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Abstract. In this paper, we correct a minor misstatement in [4], where J.A. De Loera demonst-
rates an explicit universal Gröbner basis of the radical ideal of a variety related to chromatic
numbers. We show that this result does not hold when the base field is finite, and we correct it
for this case.
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1. INTRODUCTION

The theory of Gröbner bases is a key computational tool for studying polynomial
ideals. This theory has been introduced and developed by Buchberger in 1965 (see
his PhD thesis [2]) and has been applied to the problem of graph coloring in [1].
A graph with n vertices may be represented by a polynomial in n variables. This
polynomial lies in a particular ideal if and only if the graph is not k-colorable. Thus,
the problem of k-coloring a graph is equivalent to an ideal membership problem. The
concept of Gröbner bases may be applied to solve this problem. It has been shown in
[4] that the Gröbner basis of the ideal corresponding to this problem is universal, i.e.
it is a Gröbner basis for any monomial ordering.

Let k;n� 2 be two positive integers andK be an arbitrary field. Let V.n;k/ denote
the set of vectors which have at most k� 1 distinct coordinates. Let also J.n;k/ be
the vanishing ideal of V.n;k/. De Loera in [4] has proved the following theorem:

Theorem 1. The set of polynomials

�.n;k/D

8<: Y
1�r<s�k

.xir �xis / j 1� i1 < � � �< ik � n

9=;
is a universal Gröbner basis for J.n;k/.

To prove this result, De Loera in his paper, on page 3, states that “� � � but no non-
zero univariate polynomial belongs to J.n;2/.” However, this claim (and thus this
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theorem) holds only ifK is infinite. In the following example, we show that Theorem
1 fails when K is a finite field.

Example 1. Let K D F2 D f0;1g be a field with two elements. Then V.2;2/ D
f.0;0/; .1;1/g, and therefore x21�x1 and x22�x2 belong to the ideal J.2;2/� F2Œx1;x2�.
From the above notations, we have �.2;2/ D fx1 � x2g which is not a universal
Gröbner basis for J.2;2/.

Extending Theorem 1 to the finite fields we prove the following theorem:

Theorem 2. Let q D pe where p is a prime and e is a positive integer. Let also
K D Fq be a finite field with q elements. Then, the set of polynomials

�.n;k/D

8<: Y
1�r<s�k

.xir �xis / j 1� i1 < � � �< ik � n

9=;[ ˚xqi �xi j 1� i � n	
is a universal Gröbner basis for J.n;k/.

It is worth commenting that for the applications of Theorem 1 in [4], De Loera
has used this theorem for infinite fields. Now, we give the structure of the paper. In
Section 2 we prove Theorem 2. Section 3 is devoted to a correction of Example 3.4
in [4] on enumerating distinct colorings.

2. THE PROOF OF THEOREM 2

In this section, we prove Theorem 2, using the proof structure of Theorem 1 in [4].
We briefly state some necessary definitions.

Let q D pe where p is a prime and e is a positive integer. Let K D Fq be a finite
field with q elements, R DKŒx1; : : : ;xn� be a polynomial ring and I D hf1; : : : ;ft i
be the ideal of R generated by polynomials f1; : : : ;ft . Let f 2 R and � be a mo-
nomial ordering on R. The leading monomial of f is the greatest monomial (with
respect to �) which appears in f , and we denote it by LM.f /. The leading coeffici-
ent of f , written LC.f /, is the coefficient of LM.f / in f . The leading term of f is
LT.f /D LC.f /LM.f /. The leading term ideal of I is defined as

LT.I /D hLT.f / j f 2 I i:

For a finite set G � R, we denote by LT.G/ the monomial ideal hLT.g/ j g 2 Gi.
A finite subset of polynomials G � I is called a Gröbner basis for I w.r.t. � if
LT.I /D LT.G/, see [3] for more details. A universal Gröbner basis for I is a finite
subset of I which is a Gröbner basis w.r.t. any monomial ordering.

Proof of Theorem 2. The following lemma gives a set of conditions for a universal
Gröbner basis ([4], Lemma 2.1).
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Lemma 1. Let I � R be an ideal and let G D fg1; : : : ;gtg � I be a set of poly-
nomials such that each gi is a product of linear factors in x1; : : : ;xn. Further, as-
sume that for any g 2 G and for any permutation � on the set f1; : : : ;ng, we have
g.�.x1/; : : : ;�.xn// 2G. If G is a Gröbner basis for I w.r.t. a particular monomial
ordering, then it is a universal Gröbner basis for I .

In order to apply Lemma 1 to �.n;k/, we must prove the following three claims:
� Any g 2 �.n;k/ factors into linear factors in R
� g.�.x1/; : : : ;�.xn// 2 � for each g 2 �.n;k/ and any permutation � on the

set f1; : : : ;ng
� �.n;k/ is a Gröbner basis for J.n;k/ w.r.t. a particular monomial ordering.

For the first item, it is enough to prove that xki �xi for any i factors into linear factors.
This is deduced from the following lemma (see [6], Lemma 2.4).

Lemma 2. With the above notations, the polynomial xq � x factors (into linear
factors) in KŒx� as

xq �x D
Y
a2K

.x�a/:

The second item follows from the structure of �.n;k/, and the fact that the ele-
ments of �.n;k/ are in bijection with the k element subsets of fx1; : : : ;xng. Now, we
deal with the third item. We prove that �.n;k/ is a Gröbner basis for J.n;k/w.r.t. the
lexicographical ordering � with xn � � � � � x1. Since �.n;k/� J.n;k/, it is enough
to prove that the leading term of any polynomial in J.n;k/ is divisible by the leading
term of a member of �.n;k/. For this, we proceed by a double induction on k and n
like in the proof of Theorem 1 in [4]. Let k D 2 and n arbitrary. We know that

�.n;2/D
˚
xi �xj j 1� i < j � n

	
[
˚
x
q
i �xi j 1� i � n

	
and LT.�.n;2//D fx1; : : : ;xn�1;x

q
ng. Let f 2 J.n;2/ be a nonzero polynomial. If

LT.f / is divisible by any of the first n� 1 variables then LT.f / 2 LT.�.n;2//. Ot-
herwise, f is a nonzero univariate polynomial in xn (we consider it in KŒxn�). From
the definition of V.n;2/ we can conclude that f .a/D 0 for any a 2K. This implies
that xqn�xn divides f , and therefore xqn divides LT.f /. By induction on k the result
is true for J.n;r/ for where k > r � 2 and n arbitrary. We proceed by induction on n.
We show that J.k;k/ is generated by the set f

Q
1�i�j�k.xi �xj /;x

q
1 �x1; : : : ;x

q

k
�

xkg. By Buchberger criterion and Buchberger first criterion (see [3], pages 85 and
104) we can prove easily that the set B D fxq1 �x1; : : : ;x

q

k
�xkg is a Gröbner basis

for the ideal that it generates. Let f be an element of J.k;k/ and Nf be the remainder
of the division of f by B . It is worth noting that since B is a Gröbner basis, this
remainder is unique (see [3], Proposition 1 page 82). Since Nf 2 J.k;k/, regardless
of whether Nf is zero or non-zero Nf .a1; : : : ;ak/ D 0 for any .a1; : : : ;ak/ 2 V.k;k/.
In V.k;k/, every k-dimensional point has at most k�1 distinct entries. Thus, if any
two entries (such as xi and xj ) are equal, even if the other k�2 entries are distinct,
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the point is still contained in V.k;k/. Therefore, since Nf vanishes on every point in
V.k;k/ then we have .xi �xj / j Nf for 1 � i < j � k, and Nf 2 �.k;k/. This settles
the case nD k.

Now by induction hypothesis the result is true for J.r;k/ with n > r � k. We have
to prove that LT.f / 2 LT.�.n;k// for any f 2 J.n;k/. Let B D fxq1 �x1; : : : ;x

q
n �

xng, which is a Gröbner basis for the ideal that it generates. Let Nf be the remainder
of the division of f by B . We have Nf 2 J.n;k/. If Nf ¤ 0, we construct an auxiliary
polynomial. Let S � f1; : : : ;n�1g. We denote by NfS the polynomial obtained from
Nf by substituting xn for each variable xi for i 2 S . Thus, for a non-empty set S the

polynomial NfS 2 J.r;k/ with r D n�jS j where jS j denotes the size of S . Let

g D
X

S�f1;:::;n�1g

.�1/jS j NfS :

We claim that LT.g/2 LT.�.n;k//. Note that from the definition of Nf we can replace
�.n;k/ by �.n;k/ in this claim. The rest of the proof is exactly the same as the latter
part of the proof of Theorem 1 in [4]. However, for the sake of completeness, we
provide it here. If we substitute xn for any xi with 1� i � n�1 then we get the zero
polynomial (note that deg. Nf /� q). Thus .x1�xn/ � � �.xn�1�xn/ j g, and therefore
we can write it as g D .x1�xn/ � � �.xn�1�xn/h for some polynomial h 2 R. Since
g 2 J.n;k/ if we expand h as a polynomial in xn, its coefficientsLi belongs to J.n�
1;k � 1/. By the induction hypothesis LT.Li / 2 LT.�.n� 1;k � 1//. We observe
that LT.h/D LT.Lj /x

j
n for some j and thus LT.g/D x1x2 � � �xn�1LT.Lj /x

j
n . Since

LT.Lj / is divisible by some element of LT.�.n�1;k�1//, then x1x2 � � �xn�1LT.Lj /
is divisible by some monomial in LT.�.n;k// as desired.

If LT.g/D LT. Nf / we are done. Otherwise, LT.g/� LT. Nf / (since we use lexico-
graphical ordering). But, in the definition of g the set S may be empty. In this case
NfS D Nf and we can write g as

g D Nf C
X

S¤¿ and S�f1;:::;n�1g

.�1/jS j NfS :

This follows that LT. Nf / D LT. NfS / for a non-empty set S � f1; : : : ;n�1g. We ob-
serve that NfS 2 J.r;k/ for n > r � k and then LT. Nf /D LT. NfS / 2 LT.�.r;k// by the
induction hypothesis. Finally, for n > r � k, we have �.r;k/� �.n;k/, and this ends
the proof of the theorem.

�

3. ENUMERATING DISTINCT COLORINGS

In this section, we correct an error in Example 3.4 in [4] to compute the number
of distinct 3-colorings of the two-by-four grid graph.

In [4], De Loera has applied Theorem 1 to the general question of enumerating
distinct colorings of a graph (see Lemma 3). For this, we need some definitions. Let
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us denote by �.G;k/ the number of distinct k-colorings of a graph G. Let also PG
be the polynomial associated with the labeling of a graph G, i.e. if V D fx1; : : : ;xng
is the set of vertices and E.G/ is the set of edges of G then

PG D
Y

i<j and xixj2E.G/

.xi �xj /:

Now we recall the definition of the degree of an ideal. Let R D KŒx1; : : : ;xn�
be a polynomial ring where K is an infinite field. Let X be a graded R-module
and ı be a positive integer. We denote by Xı the set of elements of X of degree
ı. Let I � R be a homogeneous ideal. The Hilbert series of I is the power series
HSI .t/D

P1
sD0HFI .s/ts where HFI .s/ (the Hilbert function of I ) is the dimension

of .R=I /s as an K-vector space.

Proposition 1. We have HSI .t/ D N.t/=.1� t /d where N.t/ is a polynomial
which is not multiple of 1� t , and d is the dimension of I .

For the proof of this proposition see [5], Theorem 7, Chapter 11. Now, using this
proposition we could define the degree of an ideal.

Definition 1. The degree of the ideal I , noted by deg.I /, is N.1/ where N is the
numerator of HSI .

We recall that the ideal I W P1G is defined as

I W P1G D ff 2R j f
mPG 2 I for some m> 0g:

Using these notations, we have the following result (see [4], Proposition 3.3).

Lemma 3. �.G;k�1/D deg.J.n;k/ W P1G /.

Example 2. In this example, we compute the number of distinct 3-colorings of the
two-by-four grid graph H , and we correct an error of Example 3.4 in [4] to compute
it. This graph has eight vertices x1; : : : ;x8 and ten edges x1x2;x2x3;x3x4;x4x5;x5x6;
x6x7;x7x8;x1x8;x2x7;x3x6. We have to compute the degree of the ideal J.8;4/ W
P1H . In order to speed up the computation, De Loera has proposed to use the factori-
zation of PH to compute the generators of the saturation ideals J.8;4/ W .xi �xj /1

for each of the edges of H . He has claimed that if one computes these ten ideals,
then their intersection is precisely equal to J.8;4/ W P1H (we denote this intersection
by I ). But, this equality does not hold1. Using MAPLE11, we can compute I and its
Hilbert series where the latter is equal to

.t13C6t12C22t11C55t10C106t9C159t8C190t7C

175t6C126t5C70t4C35t3C15t2C5tC1/=.1� t /3:

1After the submission of the paper, an anonymous referee pointed out that Example 3.4 in [4] rema-
ins true if we replace ”intersection” by ”sum”. He/She provided also a Macaulay2 code to verify this
statement, see http://amirhashemi.iut.ac.ir/software.html.
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Therefore deg.I /D 966 which is not equal to �.H;3/, because we will see further
that the number of distinct 3-colorings of H is 26. Let us see a simple example
illustrating the difference between the above ideals. Let C4 be the 4-cycle graph
with the vertices y1; : : : ;y4 and the edges y1y2;y2y3;y3y4;y4y1. We would like to
compute �.C4;2/. We observe that J.4;3/ W P1C4

is equal to hy1�y3;y2�y4i, i.e.
�.C4;2/D 1. On the other hand,\

yiyj2E.C4/

J.4;3/ W .yi �yj /
1
D hy1�y4;y3�y4i\hy1�y2;y3�y4i

\hy1�y3;y2�y3i\hy1�y4;y2�y3i

\hy1�y4;y2�y4i\hy2�y4;y3�y4i

\hy1�y3;y2�y4i

which is not equal to J.4;3/ W P1C4
. The Hilbert series of this intersection is equal to

.t3C3t2C2tC1/=.1� t /2, and therefore its degree is 7.
Now, we compute �.H;3/. Computing J.8;4/ W P1H is not feasible in less than

12 hours (timings in this paper were conducted on a personal computer with 3.2GHz,
2�Intel(R)-Xeon(TM) Quad core, 24 GB RAM and 64 bits under the Linux operating
system). In order to speed up the computation, we use the following simple result (see
[3], Theorem 11, page 196).

Lemma 4. Let L� R be a radical ideal and f 2 R. Let L\hf i D hg1; : : : ;g`i.
Then fg1=f; : : : ;g`=f g is a generating set for the ideal L W f1.

Proof. It is enough to prove that any polynomial g 2L W f1 belongs to hg1=f; : : : ;
g`=f i. We know that gf m 2 L for some integer m. This follows that .gf /m 2 L,
and therefore gf 2 L\hf i. Thus, g 2 hg1=f; : : : ;g`=f i. �

We can compute J.8;4/\ hPH i and then a generating set for J.8;4/ W P1H in
2152:549 seconds. The Hilbert series of this ideal is equal to .8t3C 12t2C 5t C
1/=.1� t /3, and therefore its degree is equal to 26.
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