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Abstract. We present a streamlined proof of a formula for the derivatives of the moment gener-
ating function of the multivariate normal distribution. We formulate it in terms of the summation
of the contractions by pairings, which encodes a combinatorial computation procedure. We give
two applications. First, we provide a simple proof of Isserlis’ theorem and derive a formula for
the moments of the multivariate normal distribution.Second, we calculate the moments of the
product of a finite number of correlated normally and lognormally distributed random variables.
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1. INTRODUCTION

In this note, we present a streamlined proof of a formula for arbitrary derivatives
of the moment generating function of the multivariate normal distribution. As ap-
plications of the formula, we provide a simple proof of Isserlis’ theorem and derive a
formula for the moments of the multivariate normal distribution. Then we calculate
the moments of the product of a finite number of correlated normally and lognormally
distributed random variables.

Throughout this note, we let N = {0,1,2, . . .} denote the set of nonnegative in-
tegers, R the set of real numbers, and R+ = {x ∈ R |x > 0} the set of positive real
numbers. Also, we let N denote a positive integer.
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2. DERIVATIVES OF THE MOMENT GENERATING FUNCTION OF THE
MULTIVARIATE NORMAL DISTRIBUTION

2.1. Preliminaries

Let XXX = (X1, . . . ,XN)
T denote an N-dimensional normally distributed random vec-

tor with mean vector mmm = (mi) ∈ RN and covariance matrix C = (ci j) ∈ RN×N . We
have E[Xi] = mi,Cov(Xi,X j) = ci j, and in particular Var[Xi] = σi

2 = cii. With these
notations, the probability density function of XXX is given by

fN(xxx;mmm,C) = (2π)−
n
2 (detC)−

1
2 exp

(
−1

2
(xxx−mmm)TC−1(xxx−mmm)

)
for xxx ∈ RN ,

and the moment generating function of XXX is given by

MXXX(ttt) = E[ettt·XXX ] = exp
(

mmmTttt +
1
2

tttTCttt
)

for ttt = (t1, . . . , tN)
T

where ttt ·XXX = tttTXXX (see [5, Chapter 45]).
By differentiating MXXX(ttt), we have the following expectation value

E[X1
α1 · · ·XN

αN ettt·XXX ] =

(
∂

∂t1

)α1

. . .

(
∂

∂tN

)αN

MXXX(ttt).

Put

Q(ttt) =mmmTttt +
1
2

tttTCttt =
N

∑
i=1

miti +
1
2

N

∑
i, j=1

ci jtit j,

so that MXXX(ttt) = eQ(ttt). Also put ξξξ(ttt) = mmm+Cttt, namely, ξξξ(ttt) = (ξ1(ttt), . . . ,ξN(ttt))T

where ξk(ttt) = mk +∑
N
j=1 ck jt j (1 ≤ k ≤ N). Then, for k, i ∈ {1, . . . ,N} we have

∂Q(ttt)
∂tk

= ξk(ttt), (2.1)

∂ξk(ttt)
∂ti

= cki. (2.2)

In other words, ξξξ(ttt) is the gradient vector of Q(ttt) and C is the Hessian matrix of Q(ttt).
Given any differentiable function F(ttt), we apply the product rule and Eq.(2.1) to

get

∂

∂tk

(
eQ(ttt)F(ttt)

)
= eQ(ttt)

(
∂Q(ttt)

∂tk
F(ttt)+

∂F(ttt)
∂tk

)
= eQ(ttt)

(
ξk(ttt)F(ttt)+

∂F(ttt)
∂tk

)
.

(2.3)
By successively applying Eq.(2.3) and Eq.(2.2), one can calculate the derivatives of
MXXX(ttt) = eQ(ttt).

Example 1. For brevity, we write Q = Q(ttt) and ξk = ξk(ttt).

(i) E[X1ettt·XXX ] = ∂

∂t1
MXXX(ttt) = eQξ1.
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(ii) E[X1X2ettt·XXX ] = ∂

∂t1
∂

∂t2
MXXX(ttt) = eQ(ξ1ξ2 + c12). By setting X2 = X1, we have

E[X1
2ettt·XXX ] = eQ(ξ1

2 +σ1
2).

(iii) E[X1X2X3ettt·XXX ] = ∂

∂t1
∂

∂t2
∂

∂t3
MXXX(ttt) = eQ(ξ1ξ2ξ3 + c12ξ3 + c13ξ2 + c23ξ1). By

setting X3 =X1, we have E[X1
2X2ettt·XXX ] = eQ(ξ1

2
ξ2+2c12ξ1+σ1

2ξ2). Further,
by setting X2 = X1, we have E[X1

3ettt·XXX ] = eQ(ξ1
3 +3σ1

2ξ1).
(iv) E[X1X2X3X4ettt·XXX ] = ∂

∂t1
∂

∂t2
∂

∂t3
∂

∂t4
MXXX(ttt) = eQ(ξ1ξ2ξ3ξ4 + c12ξ3ξ4 + c13ξ2ξ4 +

c14ξ2ξ3 + c23ξ1ξ4 + c24ξ1ξ3 + c34ξ1ξ2 + c12c34 + c13c24 + c14c23). By set-
ting X3 = X1 and X4 = X2, we have E[X1

2X2
2ettt·XXX ] = eQ(ξ1

2
ξ2

2 +σ1
2ξ2

2 +

σ2
2ξ1

2 + 4c12ξ1ξ2 + 2c12
2 +σ1

2σ2
2). Further, by setting X2 = X1, we have

E[X1
4ettt·XXX ] = eQ(ξ1

4 +6σ1
2ξ1

2 +3σ1
4).

2.2. The key formula

By generalizing Example 1, we prove a formula for arbitrary derivatives of the
moment generating function of the multivariate normal distribution. Our proof is
adapted from [1, Lemma 5.2.], but we slightly extend it to treat high-order derivatives
and introduce combinatorial notions to describe the computation procedure. As we
shall see later, these small improvements turn out to be useful in the applications.

For an N-dimensional multi-index α = (α1, . . . ,αN) ∈ NN , put |α| = ∑
N
i=1 αi and

α! = ∏
N
i=1 αi!. For ttt = (t1, . . . , tN)T , write tttα = t1α1 . . . tNαN and denote the differential

operator of index α with respect to ttt by ∂α =
(

∂

∂t1

)α1
. . .
(

∂

∂tN

)αN
. For α = (αi) ,β =

(βi) ∈ NN , write β ≤ α if βi ≤ αi for all i. If β ≤ α, then α−β = (αi −βi) ∈ NN .
For α = (α1, . . . ,αN) ∈ NN , define its corresponding multiset by Vα =

{
(i, j) |1 ≤

i ≤ N,1 ≤ j ≤ αi
}
⊂
{

1, . . . ,N
}
×N. For 1 ≤ i ≤ N, write Vα(i) =

{
(i, j) |1 ≤

j ≤ αi
}
⊂ Vα. Then

⋃N
i=1Vα(i) = Vα. Note that #Vα(i) = αi and #Vα = |α|. Con-

versely, for a finite subset E of {1, . . . ,N}×N, define ι(E) = (ν1, . . . ,νN) ∈ NN by
νi = #(π−1(i)∩ E) ∈ N. Here π denotes the projection from {1, . . . ,N}×N onto
{1, . . . ,N}, namely π(i, j) = i for (i, j) ∈ {1, . . . ,N}×N. Then we have ι(Vα) = α

and ι(W )≤ α for any subset W of Vα.
In general, given a finite set E and an integer k ≥ 0, we call a k-pairing of E a

set of k (unordered) pairs formed by 2k distinct elements of E. We denote the set of
k-pairings of Vα by Pk(α), namely

Pk(α) =

{
σ =

{
Wi
}k

i=1

∣∣∣∣Wi’s are distinct 2-element subsets of Vα

}
.

Note that Pk(α) is nonempty only if 0 ≤ k ≤ ⌊|α|/2⌋, where the symbol ⌊x⌋ denotes
the greatest integer which does not exceed x ∈R. In fact, if 0 ≤ k ≤ ⌊|α|/2⌋, then we
have

#Pk(α) =
1
k!

k−1

∏
j=0

(
|α|−2 j

2

)
=

|α|!
2kk!(|α|−2k)!

. (2.4)
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Put P (α) =
⋃⌊|α|/2⌋

k=0 Pk(α), the set of all possible pairings of Vα.
Given a vector ηηη = (η1, . . . ,ηN)

T ∈ RN and a k-pairing σ =
{

Wi
}k

i=1 ∈ Pk(α), we
define the contraction of ηηη by σ, denoted by η̂ηησ, by

η̂ηησ = cσηηη
ι(Vα\

⋃
σ) ∈ R

where cσ = ∏
k
i=1 cπ(Wi) = ∏

k
i=1 cπ(ai),π(bi),Wi = {ai,bi} ⊂ Vα,ai ̸= bi,

⋃
σ =

⋃k
i=1Wi.

Note that cσ is well-defined because the covariance matrix C =(ci j) is symmetric. For
σ ∈ Pk(α), write σ̄ = ι(

⋃
σ) ∈ NN . Then we have σ̄ ≤ α, |σ̄|= 2k and ι(Vα \

⋃
σ) =

α− σ̄. We can thus write η̂ηησ = cσηηηα−σ̄. Note also that for σ ∈ Pk(α), τ ∈ Pl(α) such
that

⋃
σ∩

⋃
τ =∅, we have σ∪ τ ∈ Pk+l(α) and η̂ηησ∪τ = cσcτηηη

ι(Vα\
⋃
(σ∪τ)).

To illustrate the procedure of contraction, let N ≥ 3 and α = (3,3,2,0, . . . ,0). Fig-
ure 1 depicts an illustrative 2-pairing of Vα consisting of

{
(1,1),(1,2)

}
and

{
(2,2),

(3,1)
}

. The contraction of ηηη= (η1, . . . ,ηN)
T by this 2-pairing equals c11c23η1η2

2η3.

1 2 3 i

α i

FIGURE 1. An illustrative contraction by a 2-pairing

Finally, for ηηη ∈ RN and α ∈ NN , we introduce the following notation for the sum
of the contractions of ηηη over all possible pairings of Vα, namely

Rα(ηηη) = ∑
σ∈P (α)

η̂ηησ = ∑
σ∈P (α)

cσηηη
ι(Vα\

⋃
σ) ∈ R.

The following key formula will serve as our main tool.

Lemma 1. Let XXX denote an N-dimensional normally distributed random vector
with mean vector mmm = (mi) ∈ RN and covariance matrix C = (ci j) ∈ RN×N , and let
MXXX(ttt) denote its moment generating function. Then, for α = (αi) ∈ NN , we have

E[XXXαettt·XXX ] = ∂
αMXXX(ttt) = eQ(ttt)Rα(ξξξ(ttt)) (2.5)

where Q(ttt) =mmmTttt +(1/2)tttTCttt and ξξξ(ttt) =mmm+Cttt.

Proof. We need to prove the second equality in Eq.(2.5). We proceed by induction
on α. First, when α= 0= (0, . . . ,0), then P (α) consists only of the 0-pairing, namely
P (0) = {∅}. Thus, we have R0(ξξξ(ttt)) = ξξξ(ttt)0

= 1. Hence, Eq.(2.5) holds trivially in
this case.
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Next, assuming that the second equality in Eq.(2.5) is true for α = (αi) ∈ NN , we
show that it holds for α̃ = (α1, . . . ,α j + 1, . . . ,αN) for 1 ≤ j ≤ N. Differentiating
Eq.(2.5) with respect to t j and using Eq.(2.3), we have

∂
α̃MXXX(ttt) =

∂

∂t j

(
eQ(ttt)Rα(ξξξ(ttt))

)
= eQ(ttt)

(
ξ j(ttt)Rα(ξξξ(ttt))+

∂Rα(ξξξ(ttt))
∂t j

)
.

Put S(ttt) = ξ j(ttt)Rα(ξξξ(ttt))+
∂Rα(ξξξ(ttt))

∂t j
. Also, put ω = ( j,α j +1) so that Vα̃ =Vα ∪{ω}.

We want to show S(ttt) = Rα̃(ξξξ(ttt)).
Concerning the first term of S(ttt), we have

ξ j(ttt)Rα(ξξξ(ttt)) = ∑
σ∈P (α)

cσξξξ(ttt)ι(Vα̃\
⋃

σ)
.

If we regard σ ∈ P (α) as an element of P (α̃), then ξ j(ttt)Rα(ξξξ(ttt)) is the sum of the
contractions of ξξξ(ttt) over all the pairings of Vα̃ that do not involve ω.

Next we calculate the second term of S(ttt). For σ ∈ Pk(α), let ι(Vα \
⋃

σ) =
(ν1, . . . ,νN). Then, by Eq.(2.2) we have

∂

∂t j
ξξξ(ttt)ι(Vα\

⋃
σ)
=

∂

∂t j
ξξξ(ttt)(ν1,...,νN) = ∑

i:νi>0
νici jξξξ(ttt)

(ν1,...,νi−1,...,νN).

Observe that the rightmost term is the sum of the contractions of ξξξ(ttt)ι(Vα\
⋃

σ) over all
the 1-pairings of Vα̃ matching ω with each s ∈Vα \

⋃
σ. Note that ω and s are distinct

since ω /∈Vα. For σ∈ Pk(α) and s∈Vα\
⋃

σ, define σs ∈ Pk+1(α̃) by σs = σ∪{s,ω}.
Then we have

∂

∂t j
ξ̂ξξ(ttt)

σ
= ∑

s∈Vα\
⋃

σ

ξ̂ξξ(ttt)
σs
.

Hence ∂Rα(ξξξ(ttt))
∂t j

is the sum of the contractions of ξξξ(ttt) over all the pairings of Vα̃ in-
volving ω.

The sum of the both terms of S(ttt) exhausts the contractions of ξξξ(ttt) by all pairings
of Vα̃. Hence, the proof is complete. □

3. MOMENTS OF THE MULTIVARIATE NORMAL DISTRIBUTION

As an application of the key formula (2.5), we provide a simple proof of Isserlis’
theorem and derive a formula for the moments of the multivariate normal distribution
(see [9]). In fact, evaluating formula (2.5) at ttt = 000, we have

E

[
N

∏
i=1

Xi
αi

]
= eQ(000)Rα(ξξξ(000)) = Rα(mmm) = ∑

σ∈P (α)

cσmmmι(Vα\
⋃

σ). (3.1)

This immediately implies Isserlis’ theorem ([4]) as follows.
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Proposition 1. Let XXX = (X1, . . . ,XN)
T denote an N-dimensional normally distrib-

uted random vector with zero mean. Then we have

E

[
N

∏
i=1

Xi

]
=

{
∑σ∈PN/2(N) ∏{i, j}∈σ Cov(Xi,X j) if N is even,

0 if N is odd,

where PN/2(N) denotes the set of (N/2)-pairings of {1, . . . ,N}.

Proof. In Eq.(3.1) choose α = (1, . . . ,1) and identify Vα with
{

1, . . . ,N
}

. When
mmm = 000, the term under summation in Eq.(3.1) is zero except when Vα \

⋃
σ = ∅,

namely
⋃

σ =
{

1, . . . ,N
}

. This condition holds only when N is even; and, in this
case we have

E

[
N

∏
i=1

Xi

]
= ∑

σ∈PN/2(α)

cσ = ∑
σ∈PN/2(N)

∏
{i, j}∈σ

ci j.

In the last step, we identified PN/2(α) = PN/2(N) under the above identification Vα ={
1, . . . ,N

}
. This completes the proof. □

Next we want to express E
[
∏

N
i=1 Xi

αi
]

as a polynomial in ci j’s and mi’s. From
Eq.(3.1), we have

E

[
N

∏
i=1

Xi
αi

]
= Rα(mmm) =

⌊|α|/2⌋

∑
k=0

∑
σ∈Pk(α)

cσmmmα−σ̄. (3.2)

Here σ̄ = (σ̄i) = ι(
⋃

σ) ∈ NN . Note that |σ̄| = 2k and σ̄ ≤ α for σ ∈ Pk(α). Let
σ =

{
Ws
}k

s=1 ∈ Pk(α). Then we can write

cσ =
k

∏
s=1

cπ(Ws) = ∏
i≤ j

ci j
ni j =C∆(σ)

where ∆(σ) = (ni j) ∈ NN×N is determined by

ni j =

{
#{s |π(Ws) = {i, j},1 ≤ s ≤ k} for i ≤ j,
0 for i > j.

Here we used the notation AB = ∏i, j ai j
bi j ∈ R for two real matrices A = (ai j),B =

(bi j) of the same size (let 00 = 1 by convention). These ni j’s satisfy ∑
N
i, j=1 ni j = k and

∑
N
i=1 nih +∑

N
j=1 nh j = σ̄h ≤ αh for 1 ≤ h ≤ N.

Conversely, for α ∈ NN and 0 ≤ k ≤ ⌊|α|/2⌋, consider an upper triangular, non-
negative integer matrix L = (li j) ∈ NN×N satisfying the following set of conditions,
which we call C (α,k):

li j = 0 for i > j,

∑
N
i, j=1 li j = k,

∑
N
i=1 lih +∑

N
j=1 lh j ≤ αh for 1 ≤ h ≤ N.

(3.3)
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For such L, put λ(L) = (λ(L)h)∈NN where λ(L)h =∑
N
i=1 lih+∑

N
j=1 lh j for 1≤ h≤N.

Namely, put λ(L) = (|l̃1|, . . . , |l̃N |) where l̃1, . . . , l̃N ∈NN are defined in column vector
notation by (l̃1, . . . , l̃N) = L+LT . Then the second and third conditions in (3.3) are
equivalent to |λ(L)|= 2k and λ(L)≤ α, respectively. Note that if σ ∈ Pk(α) satisfies
∆(σ) = L, then σ̄ = ι(

⋃
σ) = λ(L).

Given a matrix L = (li j)∈NN×N satisfying the condition C (α,k) for some α ∈NN

and 0 ≤ k ≤ ⌊|α|/2⌋, a k-pairing σ ∈ Pk(α) such that ∆(σ) = L consists of li j distinct
pairs matching between the elements of Vα(i) and Vα( j) for each i, j ∈ {1, . . . ,N}. Let
dL(α,k) ∈ N denote the number of k-pairings σ ∈ Pk(α) such that ∆(σ) = L. Then
we have

dL(α,k) =
1

2∑
N
i=1 lii

1

∏
N
i, j=1 li j!

∏
N
i=1 αi!

∏
N
i=1 (αi −λ(L)i)!

=
1

2TrL
1
L!

α!
(α−λ(L))!

(3.4)

where TrL = ∑
N
i=1 lii and L! = ∏

N
i, j=1 li j!.

To illustrate the correspondence between matrices satisfying C (α,k) and pairings
of Vα, let N = 2, α = (3,1) and L =

(
1 1
0 0

)
. Then λ(L) = (3,1) and |λ(L)|= 4. Thus

L satisfies the condition C (α,2). Hence, dL(α,2) = 3. Figure 2 depicts the three
2-pairings σ of Vα such that ∆(σ) = L.

1 2 1 2 1 2

α i

i

α i

i

α i

i

FIGURE 2. Three 2-pairings σ ∈ P2((3,1)) such that ∆(σ) =
(

1
0

1
0

)

Theorem 1. Let XXX = (X1, . . . ,XN)
T denote an N-dimensional normally distributed

random vector with mean vector mmm = (mi) ∈ RN and covariance matrix C = (ci j) ∈
RN×N . Then, for α = (αi) ∈ NN , we have

E

[
N

∏
i=1

Xi
αi

]
=

⌊|α|/2⌋

∑
k=0

∑
L:C (α,k)

α!
2TrLL!(α−λ(L))!

CLmmmα−λ(L)

where the second summation is taken over L = (li j) ∈ NN×N satisfying the condition
C (α,k) given in (3.3).
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Proof. From Eq.(3.2) and the observations made in the above, we have

E

[
N

∏
i=1

Xi
αi

]
=

⌊|α|/2⌋

∑
k=0

∑
σ∈Pk(α)

cσmmmα−σ̄ =
⌊|α|/2⌋

∑
k=0

∑
L

dL(α,k)CLmmmα−λ(L)

where the second summation in the last term is taken over L ∈ NN×N such that L =
∆(σ) for some σ ∈ Pk(α). Hence, from Eq.(3.4) we have the desired formula. This
completes the proof. □

A result equivalent to Theorem 1 is stated in [7] and a proof based on mathematical
induction is presented in [6]. Our combinatorial proof gives an alternative proof.

Corollary 1. For α ∈ NN and 0 ≤ k ≤ ⌊|α|/2⌋, we have

∑
L:C (α,k)

α!
2TrLL!(α−λ(L))!

=
|α|!

2kk!(|α|−2k)!

where the summation over L ∈ NN×N is taken in the same manner as in Theorem 1.

Proof. Indeed, #Pk(α) is the sum of dL(α,k) over L. The above relation thus
follows from Eq.(2.4) and Eq.(3.4). This completes the proof. □

4. THE NORMAL-LOGNORMAL PRODUCT DISTRIBUTION AND ITS MOMENTS

Consider a random variable expressed as the product of a finite number of correl-
ated normally and lognormally distributed random variables. As another application
of the key formula (2.5), we calculate the moments of this random variable.

4.1. The normal-lognormal product distribution

This subsection summarizes basic properties of the multivariate distribution com-
posed of normal and lognormal distributions, as well as the univariate distribution
defined as the product of normal and lognormal distributions. Note that these distri-
butions were considered independently by researchers in various fields ([2],[3],[10]).

Let N = n + l where n, l ∈ N. We say that an N-dimensional random vector
YYY = (Y1, . . . ,YN)

T follows joint normal-lognormal distribution of index (n, l) if Ỹ̃ỸY =

(Y1, . . . ,Yn, logYn+1, . . . , logYN)
T is normally distributed. This definition is equivalent

to say that YYY is of the form YYY =
(
X1, . . . ,Xn,eXn+1 , . . . ,eXN

)T where XXX = (X1, . . . ,XN)
T

is normally distributed. We say that a random variable Z follows normal-lognormal
product distribution of index (n, l) if Z is of the form Z = ∏

N
i=1Yi where YYY =

(Y1, . . . ,YN)
T follows joint normal-lognormal distribution of index (n, l). Equival-

ently, Z is of the form Z = (∏n
i=1 Xi)e∑

l
j=1 Xn+ j where XXX = (X1, . . . ,XN)

T is normally
distributed. We call XXX the underlying normal distribution of YYY and Z.

Proposition 2. Let YYY = (Y1, . . . ,YN)
T denote an N-dimensional random vector

following joint normal-lognormal distribution of index (n, l) with N = n + l, and



NOTE ON THE MOMENT GENERATING FUNCTION OF THE NORMAL DISTRIBUTION 295

let XXX = (X1, . . . ,XN)
T denote its underlying normal distribution with mean vector

mmm = (mi) ∈ RN and covariance matrix C = (ci j) ∈ RN×N . Let I = {1, . . . ,n} and
J = {n+1, . . . ,N}.

(1) The probability density function of YYY is given by

gn,l(yyy;mmm,C) = (2π)−
n
2 (detC)−

1
2 (∏

i∈J
yi)

−1 exp
(
−1

2
(ỹ̃ỹy−mmm)TC−1(ỹ̃ỹy−mmm)

)
where yyy = (y1, . . . ,yn,yn+1, . . . ,yN)

T ∈ Rn ×Rl
+ and ỹ̃ỹy = (y1, . . . ,yn, logyn+1,

. . . , logyN)
T ∈ RN .

(2) The mean of Yi is given by

E[Yi] =

{
mi for i ∈ I,

emi+
σi

2

2 for i ∈ J.

(3) The covariance between Yi and Yj is given by

Cov(Yi,Yj) =


ci j for i, j ∈ I,

em j+
σ2

j
2 ci j for i ∈ I, j ∈ J,

emi+m j+
σi

2+σ j
2

2 (eci j −1) for i, j ∈ J.

From this it follows that Cov(Yi,Yj) = 0 if and only if Cov(Xi,X j) = 0 for
i, j = 1, . . . ,N.

Proof.
(1) Let fN(x1, . . . ,xN ;mmm,C) be the probability density function of XXX . By change

of variables (X1, . . . ,XN) = (Y1, . . . ,Yn, logYn+1, . . . , logYN), we have

gn,l(y1, . . . ,yN ;mmm,C) = fN(x1, . . . ,xN ;mmm,C)
∂(x1, . . . ,xN)

∂(y1, . . . ,yN)

= fN(y1, . . . ,yn, logyn+1, . . . , logyN ;mmm,C)
l

∏
i=1

1
yn+i

.

(2) For i ∈ I, we have E[Yi] = E[Xi] = mi. For i ∈ J, we have E[Yi] = E[eXi ] =

MXi(1) = emi+
σi

2

2 .
(3) For i, j ∈ I, we have Cov(Yi,Yj) = Cov(Xi,X j) = ci j.

For i∈ I, j ∈ J, recall Stein’s lemma ([8]. See also [3, Chapter 9, Appendix
2].) which asserts that Cov(X ,ϕ(Y )) = E[ϕ′(Y )]Cov(X ,Y ) for a bivariate
normal distribution (X ,Y ) and a differentiable function ϕ(x) such that (i)
limx→±∞ ϕ(x)e−ax2

= 0 for any a > 0, and (ii) E[ϕ′(Y )] exists. Noting that
(Xi,X j) is normally distributed, we have Cov(Yi,Yj) = Cov(Xi,eX j)

= E[eX j ]Cov(Xi,X j) = em j+
σ j

2

2 ci j. An alternative proof is given in Example
2 (i) below.
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For i, j ∈ J, we have

Cov(Yi,Yj) = Cov(eXi ,eX j) = E[eXi+X j ]−E[eXi ]E[eX j ].

Without loss of generality, we may fix i = 1, j = 2. Thus, we have

E[et1X1+t2X2 ] = exp
(

m1t1 +m2t2 +
1
2
(c11t12 +2c12t1t2 + c22t22)

)
.

Evaluating this function at (t1, t2) = (1,1), we have

E[eX1+X2 ] = em1+m2+
1
2 (σ1

2+2c12+σ2
2).

Thus

Cov(Y1,Y2) = em1+m2+
1
2 (σ1

2+2c12+σ2
2)− em1+

σ1
2

2 em2+
σ2

2

2

= em1+m2+
σ1

2+σ2
2

2 (ec12 −1).

□

When n = 1, we have the following integral representation of the probability dens-
ity function of the normal-lognormal product distribution of index (1, l).

Proposition 3. Let Z denote a random variable following normal-lognormal
product distribution of index (1, l) derived by the joint normal-lognormal distribu-
tion YYY of the same index. Let mmm = (mi) ∈ Rl+1 and C = (ci j) ∈ R(l+1)×(l+1) denote,
respectively, the mean vector and the covariance matrix of the underlying normal
distribution. Then, the probability density function of Z is given by

p1,l(z) =
∫
Rl

g1,l(ze−w1−w2−···−wl ,ew1 , . . . ,ewl ;mmm,C)dw1 . . .dwl

where g1,l(y1, . . . ,yl+1;mmm,C) is the probability density function of YYY given in Propos-
ition 2 (1).

Proof. Since Z = Y1Y2 . . .Yl+1 and Y2 . . .Yl+1 > 0, we have

p1,l(z) =
∫
Rl
+

g1,l

(
z

y2 . . .yl+1
,y2, . . . ,yl+1;mmm,C

)
dy2

y2
. . .

dyl+1

yl+1
.

By putting wi = logyi+1(1 ≤ i ≤ l), we have the desired expression. □

4.2. Moments of the normal-lognormal product distribution

Theorem 2. Let Z denote a random variable following normal-lognormal product
distribution of index (n, l) with N = n+ l, and let XXX = (X1, . . . ,XN)

T denote its un-
derlying normal distribution with mean vector mmm = (mi)∈RN and covariance matrix
C = (ci j) ∈ RN×N . Then the d-th raw moment of Z is given by

E[Zd ] = E
[(

X1 · · ·XneXn+1+···+XN
)d
]
= eQ(ddd0,l)Rdn,0(ζζζ) (4.1)
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where dn,0 = (

n︷ ︸︸ ︷
d, . . . ,d,0, . . . ,0), ddd0,l = (0, . . . ,0,

l︷ ︸︸ ︷
d, . . . ,d)T and ζζζ = (ζi) = ξξξ(ddd0,l).

Explicitly, Q(ddd0,l) = d ∑
l
j=1 mn+ j +

d2

2 ∑
l
i, j=1 cn+i,n+ j and ζi = mi+d ∑

l
j=1 ci,n+ j (1 ≤

i ≤ N).

Proof. For α = (αi) ∈ NN where N = n+ l, put αn,0 = (α1, . . . ,αn,0, . . . ,0) and
ααα0,l = (0, . . . ,0,αn+1, . . . ,αN)

T . Substituting α = αn,0 in the key formula (2.5) and
evaluating it at ttt =ααα0,l , we have

E
[
X1

α1 · · ·Xn
αneαn+1Xn+1+···+αNXN

]
= ∂

αn,0MXXX(ααα0,l) = eQ(ααα0,l)Rαn,0(ξξξ(ααα0,l)). (4.2)

Setting α1 = · · · = αN = d ∈ N in Eq.(4.2), we have Eq.(4.1). This completes the
proof. □

When d = 1, we have the mean of the normal-longnormal product distribution of
index (n, l).

Corollary 2. With the notation as above, when d = 1, we have

E[Z] = E
[
X1 · · ·XneXn+1+···+XN

]
= eQ0

⌊n/2⌋

∑
k=0

∑
σ∈Pk(n)

(
∏

{i, j}∈σ

ci j ∏
i∈{1,...,n}\

⋃
σ

ζi

)
where Q0 = ∑

l
j=1 mn+ j+

1
2 ∑

l
i, j=1 cn+i,n+ j, ζi = mi+∑

l
j=1 ci,n+ j (1 ≤ i ≤ n) and Pk(n)

denotes the set of k-pairings of {1, . . . ,n}.

Proof. When d = 1, Q(ddd0,l)=Q0. For notational simplicity put ν= 1n,0 =(

n︷ ︸︸ ︷
1, . . . ,1,

0, . . . ,0). Then we have

Rν(ζζζ) = ∑
σ∈P (ν)

cσζζζ
ν−σ̄

=
⌊n/2⌋

∑
k=0

∑
σ∈Pk(ν)

cσζζζ
ν−σ̄

=
⌊n/2⌋

∑
k=0

∑
σ∈Pk(n)

(
∏

{i, j}∈σ

ci j ∏
i∈{1,...,n}\

⋃
σ

ζi

)
.

In the last step, we identified Pk(ν) with Pk(n) by identifying Vν =
{

1, . . . ,n
}

. Thus,
from Eq.(4.1) the corollary follows. □

When n = 1, we have the following explicit formula for arbitrary moments of the
normal-longnormal product distribution of index (1, l).

Corollary 3. With the notation as above, when n = 1, we have

E[Zd ] = E
[(

X1eX2+···+Xl+1
)d
]
= eQ1

⌊d/2⌋

∑
k=0

d!
2kk!(d −2k)!

σ1
2k

ζ1
d−2k

where σ1
2 = c11, Q1 = d ∑

l
j=1 m j+1 +

d2

2 ∑
l
i, j=1 ci+1, j+1 and ζ1 = m1 +d ∑

l
j=1 c1, j+1.



298 K. HIROSE

Proof. When n = 1, Q(ddd0,l) = Q1. By definition, for d1,0 = (d,0, . . . ,0) ∈ Nl+1

and ζζζ = (ζi) ∈ Rl+1, we have

Rd1,0(ζζζ) =
⌊d/2⌋

∑
k=0

∑
σ∈Pk(d1,0)

cσζζζ
d1,0−σ̄

=
⌊d/2⌋

∑
k=0

#Pk(d1,0)c11
k
ζ1

d−2k

=
⌊d/2⌋

∑
k=0

d!
2kk!(d −2k)!

σ1
2k

ζ1
d−2k.

Here we used Eq.(2.4) in the last step. Therefore, from Eq.(4.1) the corollary follows.
□

By applying the idea of the proof of Theorem 2 to the results of Example 1, we can
directly calculate the first few moments of the normal-lognormal product distribution
for n, l ∈

{
1,2
}

and d ≤ 8/(n+ l).

Example 2. For subsequent use, we evaluate ξk(ttt) and Q(ttt) at ttt = aeeei+beee j (namely,
ti = a, t j = b, and th = 0 for h ̸= i, j):

ξk(aeeei +beee j) = mk +acki +bck j,

Q(aeeei +beee j) = ami +bm j +
1
2
(a2

σi
2 +2abci j +b2

σ j
2).

(i) Index (1,1) case: Evaluating E[X1ettt·XXX ] at ttt = eee2, we have

E[Z] = E[X1eX2 ] = em2+
σ2

2

2 (m1 + c12).

Evaluating E[X1
2ettt·XXX ] at ttt = 2eee2, we have

E[Z2] = E[X1
2e2X2 ] = e2m2+2σ2

2
((m1 +2c12)

2 +σ1
2).

Hence, we have

Var[Z] = E[Z2]−E[Z]2 = e2m2+σ2
2
[
eσ2

2
((m1 +2c12)

2 +σ1
2)− (m1 + c12)

2
]
.

Also, from the above results, we have

Cov(X1,eX2) = E[X1eX2 ]−E[X1]E[eX2 ] = em2+
σ2

2

2 c12.

This gives an alternative proof of the second case of Proposition 2 (3).
Evaluating E[X1

3ettt·XXX ] at ttt = 3eee2, and E[X1
4ettt·XXX ] at ttt = 4eee2, we have

E[Z3] = E[X1
3e3X2 ] = e3m2+(9/2)σ2

2
((m1 +3c12)

3 +3σ1
2(m1 +3c12)),

E[Z4] = E[X1
4e4X2 ] = e4m2+4σ2

2
((m1 +4c12)

4 +6σ1
2(m1 +4c12)

2 +3σ1
4).

(ii) Index (1,2) case: Evaluating E[X1ettt·XXX ] at ttt = eee2 +eee3, we have

E[Z] = E[X1eX2+X3 ] = em2+m3+
1
2 (σ2

2+2c23+σ3
2)(m1 + c12 + c13).
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Evaluating E[X1
2ettt·XXX ] at ttt = 2eee2 +2eee3, we have

E[Z2] = E[X1
2e2X2+2X3 ] = e2(m2+m3)+2(σ2

2+2c23+σ3
2)((m1 +2c12 +2c13)

2 +σ1
2).

(iii) Index (2,1) case: Evaluating E[X1X2ettt·XXX ] at ttt = eee3, we have

E[Z] = E[X1X2eX3 ] = em3+
σ3

2

2 ((m1 + c13)(m2 + c23)+ c12).

Evaluating E[X1
2X2

2ettt·XXX ] at ttt = 2eee3, we have

E[Z2] = E[X1
2X2

2e2X3 ]

= e2m3+2σ3
2[
(m1 +2c13)

2(m2 +2c23)
2 +σ2

2(m1 +2c13)
2

+σ1
2(m2 +2c23)

2 +4c12(m1 +2c13)(m2 +2c23)+2c12
2 +σ1

2
σ2

2].
(iv) Index (2,2) case: Evaluating E[X1X2ettt·XXX ] at ttt = eee3 +eee4, we have

E[Z] = E[X1X2eX3+X4 ]

= em3+m4+
1
2 (σ3

2+2c34+σ4
2)((m1 + c13 + c14)(m2 + c23 + c24)+ c12).

Evaluating E[X1
2X2

2ettt·XXX ] at ttt = 2eee3 +2eee4, we have

E[Z2] = E[X1
2X2

2e2X3+2X4 ]

= e2(m3+m4)+2(σ3
2+2c34+σ4

2)
[
(m1 +2c13 +2c14)

2(m2 +2c23 +2c24)
2

+σ2
2(m1 +2c13 +2c14)

2 +σ1
2(m2 +2c23 +2c24)

2

+4c12(m1 +2c13 +2c14)(m2 +2c23 +2c24)+2c12
2 +σ1

2
σ2

2].
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