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Abstract. In this study, we investigate the relations between a multiple partitioned linear model
and its correctly-reduced models. We consider the comparison problem of covariance matrices of
the best linear unbiased predictors (BLUPs) of all unknown vectors including partial parameters
under these models by using the block matrix rank and inertia formulas. We derive various
inequalities and equalities for covariance matrices of BLUPs under some general assumptions.
Also, results for special cases are given.
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1. INTRODUCTION

In the present paper, we consider the comparison problem of covariance matrices
of predictors in the context of a multiple partitioned linear model and its reduced
models by using the inertia and rank formulas together with elementary block mat-
rix operations. Before proceeding, we introduce the notations used in this paper.
Rm×n stands for the set of all m×n real matrices. A′, r(A), C (A) and A+ de-
note the transpose, the rank, the column space, and the Moore–Penrose general-
ized inverse of A ∈ Rm×n, respectively. Im denotes the identity matrix of order
m. EA = A⊥ = Im −AA+ stands for the orthogonal projector. i+(A) and i−(A)
denote the positive and the negative inertias of symmetric matrix A, respectively,
and for both i±(A) and i∓(A) are used. The inequality A1 −A2 ≺ (≼,≻,≽) 0 or
A1 ≺ (≼,≻,≽) A2 mean that the difference A1 −A2 is negative definite (negative
semi-definite, positive definite, positive semi-definite) matrix in the Löwner partial
ordering for the symmetric matrices A1 and A2 of same size.

Linear regression models are one of the most commonly used tools in statistical
theory and their applications to analyze data and to develop new methods. These
models may need to be converted to their different forms such as certain partitioned
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forms to meet the requirements of the analysis. In this way, by using various linear
transformations in linear partitioned models, reduced linear models of original mod-
els can be obtained for making statistical inferences of general parametric functions
of partial parameters. In this case, original linear models and their reduced models
become competing linear regression models for estimation and prediction problems
on all unknown vectors with general parametric functions of partial parameters. In
this paper, we consider the following linear regression model with its multiple parti-
tioned form:

M : y = Xα+ ε =
[
X1, . . . ,Xt

][
α′

1, . . . ,α
′
t
]′
+ ε = X1α1 + · · ·+Xtαt + ε

with E(ε) = 0 and cov(ε,ε) = D(ε) = σ
2
Σ,

(1.1)

where y ∈ Rn×1 is a vector of observable response variables, Xi ∈ Rn×ki is a known
matrix of arbitrary rank with X =

[
X1, . . . ,Xt

]
∈Rn×k, αi ∈Rki×1 is a vector of fixed

but unknown parameters with α =
[
α′

1, . . . ,α
′
t
]′ ∈Rk×1, ε ∈Rn×1 is an unobservable

vector of random errors, σ2 is a positive unknown parameter, and Σ∈Rn×n is a known
positive semi-definite matrix of arbitrary rank, k1 + · · ·+ kt = k and i = 1, . . . , t. The
matrix X in (1.1) can also be written as

X = X̂i +Ri = X̂1 + · · ·+ X̂t ,

where X̂i =
[
0, . . . ,Xi, . . . ,0

]
and Ri =

[
X1, . . . ,Xi−1,0,Xi+1, . . . ,Xt

]
, i= 1, . . . , t, and

thereby M can be written as y= (X̂i+Ri)α+ε=Xiαi+Riα+ε. By pre-multiplying
R⊥

i on the both sides of M ,

Ri : R⊥
i y = R⊥

i Xiαi +R⊥
i ε (1.2)

is obtained, i = 1, . . . , t. The model Ri in (1.2) encompasses one of the partial un-
known parameters in the multiple partitioned linear model M . This model is a re-
duced model of M , which is also known as correctly-reduced models of M ; see, e.g.,
[2, 4] among others.

Consideration of M and Ri together is meaningful for obtaining the results separ-
ately or simultaneously for making estimation or prediction on joint unknown vectors
αi and ε. Thus, we construct the following vector that consists all unknown vectors
with partial parameters in the considered models:

ri = Kiαi +Hε =
[
0, . . . ,Ki, . . . ,0

]
α+Hε := K̂iα+Hε (1.3)

in accordance with the partition considered in (1.1) for given matrices Ki ∈Rs×ki and
H ∈ Rs×n, where K̂i =

[
0, . . . ,Ki, . . . ,0

]
, i = 1, . . . , t. According to assumptions in

(1.1), we can write

D(y) = σ
2
Σ, D(R⊥

i y) = σ
2R⊥

i ΣR⊥
i , D(ri) = σ

2HΣH′,

cov(ri,y) = σ
2HΣ, and cov(ri,R⊥

i y) = σ
2HΣR⊥

i .
(1.4)
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The best linear unbiased predictors (BLUPs) defined from the minimum covariance
matrix requirement in the Löwner partial ordering are one of the fundamental predict-
ors in statistical analysis. Their covariance matrices are usually used as comparison
criteria to determine optimal predictors among other types of unbiased predictors.
In this paper, we investigate relations between multiple partitioned linear model M
and its correctly-reduced models Ri, which can be considered as competing models
for making statistical inference on partial parameters, by comparing the covariance
matrices of BLUPs. We establish variety of inequalities and equalities for covari-
ance matrices of BLUPs of ri in (1.3) by considering the general assumptions given
in (1.4) under models M and Ri. Statistical inference problems on BLUPs involve
complicated matrix operations. Therefore, we use formulas of inertia and rank for
block matrices with elementary block matrix operations while derivation of BLUPs,
characterizations of their properties and establish inequalities and equalities for cov-
ariance matrices of BLUPs under considered models. These kinds of mathematical
tools simplify matrix expressions when we face with heavy mathematical compu-
tations with matrix expressions including Moore-Penrose inverses of matrices. For
more details on inertias and ranks of symmetric matrices and relations between in-
ertias and Löwner partial ordering of symmetric matrices, see, e.g., [15, 18, 19, 24].
As further reference for comparison of covariance matrix of predictors/estimators by
using matrix rank/inertia method, we may mention [6, 22, 23] among others. More
related work on prediction/estimation problems under partitioned linear models can
be found in; see, e.g., [5, 7–12, 14, 17, 25].

2. PRELIMINARY RESULTS ON BLUPS

In this section, we review the concepts related the BLUPs of unknown vectors
under M and Ri, i = 1, . . . , t. We give the following definitions regarding many
fundamental results and facts about consistency of the models, predictability and
estimability of unknown parameters under the models, matrix equations and formulas
for BLUPs; see e.g., [1, 3, 16, 21].

Definition 1. The consistency requirements are given as follows:
(1) The model M is said to be consistent if and only if y ∈C

[
X, Σ

]
holds with

probability 1.
(2) Ri is said to be consistent if and only if R⊥

i y ∈ C
[
R⊥

i Xi, R⊥
i ΣR⊥

i

]
holds

with probability 1, i = 1, . . . , t.

Note that Ri is consistent under the assumption of consistency of M . In what
follows, we will assume that the considered models are consistent.

Definition 2. The predictability requirements are given as follows for i = 1, . . . , t.

(1) ri is predictable under M ⇔ C (K̂′
i) ⊆ C (X′) ⇔ r

[
X
K̂i

]
= r(X) ⇔ K̂iα is

estimable under M .
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(2) X̂iα+ ε is predictable under M ⇔ C (X̂′
i)⊆ C (X′) ⇔ r(Xi)+ r(Ri) = r(X)

⇔ X̂iα is estimable under M , where X̂i =
[
0, . . . ,Xi, . . . ,0

]
.

(3) R⊥
i X̂iα+ε is always predictable under M , R⊥

i X̂iα is always estimable under
M , and ε is always predictable under M .

(4) r(R⊥
i X̂i) = ki ⇔ αi is estimable under M .

(5) ri is predictable under Ri ⇔ C (K′
i)⊆ C (X′

iR⊥
i )⇔ r

[
R⊥

i Xi
Ki

]
= r(R⊥

i Xi)⇔

Kiαi is estimable under Ri.
(6) Xiαi + ε is predictable under Ri ⇔ C (X′

i) ⊆ C (X′
iR⊥

i ) ⇔ r(Xi) = r(R⊥
i Xi)

⇔ Xiαi is estimable under Ri.
(7) R⊥

i Xiαi+ε is always predictable under Ri, R⊥
i Xiαi is always estimable under

Ri, and ε is always predictable under Ri.
(8) r(R⊥

i Xi) = ki ⇔ αi is estimable under Ri.

Note that if ri is predictable under Ri, i = 1, . . . , t, then it is predictable under M .

Definition 3. The BLUP and the best linear unbiased estimator (BLUE) expres-
sions for models M and Ri are given as follows, i = 1, . . . , t.

(1) Let ri be predictable under M . If there exists Liy such that

D(Liy− ri) = min s.t. E(Liy− ri) = 0
holds in the Löwner partial ordering, the linear statistic Liy is defined to be
the BLUP of ri and is denoted by Liy = BLUPM (ri) = BLUPM (K̂iα+Hε).
If H = 0 in ri, Liy corresponds the BLUE of K̂iα, denoted by BLUEM (K̂iα),
under M .

(2) Let ri be predictable under Ri. If there exists GiR⊥
i y such that

D(GiR⊥
i y− ri) = min s.t. E(GiR⊥

i y− ri) = 0

holds in the Löwner partial ordering, the linear statistic GiR⊥
i y is defined to

be the BLUP of ri and is denoted by GiR⊥
i y=BLUPRi(ri)=BLUPRi(Kiαi+

Hε). If H = 0 in ri, GiR⊥
i y corresponds the best linear unbiased estimator

(BLUE) of Kiαi, denoted by BLUERi(Kiαi), under Ri.

The fundamental BLUP equations of ri and their covariance matrices under M
and Ri, i = 1, . . . , t, are collected in the following theorem.

Theorem 1. Let M and Ri be as given in (1.1) and (1.2), respectively, and assume
that ri is predictable under Ri (also predictable under M ), i = 1, . . . , t. Then the
following results hold.

(1) BLUP of ri under M is

BLUPM (ri) = Liy =
([

K̂i, HΣX⊥
]

W++UW⊥
)

y, (2.1)

where U ∈ Rs×n is an arbitrary matrix and W =
[
X, ΣX⊥]. In particular,
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(a) Li is unique ⇔ r
[
X, ΣX⊥]= n.

(b) BLUPM (ri) is unique ⇔ M is consistent.
(c) r

[
X, ΣX⊥]= r

[
X, Σ

]
= r
[
X, X⊥Σ

]
.

(d) C
[
X, ΣX⊥]= C

[
X, Σ

]
= C

[
X, X⊥Σ

]
.

(e) The following covariance matrix equalities hold.

D[BLUPM (ri)] = σ
2 [K̂i, HΣX⊥

]
W+

Σ
([

K̂i, HΣX⊥
]

W+
)′
, (2.2)

D[ri −BLUPM (ri)] =σ
2 ([K̂i, HΣX⊥

]
W+−H

)
Σ

×
([

K̂i, HΣX⊥
]

W+−H
)′
.

(2.3)

(2) BLUP of ri under Ri is

BLUPRi(ri) = GiR⊥
i y

=
([

Ki, HΣR⊥
i (R⊥

i Xi)
⊥]W+

i +UiW⊥
i

)
R⊥

i y,
(2.4)

where Ui ∈Rs×n is an arbitrary matrix and Wi =
[
R⊥

i Xi, R⊥
i ΣR⊥

i (R⊥
i Xi)

⊥].
In particular,
(a) Gi is unique ⇔ r

[
R⊥

i Xi, R⊥
i ΣR⊥

i (R⊥
i Xi)

⊥]= n.
(b) BLUPM (ri) is unique ⇔ Ri is consistent.
(c) r

[
R⊥

i Xi, R⊥
i ΣR⊥

i (R⊥
i Xi)

⊥] = r
[
R⊥

i Xi, R⊥
i ΣR⊥

i

]
= r
[
R⊥

i Xi, (R⊥
i Xi)

⊥R⊥
i ΣR⊥

i

]
.

(d) C
[
R⊥

i Xi, R⊥
i ΣR⊥

i (R⊥
i Xi)

⊥] = C
[
R⊥

i Xi, R⊥
i ΣR⊥

i

]
= C

[
R⊥

i Xi, (R⊥
i Xi)

⊥R⊥
i ΣR⊥

i

]
.

(e) The following covariance matrix equalities hold.

D[BLUPRi(ri)] =σ
2 [Ki, HΣR⊥

i (R⊥
i Xi)

⊥]W+
i R⊥

i ΣR⊥
i

×
([

Ki, HΣR⊥
i (R⊥

i Xi)
⊥]W+

i

)′
,

(2.5)

D[ri −BLUPRi(ri)] =σ
2
([

Ki, HΣR⊥
i (R⊥

i Xi)
⊥]W+

i R⊥
i −H

)
Σ

×
([

Ki, HΣR⊥
i (R⊥

i Xi)
⊥]W+

i R⊥
i −H

)′
.

(2.6)

3. MAIN RESULTS

In this section, some results on the comparison of covariance matrices of predictors
under multiple partitioned linear model M and its reduced models Ri, i = 1, . . . , t,
are derived and related conclusions are established for special cases by using block
matrices’ rank and inertia formulas with elementary block matrix operations.
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Theorem 2. Let M and Ri be as given in (1.1) and (1.2), respectively, and assume
that ri is predictable under Ri (also predictable under M ), i = 1, . . . , t. Denote

M =


Σ ΣR⊥

i ΣH′ 0 X
R⊥

i Σ 0 0 R⊥
i Xi 0

HΣ 0 0 Ki 0
0 X′

iR⊥
i K′

i 0 0
X′ 0 0 0 0

 .
Then

i+(D[ri −BLUPM (ri)]−D[ri −BLUPRi(ri)])

= i+(M)− r
[
X, Σ

]
− r(R⊥

i Xi), (3.1)

i−(D[ri −BLUPM (ri)]−D[ri −BLUPRi(ri)])

= i−(M)− r
[
R⊥

i Xi, R⊥
i ΣR⊥

i

]
− r(X), (3.2)

r(D[ri −BLUPM (ri)]−D[ri −BLUPRi(ri)])

= r(M)− r
[
X, Σ

]
− r(R⊥

i Xi)− r
[
R⊥

i Xi, R⊥
i ΣR⊥

i

]
− r(X). (3.3)

In consequence, the following results hold.
(1) D[ri −BLUPRi(ri)]≻ D[ri −BLUPM (ri)]

⇔ i−(M) = r
[
R⊥

i Xi, R⊥
i ΣR⊥

i

]
+ r(X)+ s.

(2) D[ri −BLUPRi(ri)]≺ D[ri −BLUPM (ri)]

⇔ i+(M) = r
[
X, Σ

]
+ r(R⊥

i Xi)+ s.
(3) D[ri −BLUPRi(ri)]≽ D[ri −BLUPM (ri)]

⇔ i+(M) = r
[
X, Σ

]
+ r(R⊥

i Xi).
(4) D[ri −BLUPRi(ri)]≼ D[ri −BLUPM (ri)]

⇔ i−(M) = r
[
R⊥

i Xi, R⊥
i ΣR⊥

i

]
+ r(X).

(5) D[ri −BLUPRi(ri)] = D[ri −BLUPM (ri)]

⇔ r(M) = r
[
X, Σ

]
+r(R⊥

i Xi)+r
[
R⊥

i Xi, R⊥
i ΣR⊥

i

]
+r(X).

Many consequences can be derived from Theorem 2 for different choices of the
matrices Ki and H in ri, i = 1, ..., t. By setting special choices of the matrices Ki and
H in this theorem, the block matrix M in Theorem 2 can be reduced to some simpler
forms. Some of them are given below.

Corollary 1. Let M and Ri be as given in (1.1) and (1.2), respectively, i= 1, . . . , t.
(1) Assume that Kiαi is predictable under Ri (also predictable under M ). De-

note

M =


Σ ΣR⊥

i 0 0 X
R⊥

i Σ 0 0 R⊥
i Xi 0

0 0 0 Ki 0
0 X′

iR⊥
i K′

i 0 0
X′ 0 0 0 0

 .
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Then, the following results hold.
(a) D[BLUERi(Kiαi)]≻ D[BLUEM (Kiαi)]

⇔ i−(M) = r
[
R⊥

i Xi, R⊥
i ΣR⊥

i

]
+ r(X)+ s.

(b) D[BLUERi(Kiαi)]≺ D[BLUEM (Kiαi)]

⇔ i+(M) = r
[
X, Σ

]
+ r(R⊥

i Xi)+ s.
(c) D[BLUERi(Kiαi)]≽ D[BLUEM (Kiαi)]

⇔ i+(M) = r
[
X, Σ

]
+ r(R⊥

i Xi).
(d) D[BLUERi(Kiαi)]≼ D[BLUEM (Kiαi)]

⇔ i−(M) = r
[
R⊥

i Xi, R⊥
i ΣR⊥

i

]
+ r(X).

(e) D[BLUERi(Kiαi)] = D[BLUEM (Kiαi)]

⇔ r(M) = r
[
X, Σ

]
+ r(R⊥

i Xi)+ r
[
R⊥

i Xi, R⊥
i ΣR⊥

i

]
+ r(X).

(2) Assume that Xiαi is predictable under Ri (also predictable under M ). Then

i±(D[BLUEM (Xiαi)]−D[BLUERi(Xiαi)])

= r(D[BLUEM (Xiαi)]−D[BLUERi(Xiαi)]) = 0.

(3) R⊥
i Xiαi is always predictable under Ri (also always predictable under M ).

Then

i±(D[BLUEM (R⊥
i Xiαi)]−D[BLUERi(R

⊥
i Xiαi)])

= r(D[BLUEM (R⊥
i Xiαi)]−D[BLUERi(R

⊥
i Xiαi)]) = 0.

4. CONCLUDING REMARKS

In this study, we consider comparison problems of predictors under a multiple
partitioned linear model and its correctly-reduced models. We present inertia and
rank relations between covariance matrices of BLUPs of unknown vectors under con-
sidered models by using various inertia and rank formulas of block matrices with ele-
mentary matrix operations. In order to establish the general results on the predictors,
we consider the general linear function of all unknown vectors under general assump-
tions. The results obtained in this paper can present useful aspects for determining
relation between multiple partitioned linear model and its correctly-reduced models
regarding statistical inference on partial parameters by comparing performances of
BLUPs/BLUEs under the considered models.

APPENDIX

We collect some fundamental results of block matrices in the following lemmas
used in the proofs of the main results in the paper.

Lemma 1 ([18]). Let A1, A2 ∈ Rm×n, or, let A1 = A′
1, A2 = A′

2 ∈ Rm×m. Then,
(1) A1 = A2 ⇔ r(A1 −A2) = 0.
(2) A1 ≻ A2 ⇔ i+(A1 −A2) = m and A1 ≺ A2 ⇔ i−(A1 −A2) = m.
(3) A1 ≽ A2 ⇔ i−(A1 −A2) = 0 and A1 ≼ A2 ⇔ i+(A1 −A2) = 0.
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Lemma 2 ([18]). Let A1 = A′
1 ∈ Rm×m, A2 = A′

2 ∈ Rn×n, Q ∈ Rm×n, and k ∈ R.
Then,

r(A1) = i+(A1)+ i−(A1). (4.1)

i±(kA1) =

{
i±(A1) i f k > 0
i∓(A1) i f k < 0 . (4.2)

i±

[
A1 Q
Q′ A2

]
= i±

[
A1 −Q
−Q′ A2

]
= i∓

[
−A1 Q
Q′ −A2

]
. (4.3)

i±

[
A1 0
0 A2

]
= i±(A1)+ i±(A2), i+

[
0 Q

Q′ 0

]
= i−

[
0 Q

Q′ 0

]
= r(Q). (4.4)

Lemma 3 ([18]). Let A1 = A′
1 ∈ Rm×m, B = B′ ∈ Rn×n, and A2 ∈ Rm×n. Then,

i±

[
A1 A2
A′

2 0

]
= r(A2)+ i±(EA2A1EA2). (4.5)

i+

[
A1 A2
A′

2 0

]
= r
[
A1, A2

]
and i−

[
A1 A2
A′

2 0

]
= r(A2) if A1 ≽ 0. (4.6)

i±

[
A1 A2
A′

2 B

]
= i±(A1)+ i±(B−A′

2A+
1 A2) if C (A2)⊆ C (A1). (4.7)

Lemma 4 ([13]). The linear matrix equation AX = B is consistent if and only if
r
[
A, B

]
= r(A), or equivalently, AA+B = B. In this case, the general solution of

AX = B can be written in the following form X = A+B+(I−A+A)U, where U is
an arbitrary matrix.

Constrained quadratic matrix-valued function optimization problem related to min-
imization problems on covariance matrices of predictors is given in the following
lemma.

Lemma 5 ([19]). Let A ∈ Rn×p, B ∈ Rm×p be given matrices, and P ∈ Rn×n

symmetric positive semi-definite matrix. Also assume that there exists X0 ∈ Rm×n

such that X0A = B. Then the maximal positive inertia of X0PX′
0 −XPX′ subject to

all solutions of XA = B is

max
XA=B

i+(X0PX′
0 −XPX′) = r

[
X0P
A′

]
− r(A) = r(X0PA⊥). (4.8)

Hence there exists solution X0 of X0A = B such that X0PX′
0 ≼ XPX′ holds for all

solutions of XA = B if and only if X0 satisfies both X0A = B and X0PA⊥ = 0.

Characterization of fundamental BLUP properties can be found in the statistical
literature. The similar approach used in proof of Theorem 1 given below was used
for transformed linear mixed models in [6], for the different approaches; see, e.g.,
[15, 21].
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Proof of Theorem 1. Let Liy and Tiy be two unbiased linear predictors for ri, i =
1, . . . , t. Then, according to Definition 3, we can write the following expressions

E(Liy− ri) = 0 ⇔ LiX = K̂i, i.e.,
[
Li, −Is

][X
K̂i

]
= 0, (4.9)

D(Liy− ri) = σ
2(Li −H)Σ(Li −H)′ = σ

2 [Li, −Is
][In

H

]
Σ

[
In
H

]′ [
Li, −Is

]′
,

D(Tiy− ri) = σ
2(Ti −H)Σ(Ti −H)′ = σ

2 [Ti, −Is
][In

H

]
Σ

[
In
H

]′ [
Ti, −Is

]′
.

Then the matrix minimization problem for finding the BLUP under M characterized
in Definition 3 can be accordingly expressed as to find solution Li of the consistent
linear matrix equation LiX = K̂i such that D(Liy− ri)≼ D(Tiy− ri) s.t. TiX = K̂i,
i.e.,[

Li, −Is
][In

H

]
Σ

[
In
H

]′ [
Li, −Is

]′
≼
[
Ti, −Is

][In
H

]
Σ

[
In
H

]′ [
Ti, −Is

]′
s.t. TiX = K̂i.

(4.10)

(4.10) is a standard constrained quadratic matrix-valued function optimization prob-
lem in the Löwner partial ordering as given in Lemma 5. Applying (4.8) to (4.10), the
maximal positive inertia of D(Liy−ri)−D(Tiy−ri) subject to TiX = K̂i is obtained
as follows:

max
E(Tiy−ri)=0

i+(D(Liy− ri)−D(Tiy− ri))

= r


[
Li, −Is

][In
H

]
Σ

[
In
H

]′
[

X
K̂i

]′
− r

[
X
K̂i

]

= r

([
Li, −Is

][In
H

]
Σ

[
In
H

]′[X
K̂i

]⊥)
.

(4.11)

Combining (4.9) with (4.11), we conclude that D(Liy− ri) = min ⇔ there exists Li
satisfying both

LiX = K̂i and
[
Li, −Is

][In
H

]
Σ

[
In
H

]′[X
K̂i

]⊥
= 0,

i.e., Liy = BLUPM (ri) ⇔ Li
[
X, ΣX⊥] = [K̂i, HΣX⊥

]
. This matrix equation is

consistent. By using Lemma 4, we obtain (2.1). Results (a) and (b) follow directly
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from (2.1) and for (c) and (d), we refer [20, Lemma 2.1(a)]. (2.2) is seen from (1.4)
and (2.1). We obtain

cov{BLUPM (ri),ri}=
[
K̂i, HΣX⊥

][
X, ΣX⊥]+ ΣH′ (4.12)

by using (1.4) and (2.1). (2.3) is seen from (2.2) and (4.12). Thus, the first part of the
proof is completed.

The second part of the theorem is obtained in a similar way to the first part. □

Proof of Theorem 2. By using (2.6), and applying (4.7) to the difference between
D[ri −BLUPM (ri)] and D[ri −BLUPRi(ri)], we obtain

i±(D[ri −BLUPM (ri)]−D[ri −BLUPRi(ri)])

= i±

(
D[ri −BLUPM (ri)]−

(
ZiW+

i R⊥
i −H

)
Σ

(
ZiW+

i R⊥
i −H

)′)
= i±

[
Σ Σ

(
ZiW+

i R⊥
i −H

)′(
ZiW+

i R⊥
i −H

)
Σ D[ri −BLUPM (ri)]

]
− i±(Σ)

= i±

([
Σ −ΣH′

−HΣ D[ri −BLUPM (ri)]

]
+

[
ΣR⊥

i 0
0 Zi

][
0 Wi

W′
i 0

]+[R⊥
i Σ 0
0 Z′

i

])
− i±(Σ), (4.13)

where Zi =
[
Ki, HΣR⊥

i (R⊥
i Xi)

⊥] and Wi =
[
R⊥

i Xi, R⊥
i ΣR⊥

i (R⊥
i Xi)

⊥]. We can
reapply (4.7) to (4.13) since C (R⊥

i Σ) = C (R⊥
i ΣR⊥

i )⊆ C (Wi) and C (Z′
i)⊆ C (W′

i)
hold. Then (4.13) is equivalently written as follows by setting the matrices Zi and
Wi.

i±


0 −R⊥

i Xi −R⊥
i ΣR⊥

i (R⊥
i Xi)

⊥ R⊥
i Σ 0

−X′
iR⊥

i 0 0 0 K′
i

−(R⊥
i Xi)

⊥R⊥
i ΣR⊥

i 0 0 0 (R⊥
i Xi)

⊥R⊥
i ΣH′

ΣR⊥
i 0 0 Σ −ΣH′

0 Ki HΣR⊥
i (R⊥

i Xi)
⊥ −HΣ D[ri −BLUPM (ri)]


− r
[
R⊥

i Xi, R⊥
i ΣR⊥

i (R⊥
i Xi)

⊥]− i±(Σ)

= i±

 −R⊥
i ΣR⊥

i −R⊥
i Xi −R⊥

i ΣR⊥
i (R⊥

i Xi)
⊥ R⊥

i ΣH′

−X′
iR⊥

i 0 0 K′
i

−(R⊥
i Xi)

⊥R⊥
i ΣR⊥

i 0 0 (R⊥
i Xi)

⊥R⊥
i ΣH′

HΣR⊥
i Ki HΣR⊥

i (R⊥
i Xi)

⊥ D[ri −BLUPM (ri)]−HΣH′


− r
[
R⊥

i Xi, R⊥
i ΣR⊥

i

]
= i±

−R⊥
i ΣR⊥

i −R⊥
i Xi R⊥

i ΣH′

−X′
iR⊥

i 0 K′
i

HΣR⊥
i Ki D[ri −BLUPM (ri)]−HΣH′


+ i±((R⊥

i Xi)
⊥R⊥

i ΣR⊥
i (R

⊥
i Xi)

⊥)− r
[
R⊥

i Xi, R⊥
i ΣR⊥

i

]
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= i∓

R⊥
i ΣR⊥

i R⊥
i ΣH′ R⊥

i Xi
HΣR⊥

i HΣH′ Ki
X′

iR⊥
i K′

i 0

−
0

Is
0

D[ri −BLUPM (ri)]
[
0 Is 0

]
− r
[
R⊥

i Xi, R⊥
i ΣR⊥

i

]
+ i±((R⊥

i Xi)
⊥R⊥

i ΣR⊥
i (R

⊥
i Xi)

⊥). (4.14)

We can apply (4.7) to (4.14) after setting D[ri −BLUPM (ri)] in (2.3). Then in a
similar way to obtaining (4.13), (4.14) is equivalently written as

i∓




Σ 0 −ΣH′ 0
0 R⊥

i ΣR⊥
i R⊥

i ΣH′ R⊥
i Xi

−HΣ HΣR⊥
i HΣH′ Ki

0 X′
iR⊥

i K′
i 0

+


Σ 0
0 0
0
[
K̂i, HΣX⊥

]
0 0


×
[

0 W
W′ 0

]+[
Σ 0 0 0
0 0

[
K̂i, HΣX⊥

]′ 0

])
+ i±((R⊥

i Xi)
⊥R⊥

i ΣR⊥
i (R

⊥
i Xi)

⊥)− r
[
R⊥

i Xi, R⊥
i ΣR⊥

i

]
− i∓(Σ).

(4.15)

We can apply (4.7) to (4.15) since C (
[
K̂i, HΣX⊥

]′
)⊆ C (W′) and C (Σ)⊆ C (W),

where W=
[
X, ΣX⊥]. From Lemma 2 and 3, and by using elementary block matrix

operations, (4.15) is equivalently written as

i∓



0 −X −ΣX⊥ Σ 0 0 0
−X′ 0 0 0 0 K̂′

i 0
−X⊥Σ 0 0 0 0 X⊥ΣH′ 0

Σ 0 0 Σ 0 −ΣH′ 0
0 0 0 0 R⊥

i ΣR⊥
i R⊥

i ΣH′ R⊥
i Xi

0 K̂i HΣX⊥ −HΣ HΣR⊥
i HΣH′ Ki

0 0 0 0 X′
iR⊥

i K′
i 0


− r
[
R⊥

i Xi, R⊥
i ΣR⊥

i

]
+ i±((R⊥

i Xi)
⊥R⊥

i ΣR⊥
i (R

⊥
i Xi)

⊥)− i∓(Σ)− r
[
X, ΣX⊥]

= i∓



−Σ −X −ΣX⊥ 0 ΣH′ 0
−X′ 0 0 0 K̂′

i 0
−X⊥Σ 0 0 0 X⊥ΣH′ 0

0 0 0 R⊥
i ΣR⊥

i R⊥
i ΣH′ R⊥

i Xi

HΣ K̂i HΣX⊥ HΣR⊥
i 0 Ki

0 0 0 X′
iR⊥

i K′
i 0


− r
[
R⊥

i Xi, R⊥
i ΣR⊥

i

]
+ i±((R⊥

i Xi)
⊥R⊥

i ΣR⊥
i (R

⊥
i Xi)

⊥)− r
[
X, Σ

]
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= i∓


−Σ −X 0 ΣH′ 0
−X′ 0 0 K̂′

i 0
0 0 R⊥

i ΣR⊥
i R⊥

i ΣH′ R⊥
i Xi

HΣ K̂i HΣR⊥
i 0 Ki

0 0 X′
iR⊥

i K′
i 0

− r
[
R⊥

i Xi, R⊥
i ΣR⊥

i

]

+ i±((R⊥
i Xi)

⊥R⊥
i ΣR⊥

i (R
⊥
i Xi)

⊥)− r
[
X, Σ

]
+ i∓(X⊥

ΣX⊥)

= i±


Σ ΣR⊥

i ΣH′ 0 X
R⊥

i Σ 0 0 R⊥
i Xi 0

HΣ 0 0 Ki 0
0 X′

iR⊥
i K′

i 0 0
X′ 0 0 0 0

− r
[
R⊥

i Xi, R⊥
i ΣR⊥

i

]

+ i±((R⊥
i Xi)

⊥R⊥
i ΣR⊥

i (R
⊥
i Xi)

⊥)− r
[
X, Σ

]
+ i∓(X⊥

ΣX⊥). (4.16)

In consequence, by using (4.5) and (4.6), we obtain(3.1) and (3.2). According to
(4.1), adding the equalities in (3.1) and (3.2) yields (3.3). Applying Lemma 1 to
(3.1)-(3.3) yields (a)-(e). □

Proof of Corollary 1. The first part of the corollary is an immediate consequence
of Theorem 2 by setting H = 0 in the matrix M.

For the second part, we set Ki = Xi and H = 0 in the matrix M and then this matrix
reduces the simpler form. In this case, we obtain

i+(D[BLUEM (Xiαi)]−D[BLUERi(Xiαi)])

= i+

 Σ ΣR⊥
i X

R⊥
i Σ 0 0
X′ 0 0

+ r(Xi)− r
[
X, Σ

]
− r(R⊥

i Xi)

and
i−(D[BLUEM (Xiαi)]−D[BLUERi(Xiαi)])

= i−

 Σ ΣR⊥
i X

R⊥
i Σ 0 0
X′ 0 0

+ r(Xi)− r
[
R⊥

i Xi, R⊥
i ΣR⊥

i

]
− r(X).

By using (4.6) and the predictability requirement of Xiαi under the models given in
Definition 2, and in view of well-known rank equality r

[
A, B

]
= r(A)+ r(EAB)

(for any conformable A, B), we obtain the required result.
The third part is obtained in a similar way to the second part by setting Ki = R⊥

i Xi
and H = 0 in the matrix M in Theorem 2. □
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