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Abstract. In this paper, we correct a minor misstatement in [4], where J.A. De Loera demonst-
rates an explicit universal Grobner basis of the radical ideal of a variety related to chromatic
numbers. We show that this result does not hold when the base field is finite, and we correct it
for this case.
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1. INTRODUCTION

The theory of Grobner bases is a key computational tool for studying polynomial
ideals. This theory has been introduced and developed by Buchberger in 1965 (see
his PhD thesis [2]) and has been applied to the problem of graph coloring in [1].
A graph with n vertices may be represented by a polynomial in n variables. This
polynomial lies in a particular ideal if and only if the graph is not k-colorable. Thus,
the problem of k-coloring a graph is equivalent to an ideal membership problem. The
concept of Grobner bases may be applied to solve this problem. It has been shown in
[4] that the Grobner basis of the ideal corresponding to this problem is universal, i.e.
it is a Grobner basis for any monomial ordering.

Let k,n > 2 be two positive integers and K be an arbitrary field. Let V(n, k) denote
the set of vectors which have at most k — 1 distinct coordinates. Let also J(n,k) be
the vanishing ideal of V(n,k). De Loera in [4] has proved the following theorem:

Theorem 1. The set of polynomials

pnky=1 ] Gi—xi)l1<ii<--<ix<n

1<r<s<k

is a universal Grobner basis for J(n, k).

To prove this result, De Loera in his paper, on page 3, states that “--- but no non-
zero univariate polynomial belongs to J(n,2).” However, this claim (and thus this
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theorem) holds only if X is infinite. In the following example, we show that Theorem
1 fails when K is a finite field.

Example 1. Let K = [, = {0, 1} be a field with two elements. Then V(2,2) =
{(0,0),(1,1)}, and therefore x% —x1 and x% —x belong to the ideal J(2,2) C F[x1, x2].
From the above notations, we have p(2,2) = {x1 — x2} which is not a universal
Grobner basis for J(2,2).

Extending Theorem 1 to the finite fields we prove the following theorem:

Theorem 2. Let g = p® where p is a prime and e is a positive integer. Let also
K = [ be a finite field with q elements. Then, the set of polynomials

t(n,k) = 1_[ (xi, —xi)) | 1 <ip <+ <ig <npU{x{—x; |1 <i <n}

1<r<s<k
is a universal Gréobner basis for J(n, k).

It is worth commenting that for the applications of Theorem 1 in [4], De Loera
has used this theorem for infinite fields. Now, we give the structure of the paper. In
Section 2 we prove Theorem 2. Section 3 is devoted to a correction of Example 3.4
in [4] on enumerating distinct colorings.

2. THE PROOF OF THEOREM 2

In this section, we prove Theorem 2, using the proof structure of Theorem 1 in [4].
We briefly state some necessary definitions.

Let ¢ = p® where p is a prime and e is a positive integer. Let K = [F, be a finite
field with ¢ elements, R = K|[x1,...,X,] be a polynomial ring and I = (f1,..., ft)
be the ideal of R generated by polynomials f1,..., f;. Let f € R and < be a mo-
nomial ordering on R. The leading monomial of f is the greatest monomial (with
respect to <) which appears in f, and we denote it by LM( f). The leading coeffici-
ent of f, written LC( f), is the coefficient of LM( f) in f. The leading term of f is
LT(f) = LC(f)LM(f). The leading term ideal of I is defined as

LT(7) = (LT(f) | f €1).

For a finite set G C R, we denote by LT(G) the monomial ideal (LT(g) | g € G).
A finite subset of polynomials G C [ is called a Grobner basis for I w.rt. < if
LT(/) = LT(G), see [3] for more details. A universal Grobner basis for I is a finite
subset of / which is a Grobner basis w.r.t. any monomial ordering.

Proof of Theorem 2. The following lemma gives a set of conditions for a universal
Grobner basis ([4], Lemma 2.1).



A NOTE ON GROBNER BASES AND GRAPH COLORINGS 105

Lemma 1. Let I C R be an ideal and let G = {g1,...,8:} C I be a set of poly-
nomials such that each g; is a product of linear factors in x1,...,x,. Further, as-
sume that for any g € G and for any permutation o on the set {1,...,n}, we have
glo(x1),...,0(xy)) € G. If G is a Grobner basis for I w.r.t. a particular monomial
ordering, then it is a universal Grobner basis for 1.

In order to apply Lemma 1 to t(n, k), we must prove the following three claims:
e Any g € t(n,k) factors into linear factors in R
e g(0(x1),...,0(xy)) € t for each g € t(n,k) and any permutation o on the
set{1,...,n}
e 7(n,k) is a Grobner basis for J(n,k) w.r.t. a particular monomial ordering.
For the first item, it is enough to prove that xlk —Xx; for any i factors into linear factors.
This is deduced from the following lemma (see [6], Lemma 2.4).

Lemma 2. With the above notations, the polynomial x4 — x factors (into linear
factors) in K[x] as

x4 —x= l_[ (x—a).

ack

The second item follows from the structure of t(n,k), and the fact that the ele-
ments of p(n,k) are in bijection with the k element subsets of {xy,...,x,}. Now, we
deal with the third item. We prove that 7(n, k) is a Grobner basis for J(n, k) w.r.t. the
lexicographical ordering < with x,, < --- < x1. Since t(n,k) C J(n,k), it is enough
to prove that the leading term of any polynomial in J(#, k) is divisible by the leading
term of a member of t(n,k). For this, we proceed by a double induction on k and n
like in the proof of Theorem 1 in [4]. Let k = 2 and n arbitrary. We know that

tn,2)={xi—xj [ 1<i<j<njU{x!—x;|1<i<n}

and LT(t(n,2)) = {x1,....Xp—1, X1 }. Let f € J(n,2) be a nonzero polynomial. If
LT(f) is divisible by any of the first n — 1 variables then LT( f) € LT(z(n,2)). Ot-
herwise, f is a nonzero univariate polynomial in x, (we consider it in K[x,]). From
the definition of V(n,2) we can conclude that f(a) = 0 for any a € K. This implies
that x;l — x,, divides £, and therefore x| divides LT( /). By induction on k the result
is true for J(n,r) for where k > r > 2 and n arbitrary. We proceed by induction on 7.
We show that J(k,k) is generated by the set {nlgisjgk(xi —xj),xi] —X1,.. .,xZ —
Xr}. By Buchberger criterion and Buchberger first criterion (see [3], pages 85 and
104) we can prove easily that the set B = {x? —X1,.. .,xZ — Xxi } is a Grobner basis
for the ideal that it generates. Let f be an element of J(k,k) and f be the remainder
of the division of f by B. It is worth noting that since B is a Grobner basis, this
remainder is unique (see [3], Proposition 1 page 82). Since f € J(k,k), regardless
of whether f is zero or non-zero f(ay....,ax) =0 for any (ay,...,ax) € V(k,k).
In V(k,k), every k-dimensional point has at most k — 1 distinct entries. Thus, if any
two entries (such as x; and x;) are equal, even if the other k — 2 entries are distinct,
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the point is still contained in V(k, k). Therefore, since f vanishes on every point in
V(k,k) then we have (x; —x;) | fforl<i<j<k, and f € t(k k). This settles
the case n = k.

Now by induction hypothesis the result is true for J(r,k) withn > r > k. We have
to prove that LT( ) € LT(z(n,k)) for any f € J(n,k). Let B = {x'll — X1, .., x—
Xn }, which is a Grobner basis for the ideal that it generates. Let f be the remainder
of the division of f by B. We have f € J(n,k). If f # 0, we construct an auxiliary
polynomial. Let S C {1,...,n—1}. We denote by fs the polynomial obtained from
f by substituting x, for each variable x; for i € S. Thus, for a non-empty set S the
polynomial fg € J(r,k) with r = n —|S| where | S| denotes the size of S. Let

g= > DS

Sc{l,...,.n—1}

We claim that LT(g) € LT(z(n,k)). Note that from the definition of f we can replace
t(n,k) by p(n,k) in this claim. The rest of the proof is exactly the same as the latter
part of the proof of Theorem 1 in [4]. However, for the sake of completeness, we
provide it here. If we substitute x, for any x; with I <i <n—1 then we get the zero
polynomial (note that deg( ) < ¢). Thus (x; —xp)--- (xp—1 — X») | g, and therefore
we can write it as g = (X1 — X )---(Xp—1 — X )h for some polynomial & € R. Since
g € J(n,k) if we expand & as a polynomial in xy, its coefficients L; belongs to J(n —
1,k —1). By the induction hypothesis LT(L;) € LT(p(n — 1,k —1)). We observe
that LT(h) = LT(L)x; for some j and thus LT(g) = x1x2+--Xx,—1LT(L;)x; . Since
LT(L;) is divisible by some element of LT(p(n — 1,k —1)), then xyx2---x,— 1 LT(L;)
is divisible by some monomial in LT (p(n,k)) as desired.

If LT(g) = LT( f_ ) we are done. Otherwise, LT(g) < LT( f_ ) (since we use lexico-
graphical ordering). But, in the definition of g the set S may be empty. In this case
fs = f_ and we can write g as

g=/+ ) (=DM fs.
S#@ and SC{1,...,n—1}
This follows that LT(f) = LT(fs) for a non-empty set S C {1,...,n—1}. We ob-
serve that fg € J(r,k) forn > r > k and then LT( f) = LT( fs) € LT(p(r,k)) by the
induction hypothesis. Finally, for n > r > k, we have p(r,k) C p(n, k), and this ends

the proof of the theorem.
O

3. ENUMERATING DISTINCT COLORINGS

In this section, we correct an error in Example 3.4 in [4] to compute the number
of distinct 3-colorings of the two-by-four grid graph.

In [4], De Loera has applied Theorem 1 to the general question of enumerating
distinct colorings of a graph (see Lemma 3). For this, we need some definitions. Let



A NOTE ON GROBNER BASES AND GRAPH COLORINGS 107

us denote by (G, k) the number of distinct k-colorings of a graph G. Let also Pg
be the polynomial associated with the labeling of a graph G, i.e. if V = {x1,...,x,}
is the set of vertices and E(G) is the set of edges of G then

Pg = 1_[ (xi —xj).
i<j and x;x; €E(G)

Now we recall the definition of the degree of an ideal. Let R = K|[x1,...,Xz]
be a polynomial ring where K is an infinite field. Let X be a graded R-module
and § be a positive integer. We denote by X the set of elements of X of degree
8. Let I C R be a homogeneous ideal. The Hilbert series of I is the power series
HS;(t) = Y o2 HF; (s)7* where HF[ (s) (the Hilbert function of /) is the dimension
of (R/I)s as an K-vector space.

Proposition 1. We have HSy (1) = N(1)/(1 —t)? where N(t) is a polynomial
which is not multiple of 1 —t, and d is the dimension of 1.

For the proof of this proposition see [5], Theorem 7, Chapter 11. Now, using this
proposition we could define the degree of an ideal.

Definition 1. The degree of the ideal /, noted by deg([/), is N(1) where N is the
numerator of HS;.

We recall that the ideal 7 : P is defined as
I: P ={feR| f"Pg el for some m > 0}.
Using these notations, we have the following result (see [4], Proposition 3.3).
Lemma 3. 7(G,k—1) =deg(J(n,k): PZ).

Example 2. In this example, we compute the number of distinct 3-colorings of the
two-by-four grid graph H, and we correct an error of Example 3.4 in [4] to compute
it. This graph has eight vertices x1,..., xg and ten edges x1 X2, X2X3, X3X4, X4X5,X5X6,
X6X7,X7X8,X1X8,X2X7,X3X6. We have to compute the degree of the ideal J(8,4) :
PP In order to speed up the computation, De Loera has proposed to use the factori-
zation of Py to compute the generators of the saturation ideals J(8,4) : (x; —x;)*°
for each of the edges of H. He has claimed that if one computes these ten ideals,
then their intersection is precisely equal to J(8,4) : P5° (we denote this intersection
by 7). But, this equality does not hold'. Using MAPLE1 1, we can compute / and its
Hilbert series where the latter is equal to

(B3 46112 42261 55019 1 106¢° + 15968 + 19017 +
17518 +1261° +70t* 4+ 353 + 15t2 + 50 + 1)/ (1 —1)°.
I After the submission of the paper, an anonymous referee pointed out that Example 3.4 in [4] rema-

ins true if we replace “intersection” by ”sum”. He/She provided also a Macaulay2 code to verify this
statement, see http://amirhashemi.iut.ac.ir/software.html.
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Therefore deg(/) = 966 which is not equal to w(H,3), because we will see further
that the number of distinct 3-colorings of H is 26. Let us see a simple example
illustrating the difference between the above ideals. Let C4 be the 4-cycle graph
with the vertices y1,...,y4 and the edges y1y2, V23, ¥3V4,y4y1. We would like to
compute (C4,2). We observe that J(4,3) : ng is equal to (y1 — y3,y2 — ya), i.e.
7(C4,2) = 1. On the other hand,

(| J@3):Gi—y)® = (y1=ya.y3—ya) N (¥y1—y2.¥3— ya)
Yiy;€E(Cs)

N{(y1—y3.52=y3) N (y1—ya,y2—y3)
N(y1— Y4, y2—y4) N (y2—y4,y3—ya)
N{(y1—y3,y2—y4)

which is not equal to J(4,3) : PCOZ. The Hilbert series of this intersection is equal to
(13431242t +1)/(1 —t)?, and therefore its degree is 7.

Now, we compute 7(H,3). Computing J(8,4) : Pg° is not feasible in less than
12 hours (timings in this paper were conducted on a personal computer with 3.2GHz,
2xIntel(R)-Xeon(TM) Quad core, 24 GB RAM and 64 bits under the Linux operating
system). In order to speed up the computation, we use the following simple result (see
[3], Theorem 11, page 196).

Lemmad4. Let L. C R be a radical ideal and f € R. Let LN {(f) = (g1,...,8¢)-
Then{g1/f....,g¢/ [} is a generating set for the ideal L : f°°.

Proof. Ttis enough to prove that any polynomial g € L : f°° belongsto (g1/f....,
ge/f). We know that g™ € L for some integer m. This follows that (g f)" € L,
and therefore gf € LN(f). Thus, g € (g1/f.....&¢/f). O

We can compute J(8,4) N (Py) and then a generating set for J(8,4) : Pg° in
2152.549 seconds. The Hilbert series of this ideal is equal to (8¢3 + 12¢2 4 5¢ +
1)/(1—1)3, and therefore its degree is equal to 26.
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