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ON A SEQUENCE OF RATIONAL NUMBERS WITH UNUSUAL
DIVISIBILITY BY A POWER OF 2
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Abstract. In this note we consider the sequence of rational numbers b, =} _; 2K /k. We show
that the power of 2 in the expansion of b, is unusually large, at least n+ 1 —log, (n+ 1), and that
this bound is best possible. The sequence b,, n=1,2,3,..., is related to the sequence A0031449
in the On-Line Encyclopedia of Integer Sequences.
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1. INTRODUCTION

In [6] Farhi considered the following sequence a; = 1,

nan—1
a, —

+(n—1)! (1.1)

forn=2,3,.... Set also

n 2k
MZZ; (1.2)
k=1
for n € N. Then, by b, — b, =2"/n and (1.1), we obtain
n!
a, = ?bn (1.3)

for each n € N.

In [6], expressing a, in terms of Genocchi numbers and Stirling numbers of the
first kind, Farhi showed that

a, €N 1.4)

for each n € N. This, according to the definition of a, in (1.1), is nontrivial and
in some sense reminds the surprising integrality conditions of so-called Somos se-
quences (see [14] and also some subsequent work in [8, 11, 17, 18]). The fractional
parts of the sequence %, n=1,2,3,..., were considered in [4, 5].
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Of course, there are several alternative ways to prove (1.4) which are simpler than
that in [6]. This was observed by Farhi in a subsequent paper [7]. For example, by
the identity
"kl (n—k)! &1 n+l 2K

ettt -t &

k=0 k=0 \k
(see [12,15]), using (1.2) and (1.3) we find that

" (n+1)1 & 28 (n41)!

L K=kt =" kg()kJr = gurl el =it
which implies (1.4). Infact, Y.3_,k!(n—k)!,n=1,2,3,..., is the sequence A0031449
in [13].

For a prime number p and a positive integer u by v,(u) we denote the largest
nonnegative integer k for which p* divides u. Likewise, for a rational r = u/v, where
u,v € N are relatively prime integers, we set v, (r) =V, (u) — v, (v).

With this notation in [6, Corollary 2.5] it was also shown that

v2<22kk) > 51(n), (1.6)

k=1

n!

where s;(n) is the sum of digits of n in base 2. This was improved in [7, Theorem
2.5], where it was shown that

»\N

n
(Z )>n— llog, 1] (1.7)
for each n € N.

Now, we will refine the estimates (1.6), (1.7) and obtain a sharp bound.

Theorem 1. For each n € N we have
n k

2
VZ(};k) > n+1—logy(n+1), (1.8)

with equality if and only if n = 2% — 1 for k € N.

Note that
n+1—logy,(n+1)>n—|log,n|. (1.9
Indeed, choose a unique integer k > 0 satisfying 2 < n < 2%*1, Then, 1+ |log,n| =
k41 and log,(n+ 1) <log,(28*!) = k+ 1, which proves (1.9).

From the above proof of (1.9) we see that the right hand sides of (1.7) and (1.8) are
equal only if n has the form n = 2% — 1. We will derive (1.8) from the inequality (2.3)
below, which is stronger than (1.8) for many n € N that are not of the form 2k 1.
The nontrivial part is to show that for n = 2% — 1 one has equality in (1.8). (The proof
of (1.7) in [7] is entirely different: it uses (1.5) and some other identity.) The proof
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of Theorem 1 is self-contained except that we need any version of the fact that the
sequence Va(b,), n=1,2,3, ..., is unbounded as n — oo.

Let D, be the least common multiple of 1,2,3,...,n. By (1.2), it is clear that
D,b, € N for each n € N. From Theorem 1 we will derive the following corollary
which strengthens (1.4) (since (1.4) holds even if the factor n! in (1.3) is replaced by
D,).

Corollary 1. For each n € N we have

Dnbn B n 2k—n

on Dy Z

Finally, we remark that in [15] Sury proved not only (1.5) but also the identity

,;21:(22<<T>+;<§>+;(';>+;<';>+) (1.11)

eN. (1.10)

See also [1-3,9, 10, 16] for some related identities. For example, in [10] MeStrovi¢
showed that
nok_1 &1 <n>
= = . (1.12)
kg’l k k; k\k

We conclude with a simple generalization of (1.11) and (1.12).

Theorem 2. For each n € N and each z € C we have
L(14z2)F—(1—2)k n\ z2(n\ 2(n\ 7 (n
=2 - e -
k; k A 36 5770

no(] k*l n ,k
kzl( “k) :];jc(’;) (1.13)

In particular, we give a very simple proof of (1.13), which shows that the identities
(1.11), (1.12) and [ 10, Corollary 1.2] are not so mysterious as it may appear from their
proofs in [10]. They come by inserting z = 1 into the natural identities of Theorem 2.

and

2. PROOFS
Proof of Theorem 1. For n € N put
dn =V (bn>7

where b, is defined in (1.2). Then, b, = 2%u, /Vn, where u,, and v, are odd coprime
positive integers. Note thatd; =1, d, =2, ..., etc. We have

on+l1 n+1-va(n+1)

a1 (n+ 1)2- V2l tD)’

bn+l - bn



206 A. DUBICKAS

where n+1—v;(n+1) > 0. From
2d,1 Uy 2n+17v2 (n+1)
vn + (}’l + 1)2—\}2(}’!-‘1-1)
and the fact that the integer (n+1)27¥2("*1) is odd, we find that

bn+1 =

dp+1 =min(dy,n+1—vy(n+1)) 2.1
if
dp#n+1—va(n+1), 2.2)
and
dnJrl > dy
if

dy=n+1—-vy(n+1).
We claim that for eachn € N
dnzrkr;in(k—i-l—vz(k—kl)). (2.3)
>n

Indeed, if for some n € N the inequality opposite to (2.3) holds then d,, is less than
k+1—vy(k+1) fork=n,n+1,n+2,.... Then, by (2.1) and (2.2), we should have
d, =dy+1 =dyn = .... Thus, the sequence di, k =1,2,3,..., is bounded, which is
impossible by (1.6) or (1.7). This proves (2.3).

Next, since u > 2¥2"), for any u € N we have v, (u) < log,(u). Hence, from (2.3)
we get d,, > ming>,(k+ 1 —log,(k+1)). The function f(x) =x+1—1log,(x+1) is
increasing for x > 1. So, for any n € N, the smallest value of the function f(x) in the
setx € {n,n+1,n+2,...}is attained at x = n. Thus, d, > n+1—log,(n+ 1), which
is (1.8).

Further, equality in (1.8) can only hold if log,(n+ 1) is an integer. For n € N this
happens for n = 2k 1, where k € N, only. So the values n = 21, k=1,2,3,...,
are the only values for which equality in (1.8) can possibly be attained. We will show
that it is always attained, namely,

dzk_] == V2<b2k_1) = 2k - k (24)

for every k € N.
Fix any k € N. For a contradiction assume that dy_, # 2K —k, so that (2.2) is true
for n =25 — 1. Then, by (2.1), we must have

dye = min(dye_;,2F —k) < 2% —k.
However, by (1.8) and 2541 < 2K+1 it follows that
dye > 251 —logy (2 +1) > 2K +1— (k+1) =2F —k,

which contradicts to the previous inequality. This rules out the possibility d_; #
2% —k and so proves (2.4). ]
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Proof of Corollary 1. Let L, be the least common multiple of all odd integers
between 1 and n. By (1.2), it is clear that L,b, € N for every n € N. Further-
more, since L, is an odd integer, this implies Lnbn2_V2(b") € N. Next, in view of
D, = L,211°%"] we obtain

Dpb,2~ V2(bn)—|logy 1 €N,

which implies (1.10) provided that v,(b,) + |log,n| > n. However, by Theorem 1,
we already know that v2(b,) > n+ 1 —1log,(n+1). This completes the proof of
the corollary by (1.9). (Of course, as observed by the referee, va(b,) + |log,n| > n
already holds by Farhi’s inequality (1.7).) g

Proof of Theorem 2. In order to prove (1.1 3) we fix n € N and set

fz) = y (1+Z ii()

Then,

FE=Y (oY ! (”) _ (-1 (ot

= = k (1+z2)—1 z

for z # 0. Inserting z = 0 we obtain f/(0) = n— () =0 as well. Hence, f’(z) = 0 for
each z € C, which implies that f(z) is a constant. From f(0) = 0 we conclude that
f(z) =0 for each z € C. This proves (1.13).

Clearly, (1.13) also implies the first identity of this theorem by subtracting (1.13)
with z replaced by —z from (1.13) with z itself. ([l
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