies the following conditions:
(1) p(x) = 0 ⇔ x = 0;
(2) p(λx) = |λ|p(x) for all λ ∈ R;
(3) p(x+ y)≤ p(x)+ p(y) for all x,y ∈ X .
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Then the triple (X , p,E) is called a lattice-normed space, abbreviated as LNS. If,
in addition, X is a Riesz space and the vector norm p is monotone (i.e., |x| ≤ |y| ⇒
p(x)≤ p(y) holds for all x,y ∈ X) then the triple (X , p,E) is called a lattice-normed
Riesz space. We abbreviate it as LNRS. A subset Y ⊆ X is called p-bounded if there
exists e ∈ E such that p(y) ≤ e for all y ∈ Y . A sequence (xn) in X is called p-
convergent to x ∈ X (or, shortly, xn

p−→x) whenever p(xn−x) o−→0 holds in E. We refer
the reader for more information on LNSs [11, 17, 18]. We shall keep in mind also the
following examples.

Example 1. Let X be a normed space with a norm ∥ · ∥. Then (X ,∥ · ∥,R) is an
LNS.

Example 2. Let X be a Riesz space. Then (X , | · |,X) is an LNRS.

Now, we remind some basic properties of the concept related to the statistical
convergence. Consider a set K of positive integers. Then the natural density of K is
defined by

δ(K) := lim
n→∞

1
n
|{k ≤ n : k ∈ K}| ,

where the vertical bar of sets will stand for the cardinality of the given sets. We refer
the reader to an exposition on the natural density of sets [13, 14]. In the same way, a
real sequence (xn) is called statistically convergent to L provided that

lim
m→∞

1
m
|{n ≤ m : |xn −L| ≥ ε}|= 0

for each ε > 0.
Let X be a topological space and (xn) be a sequence in X . Then (xn) is said to

be statistically convergent to x ∈ X whenever, for each neighborhood U of x, we
have δ

(
{n ∈ N : xn /∈U}

)
= 0. On the other hand, a sequence (xn) in a locally solid

Riesz space (E,τ) is statistically τ-convergent to x ∈ E whenever we have δ
(
{n ∈N :

(xn − x) /∈U}
)
= 0 for every zero neighborhood U [1, 5–10].

2. STATISTICALLY pτ-CONVERGENCE

In this section, we introduce the statistically topological convergence on lattice-
normed spaces. Also, we give some basic results about this concept.

Definition 2. Let (X , p,E) be an LNRS. If (E,τ) is a locally solid Riesz space
then (X , p,Eτ) is called a lattice-normed locally solid Riesz space. We abbreviate it
as LNLS.

Definition 3. Let (X , p,Eτ) be an LNLS and (xn) be a sequence in X . Then (xn) is
said to be statistically pτ-convergent (st-pτ-convergent, for short) to x if it is provided
that

lim
m→∞

1
m

∣∣{n ≤ m : p(xn − x) /∈U}
∣∣= 0
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holds for every zero neighborhood U . In this case, we write xn
st-pτ−−→x.

Briefly, a sequence (xn) is statistically pτ-convergent to x ∈ X if δ(KU) = 0 for
each zero neighborhood U , where KU = {n ∈ N : p(xn − x) /∈U}. Note that, in order
to simplify the presentation, we take zero neighborhoods from a solid base because,
for every zero neighborhood V , there exists a zero neighborhood solid set U such that
U ⊆V .

Example 3. Consider the LNLS (E, | · |,Eτ) for an arbitrary locally solid Riesz
space (E,τ). Then statistically τ- and pτ-convergence coincide.

Example 4. Let ∥·∥ be a lattice norm (i.e., |x| ≤ |y| implies ∥x∥ ≤ ∥y∥) on a Riesz
space X . Then, it follows from [2, Theorem 2.28] that the topology τ on X generated
by the norm is a solid topology. Moreover, the statistically norm convergence and
pτ-convergence agree on the LNLS (X , | · |,Xτ).

Example 5. Let’s consider the LNLS (c, | · |,cτ), where c is the set of all convergent
real sequences and τ is the topology generated by the supremum norm on c. Take the
sequence (xn) in c such that xn = (0, .., 1

n ,0, ...) for each n. Now, consider the set of
all zero neighborhoods N := {Ur : r ∈ R+}, where Ur is the set {x ∈ c : ∥x∥∞ ≤ r}.
Thus, it follows that xn

st-pτ−−→0 in c. Indeed, fix an arbitrary zero neighborhood set U
in c. Then, there exist some r > 0 such that Ur ⊆U . Consider the set

Kr = {n ∈ N : p(xn −0) ∈Ur}=
{

n ∈ N : ∥xn∥∞ =
1
n
< r
}
.

It can be seen that δ(Kr) = 1. Thus, we have xn
st-pτ−−→0.

Remark 1. Let (X , p,Eτ) be an LNLS. If |y| ≤ |x| for any x,y ∈ X , then we have
that p(y) /∈U implies p(x) /∈U for an arbitrary zero neighborhood U . Indeed, assume
that p(y) /∈ U and p(x) ∈ U hold. It follows from the solidness of U that we have
p(y) ∈U because |y| ≤ |x| implies p(y)≤ p(x) ∈U . So, there is a contradiction, and
so, we have the desired result, p(x) /∈U .

Proposition 1. Let (X , p,Eτ) be an LNLS. Then, the following statements hold:

(i) every p-convergent sequence is st-pτ-convergent;
(ii) every order convergent sequence is st-pτ-convergent if order convergence

implies p-convergence in X.

Proof.

(i) Let xn
p−→x in X . Then, there exists a sequence qn ↓ 0 in E such that p(xn −

x)≤ qn for every n ∈ N. On the other hand, take an arbitrary zero neighbor-
hood U and arbitrary m ∈ N. Then, there exists a positive integer k > 0 such
that 1

k qm ∈U , and so, we have 1
k qn ∈U for all n ≥ m because U is solid and
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absorbing set. Now, take an arbitrary index nk such that qnk ≤ 1
k qm. Hence,

we have qn ∈U for all n ≥ nk. So, we observe that

δ({n ∈ N : qn /∈U}) = δ({1,2, . . . ,nk −1}) = 0.

It follows from the inequality p(xn−x)≤ qn for all n that we have δ({n ∈N :
p(xn − x) /∈U}) = 0, i.e., xn

st-pτ−−→x.
(ii) The proof is similar to the first part.

□

Theorem 1. The st-pτ-limit is linear in LNLSs.

Proof. Suppose that xn
st-pτ−−→x and yn

st-pτ−−→y in an LNLS (X , p,Eτ). For any zero
neighborhood U , there exists another zero neighborhood V such that V +V ⊆ U .
Then, we have δ({n ∈ N : p(xn − x) /∈ V}) = 0 and δ({n ∈ N : p(yn − y) /∈ V}) = 0.
It follows from the following inequality

p(xn + yn − x− y)≤ p(xn − x)+ p(yn − y) ∈V +V ⊆U

that if p(xk−x)∈V and p(yk−y)∈V for some indexes k, then p(xk+yk−x−y)∈U .
Thus, we observe that {n ∈ N : p(xn + yn − x− y) /∈U} ⊆ {n ∈ N : p(xn − x) /∈V}∪
{n ∈ N : p(yn − y) /∈V}, and so, we obtain δ({n ∈ N : p(xn + yn − x− y) /∈U}) = 0.
Therefore, we get the desired result, i.e., xn + yn

st-pτ−−→x+ y.
Now, take a scalar α ∈ R such that |α| ≤ 1 and an arbitrary zero neighborhood U .

Then, it follows that δ(K) = 1, where K = {n ∈ N : p(xn − x) ∈ U}. Since U is a
balanced set, by the equality

p(αxn −αx) = |α|p(xn − x) ∈ |α|U ⊆U,

we get p(αxn −αx) ∈U for all n ∈ K. Thus, we obtain

{n ∈ N : p(xn − x) ∈U} ⊆ {n ∈ N : p(αxn −αx) ∈U},

and so, we have δ({n ∈ N : p(αxn −αx) ∈U}) = 1, i.e., αxn
st-pτ−−→αx.

Consider the case |α| > 1. Then, for a given zero neighborhood U , we have
1
|α|U ⊆ U because of the balanced property. Fix γ = 1

|α| . Since γU is a solid zero
neighborhood, there exists another zero neighborhood W such that W ⊆ γU , and so,
we have |α|W ⊆U . By the same consideration of the above part, it follows from

p(αxn −αx) = |α|p(xn − x) ∈ |α|W ⊆U

that δ({n ∈N : p(αxn−αx) ∈U}) = 1. So, we get αxn
st-pτ−−→αx for every α ∈R. □

Theorem 2. Let (X , p,Eτ) be an LNLS. Then,
(i) if τ is a Hausdorff solid topology, then the st-pτ-limit is uniquely determined,

(ii) the statistically pτ-version of the squeeze law holds.

Proof.
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(i) Assume that xn
st-pτ−−→x1 and xn

st-pτ−−→x2 and τ has the Hausdorff property. Let
U be a zero neighborhood in E. Then, there exists a zero neighborhood
V satisfying V +V ⊆ U . Thus, we have δ(K1) = δ(K2) = 1 for the sets
K1 = {n ∈N : p(xn −x1) ∈V} and K2 = {n ∈N : p(xn −x2) ∈V}. It follows
that

p(x1 − x2)≤ p(x1 − xn)+ p(xn − x2) ∈V +V ⊆U

for every n ∈ K1∩K2. Then, by the solidness of U , p(x1−x2) ∈U holds. So,
we have p(x1 − x2) ∈U for every zero neighborhood. Since the intersection
of all zero neighborhoods in a Hausdorff space is zero, we obtain p(x1−x2)=
0, i.e., x1 = x2.

(ii) Suppose that xn ≤ yn ≤ zn holds for all n ∈ N, and xn
st-pτ−−→w and zn

st-pτ−−→w.
Take an arbitrary zero neighborhood U , and so, there exists another zero
neighborhood V such that V +V ⊆ U . Hence, we have δ(K1) = δ(K2) = 1,
where K1 = {n ∈ N : p(xn −w) ∈ V} and K2 = {n ∈ N : p(zn −w) ∈ V}.
By the inequality xn ≤ yn ≤ zn, we have xn −w ≤ yn −w ≤ zn −w, and so,
|yn −w| ≤ |xn −w|+ |zn −w| holds for all n. Therefore, we obtain

p(yn −w)≤ p(xn −w)+ p(zn −w) ∈V +V ⊆U

for every n ∈ K1 ∩K2. Thus, we obtain δ({n ∈ N : p(yn −w) ∈U}) = 1. So,
we get the desired result, yn

st-pτ−−→w.
□

Definition 4. Let (X , p,Eτ) be an LNLS and (xn) be a sequence in X . Then, (xn)
is said to be statistically pτ-bounded if, for every zero neighborhood U , there exist
some λ > 0 such that

δ({n ∈ N : p(xn) /∈ λU}) = 0.

Remark 2.

(i) Every p-bounded sequence is statistically pτ-bounded. Indeed, let (xn) be
a p-bounded sequence in an LNLS (X , p,Eτ). It follows from [2, Theorem
2.19 (1)] that p(xn) is topologically bounded in E because it is order bounded
in E. So, for each zero neighborhood U , there exists λ > 0 such that p(xn) ∈
λU for all n ∈ N. Thus, (xn) is statistically pτ-bounded.

(ii) Let (X , p,Eτ) be an LNLS and (xn) be an order bounded sequence in X . Then,
(xn) is statistically pτ-bounded. Indeed, since (xn) is order bounded, there
exists x∈X+ such that |xn| ≤ x for all n∈N. It follows from the monotonicity
of p that p(xn) ≤ p(x) for all n, i.e., p(xn) is order bounded in E. Thus, by
applying [2, Thmeorem 2.19 (1)], p(xn) is topologically bounded in E, and
so, it is statistically pτ-bounded.

Proposition 2. Every st-pτ-convergent sequence is statistically pτ-bounded.
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Proof. Let (xn) be an st-pτ-convergent sequence to x in an LNLS (X , p,Eτ). Take
an arbitrary zero neighborhood U with another zero neighborhood V such that V +
V ⊆ U . Then, we have δ({n ∈ N : p(xn − x) /∈ V}) = 0. On the other hand, by
using the absorbing property of V , there exists a positive scalar λ such that λp(x) ∈
V . Choose r := min{1,λ}. Then, we have rp(x) ∈ V because of rp(x) ≤ λp(x).
Therefore, if p(xn − x) ∈ V , then rp(xn − x) ∈ V by the balancing property of V . It
follows from the inequality rp(xn)≤ rp(xn − x)+ rp(x) ∈V +V ⊆U that we obtain
δ({n ∈ N : rp(xn) /∈U}) = 0, i.e., (xn) is statistically pτ-bounded. □

3. STATISTICAL pτ-DENSITY AND pτ-LIMIT POINTS

Recall that a sublattice Y of a Riesz space X is called
(-) dense with respect to order convergence if every vector in X is the order limit

of a net in Y ,
(-) order dense whenever for each 0 < x ∈ X there exists some y ∈ Y with 0 <

y ≤ x.
Motivated by these definitions, we give the following notions.

Definition 5. Let (X , p,Eτ) be an LNLS. A sublattice Y ⊆ X is called
(i) statistically pτ-dense in X with respect to st-pτ-convergence whenever for all

x ∈ X there exists a non zero sequence (yn) in Y such that yn
st-pτ−−→x;

(ii) pτ-dense in X with respect to st-pτ-boundedness if, for any x∈X , there exists
a non zero sequence (yn) in Y such that the sequence (x− yn) is statistically
pτ-bounded.

It is clear from Proposition 2 that statistical pτ-density implies pτ-density. But, the
converse need not hold in general. To see this, consider the following example.

Example 6. Let X be the set of real-valued bounded functions on [0,1] denoted
in the form f := g+h, where g is continuous and h vanishes except at finitely many
points. Then, (X , | · |,Xτ) is an LNLS, where τ is the topology generated by supremum
norm on X . Then, the sublattice Y :=C[0,1], all continuous functions on [0,1], is stat-
istically pτ-dense in X . Indeed, it is clear that, for any f ∈ X , there exists a sequence
(gn) in Y such that gn

o−→ f . It follows from [4, Remark 2.2 (2)] and Proposition 1(ii)
that we obtain gn

st-pτ−−→ f . On the other hand, we observe that Y is not pτ-dense in X
because, for the characteristic function χ{ 1

3}
in X , there is not any sequence (gn) in Y

such that ( f −gn) is statistically pτ-bounded.

Proposition 3. Let Y be a sublattice of a locally solid Riesz space (X ,τ). If Y is
pτ-dense in LNLS (X , | · |,Xτ), then Y is order dense.

Proof. Take a positive nonzero element 0 ̸= x ∈ X+. Then, there is a sequence
(yn) in Y such that (yn − 1

2 x) is statistically pτ-bounded. Thus, for an arbitrary zero
neighborhood U , there exist some λ > 0 such that δ({n ∈ N : λ|yn − 1

2 x| ∈U}) = 1.
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Take u ∈ U such that |ym − 1
2 x| = 1

λ
u ≤ 1

3 x for some m ∈ N. Then, it follows that
0 < ym ≤ x, and so, Y is order dense in X . □

Example 7. Let Y be the Riesz space c0 of all convergent to zero real sequences
and X be the Riesz space ℓ∞ of all bounded reel sequences. Then, for the LNLS
(ℓ∞, |·|, ℓ∞), Y is order bounded in X . But, it is not pτ-dense in X .

Now, we turn our attention to statistical pτ-limit and pτ-cluster points. The fol-
lowing notions are pτ-versions of classical statistical points [10, 14].

Definition 6. Let (X , p,Eτ) be an LNLS. Then, a point x ∈ X is called
(1) an st-pτ-limit point of a sequence (xn) in X whenever there is an index set

K = {k1 < k2 < .. .} ⊂ N such that δ(K)> 0 and p(xkn − x) τ−→ 0.
(2) an st-pτ-cluster point of a sequence (xn) in X if, for each zero neighborhood

U , we have δ({n ∈ N : p(xn − x) ∈U})> 0.

For a sequence (xn) in a space X , let Λp(xn) denote the set of all st-pτ-limit points
of (xn), and let Θp(xn) denote the set of all st-pτ-cluster points of (xn).

Example 8. Let (E, | · |,Eτ) be an LNLS and x,y ∈ E. Then, take a sequence (xn)
denoted by xn := x if n is a square and xn := y otherwise. Thus, it is clear that
Λp(xn) = Θp(xn) = {y}.

Theorem 3. For an LNLS (X , p,Eτ) and sequence (xn) in X, Λp(xn)⊆ Θp(xn).

Proof. Let x∈Λp(xn) and p(xnk −x) τ−→ 0 holds on an index set K such that δ(K) =

λ > 0. Fix a zero neighborhood U in E. Then, it follows from p(xnk − x) τ−→ 0 that
there exists an n j ∈ K such that p(xnk − x) ∈U for n j ≤ nk ∈ K. Also, we can easily
observe the following subset

{nk : k ∈ N}\{n1,n2, . . . ,n j−1} ⊆ {n ∈ N : p(xn − x) ∈U}.
Therefore, we have

δ({n ∈ N : p(xn − x) ∈U})≥ λ > 0

Then, we get x ∈ Θp(xn) because U is arbitrary. □

Theorem 4. Let (xn) and (yn) be two sequences in an LNLS (X , p,Eτ). If the
natural density of {n ∈ N : xn ̸= yn} is zero, then Θp(xn) = Θp(yn) and Λp(xn) =
Λp(yn).

Proof. Assume that w ∈ Θp(xn) and U is an arbitrary zero neighborhood. Thus,
we have δ({n ∈ N : p(xn −w) ∈U})> 0. It follows from the subset

{n ∈ N : p(xn −w) ∈U}\{n ∈ N : xn ̸= yn} ⊆ {n ∈ N : p(yn −w) ∈U}
that we obtain δ({n ∈ N : p(yn − w) ∈ U}) > 0. Therefore, we get w ∈ Θp(yn).
In a similar way, one proves Θp(yn) ⊆ Θp(xn). Hence, we get the desired result,
Θp(xn) = Θp(yn).
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The equality Λp(xn) = Λp(yn) can be obtained similarly. □

Theorem 5. Let (xn) be a sequence in an LNLS (X , p,Eτ) and F be a compact
subset of E satisfying δ({n∈N : p(xn)∈ F})> 0. Then, we have p(Θp(xn))∩F ̸=∅.

Proof. Assume that p(Θp(xn))∩F =∅. Then, for every w∈X such that p(w)∈F ,
we have w /∈ Θp(xn). Thus, there is a zero neighborhood Uw such that δ(Kw) = 0,
where Kw := {n ∈ N : p(xn −w) ∈ Uw}. On the other hand, consider an open cover
{Uw : p(w) ∈ F} of F . Then, we have a finite subcover Uw1 ,Uw2 , . . . ,Uw j of F . So, it
follows from

{n ∈ N : p(xn −w) ∈ F} ⊆ Kw1 ∪Kw2 ∪·· ·∪Kw j

that δ({n ∈ N : p(xn −w) ∈ F}) = 0, a contradiction. □

4. STATISTICALLY pτ-CONTINUOUS OPERATOR

In this section, we introduce continuous and bounded operators with respect to
the statistical pτ-convergence. Recall that an operator T between LNS (X , p,E) and
(Y,q,F) is called

- p-continuous whenever xn
p−→0 in X implies T (xn)

p−→0 in Y ,
- p-bounded if it maps p-bounded sets in X to p-bounded sets in Y .

Motivated by these definitions, we introduce the following notions.

Definition 7. Let T : (X , p,Eτ)→ (Y,q,Fτ′) be an operator between LNLSs. Then,
T is said to be

(1) statistically pτ-continuous if xn
st-pτ−−→x in X implies T (xn)

st-pτ−−→T (x) in Y ,
(2) statistically pτ-bounded if it sends statistically pτ-bounded sequences to stat-

istically pτ-bounded sequences.

It is clear that the collection of all statistically pτ-continuous operators between
LNLSs is a vector space.

Example 9. Consider the LNLS (c00, | · |, ℓ∞), where the solid topology on ℓ∞

is generated by the supremum norm ∥·∥∞. Define an operator S : (c00, | · |, ℓ∞) →
(c00, |·|,c00) denoted by

S(x) =

(
∞

∑
n=1

|xn|

)
x

for all x := (xn) ∈ c00. Consider a sequence x = (xk
n) = (xk

1,x
k
2, . . .) in c00 denoted by

xk
n = (x1

n,x
2
n, . . .) = (1, . . . ,1,0,0, . . .) in c00. Thus, it is order bounded by the element

(1) = (1,1, . . .) in ℓ∞, and so, it is topological bounded in ℓ∞ by applying [2, Theorem
2.19]. Hence, it is statistically pτ-bounded in c00. Then, it follows that

S(x) = (1xk
1,2xk

2,3xk
3, . . . ,nxk

n, . . .)

is not bounded in c00, and so, S is not a statistically pτ-bounded operator.
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Theorem 6. If an operator (E, | · |,Eτ)→ (F, | · |,Fτ′) between LNLSs is uniformly
continuous, then it is statistically pτ-continuous.

Proof. Assume that T : E → F is a uniformly continuous operator. Then, we show
that T : (E, | · |,Eτ) → (F, | · |,Fτ′) is statistically pτ-continuous. Let xn

st-pτ−−→x in E.
Take any fixed zero neighborhood V in F . Now, by applying uniform continuity of
T , we have some zero neighborhood U in E so that (a−b)∈U implies T (a−b)∈V .
On the other hand, by xn

st-pτ−−→x, we have δ(K) = 1, where K = {n∈N : (xn−x)∈U}.
Also, we have T (xn − x) ∈ V for every n ∈ K. Then, it follows that K ⊆ M := {n ∈
N : T (xn − x) ∈V}, and so, we obtain δ(M) = 1. Therefore, T (xn)

st-pτ−−→T (x). □

It is well know that every order continuous operator is order bounded; see [3,
Lemma 1.54]. But, a statistically pτ-continuity as an operator between two Riesz
spaces need not be order bounded. To see this, we consider Lozanovsky’s example;
see [3, Exercise 10. p.289].

Example 10. Take an operator T : L1[0,1]→ c0 defined by

T ( f ) =
(∫ 1

0
f (x)sinx dx,

∫ 1

0
f (x)sin2x dx, ...

)
.

Then, T is not order bounded. But, it can be shown that T is norm continuous.
Therefore, by applying Theorem 6, the operator T : (L1[0,1], | · |,L1[0,1]) → (c0, | ·
|,c0) is statistically pτ-continuous because the continuity and the uniform continuity
are equivalent for operators between normed spaces.

Proposition 4. Every p-bounded operator from an LNLS to another LNLS with
an order bounded zero neighborhood is statistically pτ-bounded.

Proof. Suppose that T : X → Y is a p-bounded operator. We show that

T : (X , p,Eτ)→ (Y,q,Fτ′)

is statistically pτ-bounded. Let (xn) be a statistically pτ-bounded sequence in X . Fix
an arbitrary zero neighborhood U in E. Then, there exists λ > 0 such that δ(K) = 1,
where K := {n ∈ N : p(xn) ∈ λU}. Then, it follows from [15, Thmeorem 2.2] that
the set {p(xn) : n ∈ K} is order bounded in E, and so, {xn : n ∈ K} is p-bounded
in X . By applying p-boundedness of T , {T (xn) : n ∈ K} is p-bounded in Y , i.e.,
{q(T (xn)) : n ∈ K} is order bounded in F . Thus, it follows from [2, Thmeorem 2.19]
that {q(T (xn)) : n ∈ K} is topologically bounded in F , and so, T (xn) is statistically
pτ bounded because of δ(K) = 1. Therefore, we get the desired result. □

Theorem 7. A statistically pτ-continuous operator between LNLSs is statistically
pτ-bounded.

Proof. Let T : (X , p,Eτ)→ (Y,q,Fτ′) be a statistically pτ-continuous operator and
(xn) be a statistically pτ-bounded sequence in X . Take a zero neighborhood U in
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E. Then, there exists λ > 0 such that δ(K) = 1 for the set K = {n ∈ N : p(xn) ∈
λU}. Let’s consider an index set M := N×K with the lexicographic order. That is,
(m,k′) ≤ (n,k) iff m < n or else m = n and k′ ≤ k. Take the sequence x(n,k) = 1

λn xk.

Thus, we have p(x(n,k)) = 1
λn p(xk), and so, we get x(n,k)

st-pτ−−→0 because U is arbitrary
and 1

λn p(xk) ≤ 1
λ

p(xk) for every n. By using the statistically pτ-continuity of T , we

obtain T (x(n,k))
st-pτ−−→0. It follows from Proposition 2 that T (x(n,k)) is statistically pτ-

bounded sequence in Y . Now, take an arbitrary zero neighborhood W in F . Then, for
a fixed n0 ∈ N, there is α > 0 such that δ(J) = 0, where

J =

{
k ∈ K : q(T (xn0,k)) =

1
λn0

q(T (xk)) /∈ αU
}
= {k ∈ K : q(T (xk)) ∈ αλn0 /∈U}.

Therefore, we get T (xn) is statistically pτ-bounded. □

The lattice operations in an LNLS are statistically pτ-continuous in the following
sense.

Theorem 8. If xn
st-pτ−−→x and yn

st-pτ−−→y in an LNLS, then xn ∨ yn
st-pτ−−→x∨ y.

Proof. Suppose that xn
st-pτ−−→x and yn

st-pτ−−→y in an LNLS (X , p,Eτ) and U be an
arbitrary zero neighborhood in E with another zero neighborhood V such that V +
V ⊆U . Then, we have δ(K) = δ(M) = 1 for the sets

K = {n ∈ N : p(xn − x) ∈V} and M = {n ∈ N : p(yn − y) ∈V}.

Take an index set J := K ∩M. Then, it follows from [19, Theorem 12.4] that we
observe

p(xn ∨ yn − x∨ y)≤ p(xn − x)+ p(yn − y) ∈V +V ⊆U

for all n ∈ J. Then, by using the solidness of U , we have p(xn ∨ yn − x∨ y) ∈ U for
all n ∈ J. Thus, we get δ({n ∈ N : p(xn ∨ yn − x∨ y) ∈U}) = 1. As a result, we have
xn ∨ yn

st-pτ−−→x∨ y. □

Corollary 1. Let xn
st-pτ−−→x and yn

st-pτ−−→y hold in an LNLS. Then, we have the
following statements:

(i) x+n
st-pτ−−→x+;

(ii) x−n
st-pτ−−→x−;

(iii) |xn|
st-pτ−−→|x|;

(iv) xn ∧ yn
st-pτ−−→x∧ y.
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