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NUMERICAL SOLUTION OF FRACTIONAL VOLTERRA
INTEGRAL EQUATIONS BASED ON RATIONAL CHEBYSHEV
APPROXIMATION
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Abstract. We aim to give the numerical method for solving the fractional Volterra integral equa-
tions of first and second kinds. We here use the techniques based upon rational Chebyshev
functions and Riemann-Liouville fractional integrals. Some illustrative experiments with a view
of estimating error and graphics are given in order to show the validity and applicability of the
technique. Our experiments show that the new technique has high accuracy and is very efficient
when compare to the other approaches existing in literature.
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1. INTRODUCTION

The equation in which the unknown function u(x) appears within an integral sign
is called an integral equation. The linear integral equations

b
A [ K(xpu(p)dp = () (L1)
and
b
()= [ K(x.pulp)dp = £ (12)

of first and second kinds, respectively, play a particularly important role in the study
of pure and applied mathematics. Here, the kernel K (x,p) and a function f(x) are
given, and the function u(x) is to be determined. Note that, in (1.1) and (1.2), the
interval of integration (a,b) can be extended to infinity in one or both directions.

An Italian mathematician Volterra introduced an integral equation and later called
his integral equation ~Volterra integral equation”, briefly, VIE. His work is summar-
ized in his book [33] and it is one of the widely-studied integral equation in several

This work is part of the research project with project number 2020-GAP-MUMF-0012 supported by
Izmir Katip Celebi University Scientific Research Project Coordination Unit.

© 2023 Miskolc University Press


http://dx.doi.org/10.18514/MMN.2023.4291

1288 S. DENIZ, F. OZGER, Z. O. OZGER, S. A. MOHIUDDINE, AND M. T. ERSOY

branches of mathematics. A Volterra integral equation is one in which one of the
integral’s limits is variable. For example, the VIE corresponding to (1.2) is given by

ux) = [ Kxp)u(p)dp = £(x). (1.3

Several numerical and theoretical methods have been demonstrated by several re-
searchers to solve Volterra integral equations such as (i) Adomian decomposition
method [6], (ii) Taylor-series expansion method [17], (iii) Sinc-collocation method
[22], (iv) quadrature method with variable step [24], (v) collocation method [16].
Moreover, Sezer et al. have developed powerful techniques for different kinds of
VIE [3,34]. Recently, a numerical solution was obtained based on Bernstein approx-
imation method to solve VIE of first and second kind as well as their singular form
[15].

Fractional operators have been used by many researchers to describe some com-
plex phenomena. Many differential equations have been generalized and revisited
with the aid of new fractional definitions [1, 2,5, 8,9,23, 30,32]. Correlatively, the
theory of fractional integral equations (FIE) can be counted as a generalization of the
classical idea of integral equations wherein calculus of integrals of any arbitrary real
or complex order [25]. In the last three decades, this theory has got attention from
several researchers because of its widespread application in engineering and science.

Consider I = [a,b] (—eo < a < b < =) is an interval on the real line R. Recall as in
[25] that the left and right Riemann-Liouville fractional integrals * ¥ u and “ 7" u,
respectively, of order o, 0 < o < 1, for an absolutely continuous function u : / — R

are defined by
o x 1 * a—1
T = g [ o9 uthas (x>0

and
b
*Fpu(x) = F(loc)/x (t—5)%Tu(s)ds  (x<b),

where I'(a) is a Gamma function given by

F((x):/ s% le~5ds.
0

In this study, we apply the rational Chebyshev functions to solve the following
fractional Volterra integral equations (FVIE) of first and second kinds as follows:

v(x) =75 (k(x)u(x)) (1.4)

and
u(x) = v(x) +Bx) [* 7 (x(x)u(x))] , (1.5)
where a € (0,1) and ,B,u : [a,h] — R are absolutely continuous functions. Most

recently, Usta [3 1] has obtained the numerical method for solving the fractional Vol-
terra integral equations (1.4) and (1.5) which is based on Bernstein approximation
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method. We now show that more efficient and accurate results are obtained by using
the rational Chebyshev functions even for the lower degrees of iterations.

1.1. Rational Chebyshev functions

Orthogonal polynomials are very important and serve to approximate functions.
Classical orthogonal polynomials were developed by P. L. Chebyshev in the late 19th
century. Significance of the orthogonal polynomials can be seen especially in the
solution of systems of linear equations and in the least-squares approximations.

With respect to the weighted function

1
V1—x2'
the Chebyshev polynomials are orthogonal in [—1, 1] which can be formulated by the
recurrence formula:

T(x)=1, Ti(x)=x, T1(x)=2xT(x)—T—1 (n>1).

w(x) =

Guo et al. [10] demonstrated the rational Chebyshev functions, in short, we will write
RC functions, by

R,(x)=T, <j§11> . (1.6)
Consequently, one can write
Ro() =1, Ri(x) =1 Ryor(v) =2 <"‘ 1) Ru()~Ru1(x) (0> 1). (1)
x+1 x+1
We remark that RC functions are orthogonal with respect to the weight function
B 1
M= e )

in the interval [0, o). In this case, the orthogonal property is

[ ST 2 i =0
0

where §,,, is the well-known Kronecher function. Parand and Razzaghi [21] used
the technique based on RC functions with a view of solving higher-order ordinary
differential equations. For more information about RC functions, we refer to the
articles [7,21].

2. NUMERICAL SCHEMES

We apply rational Chebyshev approximation method to fractional Volterra integ-
ral equations of first and second kinds in order to establish numerical schemes for
numerical related solutions.
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2.1. Numerical scheme for FVIE of first kind

In order to solve the first kind FVIE (1.4) numerically, we approximate the un-
known function as

=) cRi(x). 2.1)
k=0
Substituting (2.1) in
v(x) =", (k(x)u(x)) (2.2)

we obtain

v(x) = [O‘fa’i (K(x) i ckRk(x)>] :
k=0

Let € be any arbitrary small number. Replacing x by x; = j/n+ € and reorganizing
the above equation, we achieve that

ZCk “FT (<(x)Re(x7))] = (x)),

which yields [R][C] = [V], where

R = [*Fal REDR iyeguenys SE=OLom @)
and
T v(x0) T [ co ]
v(xl) Cl
V] = , [Cl=
L v (%) (n+1)x1 - d X

2.2. Numerical scheme for FVIE of second kind

In order to solve the second kind FVIE (1.5) numerically, we substitute (2.1) in

u(x) =0(x) +B(x) [* 7 ((x)u(x))] . 2.4)

Thus, we have the following equation

Z ciRy(x +B(x) ( Z iRy (x ) (2.5)

We have following relation if we rearrange the above equation.

Z cx {Ri(x) — B () *F5 (k(x) Re(x)) } = v (). (2.6)
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Let € be any arbitrary small number. Replacing x by x; = j/n+ €, we obtain
Y e {Ru(x) — By Fal (6 (xe)) Re(x)) } = v (x7) 4 2.7)
k=0

which yields [R][C] = [V], where [R] is an (n+ 1) x (n+ 1) matrix and given by

R] = [Rele)) — B () “Fa (<) Reey)] 1oy 4ok =010,

and [C] and [V] are ((n+ 1) x 1) vectors given in (2.4). The system (2.2) is stable if
the matrix [R] is invertible. Hence we can have the solution matrix [C] by the help
of [C] = [R™!] [V]. Finally, the approximate solution of 2nd FVIEs can be computed
by substituting the matrix [C] in equation (1.5).

3. NUMERICAL RESULTS AND ANALYSIS

Since the outcomes of these experiments are computed in different references, they
can be compared to those obtained using other computational technique. We provide
the following notations for analysing error of the implemented procedure:

en(x) = |u(x) —uy(x)| and |e,||., = max {en (xj),j=0,1,2,--- ,n},

where u(x) and u,(x) are exact solution and approximate solution, respectively, of
the test problems and x; is the uniform grid on [0, 1]. Also the root mean square error

can calculated by
2
- \/ I ),

n
Experiment 1. Let us consider the Abel integral equation (see [12,35]) as follows:
* o g(t)
ef—1= / ——dt 3.1
0o (x—1)1/2 G-

with the exact solution
e 2 ro_2
X) = ——er x); erf(x) = — e " ds.
) = Terf(VR): erf) = 7 |
Equation (3.1) can be considered as FVIE of first kind as follows:
¢ —1=T(1/2) [l/zfoﬁu(x)} , xe[0,1].
Therefore, we have

1
v(x)=e"—1, k(x) =T(1/2), ax =04 and 0 = 5
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For n = 3, we have the following matrices:

0.2 —0.197354 0.189502 —0.176691 0.0100502
R— 1.17189 —0.749508 —0.163557 0.819708 V= 0.409639
| 1.6452  —0.672325 —0.935528  1.10479 | 0.967309
2.00998 —0.486655 —1.49239  0.767512 1.7456
and therefore the matrix C can be computed as
2.86872
1 v~ | 402452
REV=C=1 5845
0.394493

Thus, third order approximation will be
_8.87223x7 — 1.20921x% 4 2.57654x +0.0342116

usz(x
3(0) (x+1)3
Similarly, for n = 4, one can get the following matrices:
0.2 —0.197354  0.189502 —0.176691  0.159327 0.0100502
1.0198  —0.726484 0.0440107  0.576421 —0.74932 0.29693
R=| 142829 —-0.733834 —0.572921 1.07927 —0.372143 |, V=] 0.665291 ,
1.74356 —0.631576  —1.09533 1.0569 0.381453 1.13828
2.00998 —0.486655 —1.49239  0.767512 0.974483 1.7456

and the desired matrix can be calculated as:
3.76836
5.59245
R1.V=C=| 259438
0.849141
0.115932

According to these results, the fourth order approximation becomes

walx) 12.9203x* +0.746768x> +4.78162x% +2.15289x + 0.0370701
4\x) = .

(x+1)%
This problem has been considered in [12,35]. According to the Tables 1, 2 and 3, our
new results are slightly better than those obtained by the methods used in [12, 35].

Figure 1 validates the theoretical results given in the problem. Figure 1 proves that
new solutions are valid also for larger region.
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TABLE 1. Estimated and exact solution of Experiment 1 [12].

X

n=1

n=10

n =100

Exact value

0.1
0.2
0.3

0.2154319668 0.2152921762 0.2152904646 0.2152905021
0.3267280013 0.3258941876 0.3258841023 0.3258840762
0.4300194238 0.4275954299 0.4275658716 0.4275656575

TABLE 2. Approximated and exact values for Experiment 1 [35].

X

n=10

n=20

n=730

Exact value

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.

0.2152897706
0.3258833448
0.427564926
0.5293323416
0.6350311405
0.7470394417
0.8671868544
0.9970886453
1.138297847
1.292387361

0.2152904948
0.325884069
0.4275656502
0.5293330658
0.6350318647
0.7470401659
0.8671875786
0.9970893695
1.138298572
1.292388086

0.2152905016
0.3258840758
0.427565657
0.5293330726
0.6350318715
0.7470401727
0.8671875854
0.9970893763
1.138298578
1.292388092

0.2152905021
0.3258840763
0.4275656576
0.5293330731
0.635031872
0.7470401732
0.867187586
0.9970893769
1.138298579
1.292388093

TABLE 3. Absolute errors of the present method for Experiment 1.

X

n=10

n=20

n=730

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.

1.1714 x 1072
1.392 x 1073
1.6727 x 1072
2.0269 x 1072
2.4709 x 1072
3.0246 x 107
3.7123 x 107
4.5636 x 1073
5.6147 x 107
6.9096 x 107

9.0681 x 10~
9.2251 x 1077
9.5101 x 1077
9.9437 x 1077
1.0547 x 107
1.1342x 107
1.2353 x 107
1.3604 x 107°
1.512x107°
1.6929 x 107°

6.0623 x 107°
6.2612 x 107°
6.6218 x 10~?
7.1813 x 10~?
7.9944 x 10~?
9.1416 x 10~°
1.0744 x 1078
1.2988 x 1078
1.618 x 1078
2.0842 x 1078

Experiment 2. Consider the FVIE of second kind as

u(x) = V(1 +x)

—O.OZX—
1+

3

X

10.01x5/2 [sz(ﬁu(x)} . xe0,1]

with the exact solution u(x) = /(1 +x)~3/2. In this experiment, we have

v(x) = Va(l4x)73/2

3

—-0.02
1+x

1
, B(x) =0.01x"%, k(x) =1, ay =0, and ot = >
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act solution (—) solution (—) for larger domain

FIGURE 1. Approximations in x € [0,1] and in x € [0,2].

For n = 4, we have the following matrices:

1. —0.980198  0.921576  —0.826457  0.698606 1.7462
0.999802 —0.58716  —0.310162  0.951497 —0.807464 1.25292

R=| 0998503 —0.323734 —0.788795  0.835695 0.24668 , V= 0953476 |,
0.995047 —0.134569 —0.959698  0.395946 0.852922 0.754124
0.988374 0.00778994 —0.991319 —0.0193642  0.994166 0.611735

and therefore the matrix C can be computed as

0.74613
—0.913927
Rl.v=C= 0.120294
0.00870883
0.000820654

By proceeding as mentioned in Section 2, the fourth order RC approximation to this

problem is obtained as:

_ 1.77246 +4.43015x 4 3.33129x% +0.530591x° — 0.0379734x"
N (1 +x)* '

Similarly, for n = 6, one can get the following matrices:

ug(x)

1. —0.980198 0.921576 —0.826457 0.698606  —0.543088  0.366061

0.999938  —0.699667  —0.0208101 0.728796 —0.999093  0.669365  0.0623669

0.999543  —0.488542 —0.522019 0.998938 —0.454573  —0.554589  0.996835

R= | 0.998503 —0.323734  —0.788795 0.835695 0.24668 —0.996071  0.399885
0.996504  —0.191414  —0.923635 0.547495 0.713269  —0.823165 —0.395785
0.993232  —0.0828303 —0.98098 0.248905 0.940395  —0.409556 —0.871125
0.988374  0.00778994  —0.991319  —0.0193642  0.994166  0.0284576  —0.994792



FRACTIONAL VOLTERRA INTEGRAL EQUATIONS 1295

1.7462 T [ 0.749586
1.38856 —0.907714
1.13781 0.124798
V= 0953476 | .HenceR'1.V=C=| 0.0112702
0.812708 0.00190131
0.701714 0.000307628
| 0.611735 | | 0.000032497 |

By using this matrix and RC functions, one can find the sixth order approximation
as:

1.77245 +7.97598x + 13.9589x2 + 11.6271x> +4.37473x* + 0.416709x° — 0.0198182x°
- (1+x)°® ’

ug (x)

Even for n = 6, we have ||eg||., = max{eg (x;),i =0,1,2,3} = 3.28592 x 10710,
where the method in [18] gets

llexs||., = max {exs (x;),i=0,1,2,---,24} =2.507237 x 10~°

with ten iterations. Table 4 shows the errors obtained by proposed technique. One
can deduce that, this method is more accurate than other techniques for solving Ex-
periment 1. Figures are also given to show the efficiency of the technique. Our results
are valid also for larger domain as it can be seen from Figure 2. All figures and tables
demonstrate that the approximate solutions have high accuracy even for smaller 7.

TABLE 4. Comparison of maximum errors ||e,||,, obtained by
present method and the results obtained in [ 18,3 1] for Experiment 1.

Present method Method in [31] | Method in [ 18] with 10 iterations
n=12]1.81437x 10~ | 1.046918 x 10~ 9.966408 x 10~
n=1811.10668 x 1013 | 1.221245 x 1013 4.446827 x 1072
n=24|5.05891x 1018 | 3.774758 x 1014 2.507237 x 10~°
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TABLE 5. Absolute and relative errors of approximations for Exper-

iment 1.

Absolute errors

Relative Errors

n=3

n==~6

n=3

n==~6

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

5.00546 x 1073
4.54269 x 1073
3.7144 x 1074
3.14638 x 1073
421141 x 1073
2.72061 x 1073
2.72982 x 1074
2.90836 x 1073
2.74717 x 1073
3.06959 x 1073

7.82261 x 10°°
3.37788 x 107
8.17478 x 106
2.891 x 1073
9.99757 x 10~?
2.50915 x 107
6.16972 x 10~°
2.1963 x 107
4.34802 x 10~°
2.00571 x 107

3.25805 x 1073
3.36907 x 1073
3.1062 x 1074
2.94055 x 1073
4.36505 x 1073
3.1065 x 1073
3.41375x 1074
3.96261 x 1073
4.0592 x 1073
4.89835 x 1073

5.09173 x 10°°
2.50519 x 107
6.83623 x 10°°
2.70187 x 1077
1.03623 x 108
2.86505 x 107
7.7155 x 10~°
2.99244 x 107
6.42461 x 107°
3.20065 x 107

05r

0.0

(A) Approximations for n =4
(M) and n = 6 (A) with the ex-
act solution (—)

(B) Approximations for n =4
(M) and n = 6 (A) with the ex-
act solution (—) for larger do-
main

FIGURE 2. Approximations in x € [0,1] and in x € [0, 3].
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0.000015 |-
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(A) Absolute errors for n = 4 (B) Absolute errors for n = 4
(M) andn=6(A) (M) and n = 6 (A) for larger
domain

FIGURE 3. Absolute errors in x € [0,1] and in x € [0, 3].

Experiment 3. Consider the FVIE of second kind as

R A W U V- SR Sl PV
u(x)—F<3>x 10" —1—27[ fmxu(x)}, x€[0,1]

with the exact solution u(x) =T (%) x. In this experiment, we have

3 40 27

For n = 4, we have the following matrices:

2 1 1 2
v(x) :F<>x—x8/3, Bx)==—, k(x) =x, ay =0 and o = 3

0.999989 —0.980187  0.921566  —0.826447  0.698597 0.0135411
0.997393  —0.585534 —0.309982  0.949724  —0.80536 0.351382
R=] 0991986 —0.320835 —0.785028  0.829785 0.248151 |,V=| 0.686449
0.98442  —0.131823 —0.950695  0.388677 0.84844 1.0171
0.974972  0.00900327 —0.977827 —0.0241485 0.983044 1.34199

and therefore the matrix C can be computed as

2.8232
3.99973
RL.v=C=| 154097
0.435018
0.0719605

By proceeding as mentioned in Section 2, the fourth order RC approximation to this

problem is obtained as:

_ 8.87087x* +5.02323x7 +6.56676x% + 1.20484x 4 0.00138086

u4(x) (X+1)4
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Similarly, for n = 6, one can get the following matrices:

0.999989 —0.980187 0.921566 —0.826447 0.698597 —0.54308 0.366055
0.998631 —0.698665 —0.0210517 0.728197 —0.997982 0.6683 0.0628871
0.995856 —0.48636 —0.520985 0.995716 —0.451944 —0.554561 0.994521
R=| 0991986 —0.320835 —0.785028 0.829785 0.248151 —0.992085 0.395664
0.987162 —0.188449 —0.916403 0.540234 0.711094 —0.815699 —0.397755
0.981469 —0.0804581 —0.970295 0.242074 0.933545 —0.401143 —0.868101
0.974972  0.00900327 —0.977827 —0.0241485 0.983044 0.0350695 —0.986688
[ 0.0135411 ] 3.59335
0.238982 5.3876
0.463469 2.55307
V=| 0686449 | andR1.v=C= 1.01763
0.907464 0.323744
1.1261 0.0746041
1.34199 | 0.00990615 |

Using the above information, the sixth order RC approximation to fractional Volterra
integral equation (FVIE) can be computed as:

~12.9599x° 4 13.4391x +32.0296x* + 18.4223x> +8.48603x2 + 1.32651x +0.000241776
B (x+1)6 ’

ug (x)

Even for n = 6, we have ||eg||., = max {eg (x;) ,i = 0,1,2,3} = 1.40454 x 107, where
the methods in [31] and [ 18] have found

lleas]|,, = max {ex (x;),i =0,1,2,---,24} = 1.233508 x 10~

and

llexs|l., = max {ex (x;),i=0,1,2,---,24} = 6.045722 x 10~°
with 24 iterations, respectively. Table 6 shows the errors obtained by proposed tech-
nique. One can deduce that this method is more accurate than other techniques for
solving Experiment 2. Figures are also given to show the efficiency of the technique.
Our results are valid also for larger domain as can be seen from Figure 4. All figures
prove that the proposed method is very powerful even for smaller 7.

TABLE 6. Comparison of maximum errors ||e,||,, obtained by
present method and the results obtained in [ 18,3 1] for Experiment 2.

Present method Method in [31] | Method in [18] with 10 iterations
n=1219.089011x 10~ 1T | 1.714861 x 1073 2.492919 x 107
n=18 | 7.066315 x 10~ | 9.354121 x 108 1.304662 x 1073
n=2417.770991 x 10~ 13 | 1.233508 x 10~ 6.045722 x 107°

Experiment 4. For the last experiment, we assume the FVIE of second kind as

follows:

u(x)

2\/i— [1/2%@@)} . xel0,1]
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iment 1.

Absolute errors

Relative Errors

n=4

n==~6

n=4

n==6

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

3.288x 103
1.0523 x 1073
3.7546 x 10~
4.6486 x 1074
4.1574 x 1073
2.4577x 107
1.7586 x 10~
1.3202x 10~
3.5444 x 104
7.4223 x 107

2.0572x 107%
2.2107 x 107
1.3241 x 107
7.3716 x 107
9.823 x 1077
3.5124 x 107°
1.4662 x 107°
2.971 x10°°
5.5372x107°
2.8036 x 10°

2.4282x 1072
3.8857 x 1073
9.2423 x 104
8.5823 x 10~
6.1403 x 107
3.0249 x 104
1.8552x 10~
1.2187 x 10~
2.9084 x 104
5.4813x 107

1.5192x 1073
8.1628 x 1077
3.2594 x 107
1.361 x 1072
1.4508 x 107°
43231 x107°
1.5468 x 107°
2.7426 x 107°
4.5435 x 107°
2.0704 x 10~°

1299

(A) Approximations for N =4
(W) and N = 6 (A) with the ex-
act solution (—)

with the exact solution

(B) Approximations for N =4
(W) and N = 6 (A) with the ex-
act solution (—) for larger do-

main.

FIGURE 4. Approximations in x € [0, 1] and in x € [0, 10].

u(x) = 1 — e erfe(+/x):erfe(z) = 1 — ji /0 I

In this experiment, we have

v(x) :2\/i, Bx)=-1,x(x)=1,ay =0, and = %
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X

15

(A) Absolute errors for n = 4
(M) andn=6(A)

(B) Absolute errors for n = 4
(M) andn=06(A)

FIGURE 5. Absolute errors

For n = 4, we have the following matrices:

R=

1.11284 —1.09154 1.02849

1.57536 —0.997176 —0.285323
1.80582 —0.738525 —1.11263
1.9837 —0.492692 —1.58078
2.13401 —0.26959  —1.84194

—0.926144  0.788496 0.112838
1.27682 —1.23037 0.575363
1.44574  0.0363306 |,V = | 0.805824

0.995238 1.06922 0.983698
0.418097 1.5496 1.13401

and the desired matrix can be calculated as:

Rl.v=C=

0.283994
—0.0961519
—0.355155
—0.118124
—0.0663045

Thus, we can get the following approximation

ug(x)

(x+1)*

By doing the similar calculations for n = 6, we have

_ —0.351742x* +5.87456x° +0.614194x> +2.95169x + 0.07681

1.11284  —1.09154 1.02849  —0.926144  0.788496  —0.620922  0.429959
1.47428 —1.076 0.109234  0.874858 —1.32292 0.999436  —0.118471
1.66117 —0.911698 —0.61436 1.46173 —0.868575 —0.508846 1.28017

1.80582 —0.738525 —1.11263 1.44574 0.0363306  —1.31907 0.761709
1.9282  —0.572162 —1.45344 1.17315 0.789894 —-1.32601  —0.278787
2.03623 —0.415809 —1.68568  0.805609 1.28484 —0.90136 —1.0784

2.13401  —-0.26959 —1.84194  0.418097 1.5496 —0.324764  —1.46415
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[ 0.112838
0.474277
0.66117
0.805824
0.928202
1.03623

| 1.13401 |

. Hence C =

[ —0.285357

—1.15588

—1.19127
—0.674898
—0.368269
—0.119576

| —0.0349047

1301

Substituting the above matrix as coefficients of appropriate RC functions, we get

 —3.83015x0+21.2857x — 14.1179x* 4 28.9658x> + 0.45665x> + 3.81248x 4 0.0705518

ug (x)

(x+1)°

Even for n = 6, we have ||eg||., = max {eg (x;) ,i = 0,1,2,3} = 1.09464 x 103, where

the methods in [

]and [

] have found

le12]|.. = max {e2 (x;),i =0,1,2,---,24} = 1.543002 x 103

and ||ejg]|., = max {eg (x;),i = 0,1,2,--- , 18} =6.999936 x 10~ respectively. Table
8 shows the errors obtained by proposed technique. One can deduce that, this method
is more accurate than other techniques for solving Experiment 4. Figures are also
given to show the efficiency of the technique. Our results are valid also for larger
domain as can be seen from Figure 6. All figures prove that the proposed method
gives effective results even for smaller 7.

TABLE 8. Comparison of maximum errors |le,||., obtained by

present method and the results obtained in [ 18,

] for Experiment 4.

Present method

Method in [

]

Method in [

] with 10 iterations

n=12
n=18
n=24

2.121911 x 10~ %
4.099874 x 1073
2.106335 x 1077

1.543002 x 103
7.725839 x 104
4.577828 x 1074

1.007444 x 1072
6.999936 x 1073
2.381096 x 1073

Figures and tables are given to show the efficiency of the technique.
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TABLE 9. Absolute and relative errors of approximations for Exper-

iment 4.
Absolute errors Relative Errors

X Forn=4 Forn==6 Forn=4 Forn==6
0.1 0.0141718 0.00314341 0.0512688 0.0113718
0.2 | 0.000237314 0.0011302 0.000666215  0.00317283
0.3 0.00284334  0.000579788 | 0.00696929 0.00142111
0.4 ] 0.00204502  0.000284363 | 0.00458121  0.000637024
0.5 ] 0.000892315 0.000272262 0.0018713 0.000570966
0.6 | 0.000382037 0.000244394 | 0.000761067 0.000486864
0.7 | 0.000459034 0.000181115 | 0.000877195 0.000346103
0.8 | 0.000745512 0.000152942 | 0.00137611  0.000282308
0.9 0.00084146  0.000168345 | 0.00150805  0.000301704

1. 0.00042765 0.000133346 | 0.000747096  0.000232953

-JV.—.“,IJ‘

0sf T

04f >

03} &

021
01

0.0f'

06

041

021

4 00

(A) Approximations for n =4
(M) and n = 6 (A) with the ex-

act solution (—)

(B) Approximations for n =4
(M) and n = 6 (A) with the ex-
act solution (—) for larger do-

main

FIGURE 6. Approximations in x € [0,1] and in x € [0,4].

In our present discussion, we have presented the numerical method to solve the
fractional Volterra integral equations (x > a,0 < o < 1) of first and second kinds as

4. CONCLUSION

L~ x(x)u(s)
F(Oc)/a (x—s)l-@

ds and
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Our technique is based on approximating unknown function with rational Chebyshev
functions. We have provided numerical experiments in order to demonstrate the sig-
nificance of our numerical schemes. Moreover, we have compared our illustrative
experiments with the existing approximate methods in the literature and seen that
our method has less error and hence the results based on our new technique has high
accuracy and efficiency. For further studies, one can also investigate (i) some sub-
stantially general forms of the Riemann-Liouville fractional integrals [27, 28]; (ii)
collocation methods based upon various orthogonal polynomials [11, 14,26,29]; (iii)
Volterra and related integro-differential equations [4]. Our next aim is to combine ra-
tional Chebyshev functions with approximation theory [13, 19,20] to solve fractional
integral equation.
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