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ON A SEQUENCE OF RATIONAL NUMBERS WITH UNUSUAL
DIVISIBILITY BY A POWER OF 2
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Abstract. In this note we consider the sequence of rational numbers bn = ∑
n
k=1 2k/k. We show

that the power of 2 in the expansion of bn is unusually large, at least n+1− log2(n+1), and that
this bound is best possible. The sequence bn, n = 1,2,3, . . . , is related to the sequence A0031449
in the On-Line Encyclopedia of Integer Sequences.
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1. INTRODUCTION

In [6] Farhi considered the following sequence a1 = 1,

an =
nan−1

2
+(n−1)! (1.1)

for n = 2,3, . . . . Set also

bn =
n

∑
k=1

2k

k
(1.2)

for n ∈ N. Then, by bn −bn−1 = 2n/n and (1.1), we obtain

an =
n!
2n bn (1.3)

for each n ∈ N.
In [6], expressing an in terms of Genocchi numbers and Stirling numbers of the

first kind, Farhi showed that
an ∈ N (1.4)

for each n ∈ N. This, according to the definition of an in (1.1), is nontrivial and
in some sense reminds the surprising integrality conditions of so-called Somos se-
quences (see [14] and also some subsequent work in [8, 11, 17, 18]). The fractional
parts of the sequence 2n

n , n = 1,2,3, . . . , were considered in [4, 5].
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Of course, there are several alternative ways to prove (1.4) which are simpler than
that in [6]. This was observed by Farhi in a subsequent paper [7]. For example, by
the identity

n

∑
k=0

k!(n− k)!
n!

=
n

∑
k=0

1(n
k

) =
n+1

2n

n

∑
k=0

2k

k+1
(1.5)

(see [12, 15]), using (1.2) and (1.3) we find that
n

∑
k=0

k!(n− k)! =
(n+1)!

2n

n

∑
k=0

2k

k+1
=

(n+1)!
2n+1 bn+1 = an+1,

which implies (1.4). In fact, ∑
n
k=0 k!(n−k)!, n= 1,2,3, . . . , is the sequence A0031449

in [13].
For a prime number p and a positive integer u by νp(u) we denote the largest

nonnegative integer k for which pk divides u. Likewise, for a rational r = u/v, where
u,v ∈ N are relatively prime integers, we set νp(r) = νp(u)−νp(v).

With this notation in [6, Corollary 2.5] it was also shown that

ν2

( n

∑
k=1

2k

k

)
≥ s2(n), (1.6)

where s2(n) is the sum of digits of n in base 2. This was improved in [7, Theorem
2.5], where it was shown that

ν2

( n

∑
k=1

2k

k

)
≥ n−⌊log2 n⌋ (1.7)

for each n ∈ N.
Now, we will refine the estimates (1.6), (1.7) and obtain a sharp bound.

Theorem 1. For each n ∈ N we have

ν2

( n

∑
k=1

2k

k

)
≥ n+1− log2(n+1), (1.8)

with equality if and only if n = 2k −1 for k ∈ N.

Note that
n+1− log2(n+1)≥ n−⌊log2 n⌋. (1.9)

Indeed, choose a unique integer k ≥ 0 satisfying 2k ≤ n < 2k+1. Then, 1+⌊log2 n⌋=
k+1 and log2(n+1)≤ log2(2

k+1) = k+1, which proves (1.9).
From the above proof of (1.9) we see that the right hand sides of (1.7) and (1.8) are

equal only if n has the form n = 2k −1. We will derive (1.8) from the inequality (2.3)
below, which is stronger than (1.8) for many n ∈ N that are not of the form 2k − 1.
The nontrivial part is to show that for n = 2k −1 one has equality in (1.8). (The proof
of (1.7) in [7] is entirely different: it uses (1.5) and some other identity.) The proof
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of Theorem 1 is self-contained except that we need any version of the fact that the
sequence ν2(bn), n = 1,2,3, . . . , is unbounded as n → ∞.

Let Dn be the least common multiple of 1,2,3, . . . ,n. By (1.2), it is clear that
Dnbn ∈ N for each n ∈ N. From Theorem 1 we will derive the following corollary
which strengthens (1.4) (since (1.4) holds even if the factor n! in (1.3) is replaced by
Dn).

Corollary 1. For each n ∈ N we have

Dnbn

2n = Dn

n

∑
k=1

2k−n

k
∈ N. (1.10)

Finally, we remark that in [15] Sury proved not only (1.5) but also the identity
n

∑
k=1

2k

k
= 2

((
n
1

)
+

1
3

(
n
3

)
+

1
5

(
n
5

)
+

1
7

(
n
7

)
+ . . .

)
. (1.11)

See also [1–3, 9, 10, 16] for some related identities. For example, in [10] Meštrović
showed that

n

∑
k=1

2k −1
k

=
n

∑
k=1

1
k

(
n
k

)
. (1.12)

We conclude with a simple generalization of (1.11) and (1.12).

Theorem 2. For each n ∈ N and each z ∈ C we have
n

∑
k=1

(1+ z)k − (1− z)k

k
= 2

(
z
(

n
1

)
+

z3

3

(
n
3

)
+

z5

5

(
n
5

)
+

z7

7

(
n
7

)
+ . . .

)
and

n

∑
k=1

(1+ z)k −1
k

=
n

∑
k=1

zk

k

(
n
k

)
. (1.13)

In particular, we give a very simple proof of (1.13), which shows that the identities
(1.11), (1.12) and [10, Corollary 1.2] are not so mysterious as it may appear from their
proofs in [10]. They come by inserting z = 1 into the natural identities of Theorem 2.

2. PROOFS

Proof of Theorem 1. For n ∈ N put

dn = ν2(bn),

where bn is defined in (1.2). Then, bn = 2dnun/vn, where un and vn are odd coprime
positive integers. Note that d1 = 1, d2 = 2, . . . , etc. We have

bn+1 −bn =
2n+1

n+1
=

2n+1−ν2(n+1)

(n+1)2−ν2(n+1) ,
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where n+1−ν2(n+1)> 0. From

bn+1 =
2dnun

vn
+

2n+1−ν2(n+1)

(n+1)2−ν2(n+1)

and the fact that the integer (n+1)2−ν2(n+1) is odd, we find that

dn+1 = min(dn,n+1−ν2(n+1)) (2.1)

if
dn ̸= n+1−ν2(n+1), (2.2)

and
dn+1 > dn

if
dn = n+1−ν2(n+1).

We claim that for each n ∈ N
dn ≥ min

k≥n
(k+1−ν2(k+1)). (2.3)

Indeed, if for some n ∈ N the inequality opposite to (2.3) holds then dn is less than
k+1−ν2(k+1) for k = n,n+1,n+2, . . . . Then, by (2.1) and (2.2), we should have
dn = dn+1 = dn+2 = . . . . Thus, the sequence dk, k = 1,2,3, . . . , is bounded, which is
impossible by (1.6) or (1.7). This proves (2.3).

Next, since u ≥ 2ν2(u), for any u ∈ N we have ν2(u)≤ log2(u). Hence, from (2.3)
we get dn ≥ mink≥n(k+1− log2(k+1)). The function f (x) = x+1− log2(x+1) is
increasing for x ≥ 1. So, for any n ∈ N, the smallest value of the function f (x) in the
set x ∈ {n,n+1,n+2, . . .} is attained at x = n. Thus, dn ≥ n+1− log2(n+1), which
is (1.8).

Further, equality in (1.8) can only hold if log2(n+1) is an integer. For n ∈ N this
happens for n = 2k −1, where k ∈ N, only. So the values n = 2k −1, k = 1,2,3, . . . ,
are the only values for which equality in (1.8) can possibly be attained. We will show
that it is always attained, namely,

d2k−1 = ν2(b2k−1) = 2k − k (2.4)

for every k ∈ N.
Fix any k ∈ N. For a contradiction assume that d2k−1 ̸= 2k − k, so that (2.2) is true

for n = 2k −1. Then, by (2.1), we must have

d2k = min(d2k−1,2
k − k)≤ 2k − k.

However, by (1.8) and 2k +1 < 2k+1, it follows that

d2k ≥ 2k +1− log2(2
k +1)> 2k +1− (k+1) = 2k − k,

which contradicts to the previous inequality. This rules out the possibility d2k−1 ̸=
2k − k and so proves (2.4). □
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Proof of Corollary 1. Let Ln be the least common multiple of all odd integers
between 1 and n. By (1.2), it is clear that Lnbn ∈ N for every n ∈ N. Further-
more, since Ln is an odd integer, this implies Lnbn2−ν2(bn) ∈ N. Next, in view of
Dn = Ln2⌊log2 n⌋ we obtain

Dnbn2−ν2(bn)−⌊log2 n⌋ ∈ N,

which implies (1.10) provided that ν2(bn)+ ⌊log2 n⌋ ≥ n. However, by Theorem 1,
we already know that ν2(bn) ≥ n + 1 − log2(n + 1). This completes the proof of
the corollary by (1.9). (Of course, as observed by the referee, ν2(bn)+ ⌊log2 n⌋ ≥ n
already holds by Farhi’s inequality (1.7).) □

Proof of Theorem 2. In order to prove (1.13) we fix n ∈ N and set

f (z) =
n

∑
k=1

(1+ z)k −1
k

−
n

∑
k=1

zk

k

(
n
k

)
.

Then,

f ′(z) =
n

∑
k=1

(1+ z)k−1 −
n

∑
k=1

zk−1
(

n
k

)
=

(1+ z)n −1
(1+ z)−1

− (1+ z)n −1
z

= 0

for z ̸= 0. Inserting z = 0 we obtain f ′(0) = n−
(n

1

)
= 0 as well. Hence, f ′(z) = 0 for

each z ∈ C, which implies that f (z) is a constant. From f (0) = 0 we conclude that
f (z) = 0 for each z ∈ C. This proves (1.13).

Clearly, (1.13) also implies the first identity of this theorem by subtracting (1.13)
with z replaced by −z from (1.13) with z itself. □
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