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Abstract. The section 1 of this paper deals with the definition for a pseudo symmetric spacetime.
In section 2, it is proved that a (PZS)4 spacetime satisfying Codazzi type of Z-tensor does not
exist. In which condition a (PZS)4 spacetime can be a perfect fluid has been found as a necessary
and sufficient condition. After that, special properties are obtained if the (PZS)4 spacetime has
harmonic conformal curvature tensor.
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1. INTRODUCTION

Symmetric spaces have been studied because of their importance in differential
geometry. They are used in various brances of mathematics such as compact Lie
groups, Grassmannian and bounded symmetric fields. Every symmetric space has its
own special geometry such as Euclidean, elliptical and hyperbolic geometry, etc. The
initial study on symmetric spaces was made by E. Cartan, [11].

On the other hand, these fields have a lot in common properties, and they have
a beautiful theory. Symmetric spaces can be considered from many perspectives.
They can be viewed as Riemannian manifolds with point reflection or with parallel
curvature tensor or as a homogeneous space with a special isotropy or with special
holonomy or special Killing vector fields or a particular Lie group involution.

Let us assume that (M,g,∇) denotes an n-dimensional Riemannian manifold ad-
mitting the Levi-Civita connection ∇. If the curvature tensor R of this manifold sat-
isfies the condition ∇R = 0, then this manifold is named locally symmetric. This
condition is equivalent form to the fact that every point in P ∈ M is the isometry of
the local symmetry F(P), [21]. Because of the importance of the symmetric mani-
folds in differential geometry, many authors have studied some properties of them,
[12, 22, 27], etc. A pseudo symmetric spacetime is a four-dimensional time-oriented
© 2024 The Author(s). Published by Miskolc University Press. This is an open access article under the license CC
BY 4.0.

http://dx.doi.org/10.18514/MMN.2024.4254
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


190 S. A. DEMIRBAG, U. C. DE, AND F. O. ZENGIN

Lorentzian manifold if the curvature tensor satisfies the condition, [26]

Rhi jk,l = 2AlRhi jk +AhRli jk +AiRhl jk +A jRhilk +AkRhi jl (1.1)

such that Al is a non-zero 1-form, Rhi jk is the curvature tensor obeying the property
Rli jk = ghlRh

i jk, and the notation ”,” is the covariant derivative with respect to the
metric tensor g. These manifolds are indicated by (PS)n. In (1.1), for Al = 0, a pseudo
symmetric manifold is reduced to a symmetric manifold in the sense of Cartan.

(M,g) is called pseudo-Ricci symmetric (PRS)n manifold if its non-vanishing
Ricci tensor Ri j obeys the condition

Ri j,l = 2AlRi j +AiRl j +A jRil (1.2)

here Al is a non-vanishing 1-form. As a particular case, if we consider the condition
Ri j,k = 0 in (1.2) then this manifold is said to be Ricci symmetric.

In a Riemannian or a semi-Riemannian manifold of dimension n (n > 3), the con-
formal curvature tensor Ch

i jk of type (1,3) is given by the following form

Ch
i jk = Rh

i jk −
1

n−2

[
Rh

kgi j −Rh
jgik +Ri jδ

h
k −Rikδ

h
j

]
(1.3)

+
R

(n−1)(n−2)

[
gi jδ

h
k −gikδ

h
j

]
where Rh

i jk is the curvature tensor, Ri j is the Ricci tensor and R is the scalar curvature
of this manifold, [28].

Assume that M is a semi-Riemannian manifold of dimension n and the metric g
having the signature (p,q) such that p+ q = n. If we choose (p,q) = (1,n− 1) or
(n−1,1) then M is called a Lorentzian manifold, [21].

A generalized Robertson-Walker spacetime (GRW ) is an n-dimensional spacetime
(n ≥ 3) written as a warped product −I×ψ2M∗. Here, it is assumed that the warp-
ing function or scaling factor (ψ > 0) is a smooth function, M∗ is considered as a
Riemannian manifold with (n− 1) dimensional and an open interval of the real line
is denoted by I, [1,2]. If we consider M∗ as a three-dimensional Riemannian manifold
with constant curvature, then the the GRW spacetime reduces to a RW spacetime. Ex-
amples of special spaces contained in these GRW spacetimes are de Sitter space-time,
Einstein-de Sitter space-time, static Einstein space-time and Friedmann cosmological
models. These spaces have been studied in many papers. Some of them are [4, 25]
etc.

A perfect fluid is a four-dimensional spacetime whose non-vanishing Ricci tensor
Ri j is of the form

Ri j = αgi j +βAiA j (1.4)

assuming that α and β are smooth functions, g is the Lorentzian metric and Ai is
the velocity vector satisfying the conditions AiAi = −1 and Ai = gi jA j [12, 22, 27].
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We know that a RW spacetime is a perfect fluid spacetime [21] and also every four-
dimensional GRW spacetime is a perfect fluid spacetime if and only if it is a RW
spacetime. By using these results, some remarkable theorems are proved in [2–6, 8–
17]. The energy-momentum tensor (briefly EMT) in general relativity theory defines
the matter content. This content is considered a content that has dynamic and kin-
ematic quantities such as density, pressure and velocity, acceleration, vortex, shear
and expansion. It is known that a perfect fluid has no heat conduction terms and it
has no EMT related to viscosity.

In a perfect fluid spacetime, EMT is given as

Ti j = (σ+ p)AiA j + pgi j (1.5)

where σ is the energy density and p is the isotropic pressure of this spacetime, [21].
We know that the Einstein’s field equations with the cosmological constant Λ are

in the following form

Ri j −
R
2
+Λgi j = kTi j (1.6)

where k denotes the gravitational constant and Ti j is the energy momentum tensor
satisfying the relation (1.5). And the Einstein’s field equations (in short, EFE) without
cosmological constant are in the following form

Ri j −
R
2
= kTi j.

The dark energy in modern cosmology is considered as a candidate to accelerate the
expansion of the universe, and the σ and p as scalar functions are hypothetically
constrained by an equation of state that regulates the quality of the ideal fluid.

This is actually an equation of the form p = p(σ,T0), where T0 represents the
absolute temperature. To reduce the equation of state to p = p(σ), the condition that
T0 must be constant. The perfect fluid with this property is called as isentropic [5]. If
we choose as σ = p, then the perfect fluid is called as stiff matter, [7],[8], [9], [10],
[13], [15], [16],[17], [18], [19], [20], [21].

If the energy density σ and the isotropic pressure p of the fluid are related by
p = wσ, then w is said to be (EoS) parameter of the equation of state. (EoS) para-
meter plays an important role in examining the energy density and investigating the
expansion of the universe. Using this parameter, different phases of the universe can
be observed. The accelerating phase of the universe discussed in recent studies is
portrayed when we consider the condition w <−1

3 . If the conditions −1 < w < 0 and
w < −1 hold, then it includes the quintes sense phase and phantom regime, respect-
ively.

The vector U is called as K-compatible vector field (where K can be the Riemann,
the Weyl or a generalized tensor)(

UiKm
jkl +U jKm

kil +UkKm
i jl
)

Um = 0. (1.7)
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And, U is a vector field which is called Riemann or Weyl permutable if the following
relations hold

Rm
kl[iU j]Um = 0 or Cm

kl[iU j]Um = 0.

For a Riemannian manifold or a semi-Riemannian manifold, a vector field U is said
to be a torse-forming if it satisfies

∇XU = ρX +µ(X)U,

when X ∈ T M, µ(X) and ρ denote a linear form and a scalar function, respectively.
If we consider the local transcription, the above relation is written as

Ui, j = ρgi j +µ jUi (1.8)

here Ui and µi denote the covariant components of U and µ. Considering the equation
(1.8), if the vector field Ui satisfies the condition

Ui, j = ρgi j (1.9)

then Ui is said to be a concircular vector field, [8, 15].
A generalized symmetric tensor of type (0,2) called Z-tensor was defined by

Mantica and Molinari [16] in the form

Zi j = Ri j +ϕgi j, (1.10)

ϕ being a scalar function. The trace of this tensor shown by Z is a scalar function and
we have from (1.10)

Z = gi jZi j = R+nϕ. (1.11)

Taking ϕ =−R
n , we obtain the classical Z-tensor. The generalized Z-tensor is called

as the Z-tensor, shortly. When special cases of the Z-tensor are chosen, some well-
known structures of Riemannian manifolds are found. For example,

(i) if Zi j = 0 (i.e, Z-flat), then this manifold reduces to an Einstein manifold [10],
(ii) if Zi j = λlZi j (Z-recurrent), then this manifold reduces to a generalized Ricci

recurrent manifold, where Zi j ̸= 0,
(iii) if Zi j,l = Zil, j (Codazzi tensor), then we find,

Ri j,l −Ril, j =
1

2(n−1)
(gi jRl −gilR j).

This result defines the nearly conformal symmetric manifold (NCS)n, [23].
(iv) By using (1.6) and (1.10), the Z-tensor is related by EMT of EFE with the

cosmological constant Λ is in the form, [13]

Zi j = kTi j (1.12)
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where

ϕ =−1
2

R+Λ (1.13)

and k is the gravitional constant and ϕ denotes an arbitrary scalar function.
So, the Z-tensor may be considered as a generalized Einstein gravitational
tensor. If we take Z = 0 which means the vacuum solution then we get an
Einstein space with the condition Λ = (n−2

2n )R and the conservation of the
total EMT (T l

i,l = 0) gives Zi j,l = 0. Thus, this spacetime has the conserved
energy-momentum density.

These manifolds are studied in considerable details by many authors because of their
importance [19, 20], etc. In section 2, we will discuss the properties of pseudo Z-
symmetric spacetimes shown by (PZS)4.

2. PSEUDO Z-SYMMETRIC SPACETIMES

In this section, using (1.2), we consider four-dimensional pseudo Z symmetric
spacetime (PZS)4 satisfying the following condition

Zi j,l = 2AlZi j +AiZ jl +A jZil (2.1)

where Zi j is a symmetric tensor defined by (1.10), Ai is a non-null covector and it is
called the associated 1-form of this spacetime.

If the Z-tensor satisfies EFE without cosmological constant, from (1.13), we have

ϕ =−R
2
. (2.2)

Theorem 1. Let us consider a (PZS)4 spacetime. At a point P of this spacetime, if
the scalar function Z is non-zero, then the Ricci tensor is of eigenvector Ak with the
eigenvalue 5

6 R.

Proof. Assume that M be a (PZS)4 spacetime. If we multiply (2.1) by gil , then we
get

Zl
j,l = 3AmZm j +A jZ. (2.3)

On the other hand, differentiating the equation (1.10), it can be seen that

Zi j,l = Ri j,l +ϕlgi j. (2.4)

Now, multiplying (2.4) by gil , one can obtain that

Zl
j,l = Rl

j,l +ϕ j. (2.5)

If we put the Ricci identity Rl
j,l =

1
2 R j in (2.5), then we find

Zl
j,l =

1
2

R j +ϕ j. (2.6)
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With the help of the equation (2.2), (2.6) can be reduced to

Zl
j,l = 0. (2.7)

Hence, if we compare the equations (2.3) and (2.7), then we can see that

AmZm j =−Z
3

A j. (2.8)

From (1.11) and (2.2), the equation (2.8) reduces to

AmZm j =−2
3

ϕA j. (2.9)

By the aid of (1.10) and (2.9), we obtain

AmRm j =−5
3

ϕA j. (2.10)

Finally, from (2.2) and (2.10), we find

AmRm j =
5
6

RA j.

Thus, we complete the proof. □

Theorem 2. A (PZS)4 spacetime with Codazzi type Z-tensor does not exist.

Proof. If we assume that (PZS)4 spacetime is of Codazzi type, then we get from
(2.1)

AkZi j −A jZik = 0. (2.11)

Multiplying (2.11) by Ak and assuming that AkAk = ∥A∥2,

Zi j =
1

∥A∥2 ZikAkA j. (2.12)

Considering (2.9) in (2.12), we find

Zi j =− 2

3∥A∥2 ϕAiA j. (2.13)

If we use the equation (1.10), (2.13) can be written as

Ri j =− 2

3∥A∥2 ϕAiA j −ϕgi j. (2.14)

Multiplying (2.14) by gi j and using the equation (2.2), one can easily seen that

ϕ = 0.

From this result and the equation (2.14), we can say that Ri j = 0. Finally, we get from
(1.10), Zi j = 0. Hence, the proof is completed. □
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For a (PZS)4 spacetime, considering the equations (1.3) and (2.1), the conformal
curvature tensor is obtained as the following relation, [20]

Cm
i jl,m =

1
2

[
A jZil −

4Z
9

gilA j −AiZ jl +
4Z
9

g jlAi

]
. (2.15)

In this case, assuming that Cm
jkl,m = 0 in (2.15), then we also have the following

equation, [20]

Zi j =
4Z
9

gi j +
7Z
9

AiA j. (2.16)

Now, considering the equations (1.10), (1.11), (2.2) and (2.16), we can write the Ricci
tensor, [20]

Ri j = αgi j +βAiA j (2.17)

taking α = R
18 and β =−7R

9 in (1.4).

Theorem 3. A necessary and sufficient condition for a (PZS)4 spacetime to be a
perfect fluid is that the conformal curvature tensor is harmonic.

Proof. Assume that our spacetime is a (PZS)4 spacetime satisfying the property
Cm

jkl,m = 0. Then, this spacetime is quasi-Einstein, [18] and it satisfies the condition
(2.17). By using (2.2) and (2.17) in (1.10), we get

Zi j =−4
9

Rgi j −
7
9

RAiA j. (2.18)

Also, we have from (1.11) and (2.2)

Z =−R. (2.19)

By putting (2.18) and (2.19) in (2.15), we get Cm
i jl,m = 0. Hence, the proof is com-

pleted. □

Theorem 4 ([20, Theorem 3.3]). Let M be a (PZS)4 spacetime with the property
Cm

i jl,m = 0. If the condition AkAk < 0 holds, then EMT is of the perfect fluid form with
the properties

σ =
T
3
, p =

4T
9
. (2.20)

The condition Ri jAiA j > 0 is said to be timelike convergence condition for every
timelike vector field Ai and the Ricci tensor Ri j of type (0,2) of a spacetime, [24].

Theorem 5. If a (PZS)4 spacetime with harmonic conformal curvature tensor
admits the timelike vector field with the convergence condition, then this spacetime
obeys cosmic strong energy condition.
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Proof. Assume that (PZS)4 spacetime with harmonic conformal curvature tensor
admits the timelike convergence condition. Multiplying (2.17) by AiA j and using
AiAi =−1, we find

Ri jAiA j =−5
6

R. (2.21)

Since Ai is a timelike vector field and convergence condition Ri jAiA j > 0 holds in
(2.21) then we have R < 0. Now, if we multiply (1.12) by gi j, then we obtain

Z = kT. (2.22)

Hence, using (2.19) and (2.22), one can easily seen that

T =−R
k
. (2.23)

Remembering that the sign of R is negative and using (2.23), we have T > 0. In this
case, from (2.20)

σ > 0, p > 0. (2.24)

Finally, we get that σ+3p > 0. The inequality σ+3p > 0 shows that this spacetime
obeys cosmic strong energy condition, [5]. This result completes the proof. □

Theorem 6. A (PZS)4 spacetime with harmonic conformal curvature tensor con-
tains pure matter if this spacetime admits the timelike convergence condition.

Proof. From the timelike convergence condition, we say that a (PZS)4 spacetime
has the negative scalar curvature. Also, we know from (2.24), σ > 0. Then, we can
say that our spacetime under this consideration is of pure matter. □

Proposition 1 ([20, Propositon 5.10]). Let M be a (PZS)4 spacetime with the
property Cm

i jl,m = 0. Then the spacetime is a GRW-spacetime and we have

Ul,k = f (gkl +UkUl) (2.25)

assuming that f is a suitable scalar function and Uk is a concircular vector field.

Theorem 7. In a (PZS)4 spacetime admitting harmonic conformal curvature ten-
sor, the electric part of the conformal curvature tensor tensor is vanishing.

Proof. In a spacetime, the Weyl tensor is described by the symmetric and traceless
tensors Ei j and Hi j and they have 10 independent components. If we consider the
vector field Ai with the condition AiAi =−1 , the electric and magnetic parts for the
Weyl tensors are:

Ei j = AkAlCki jl, Hi j = AkAlC̃ki jl (2.26)

where C̃ki jl =
1
2 εkimnCmn

jl is the dual, [9]. Ei j and Hi j satisfy the conditions Ei jAi = 0
and Hi jAi = 0. Hence, each of them has 5 independent components and they com-
pletely describe the Weyl tensor.
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If a (PZS)4 spacetime obeys the property Cm
i jk,m = 0 then, from Proposition 1, [20],

this spacetime is a GRW-spacetime. Hence, we have from (2.25)

Ai, j = f (gi j +AiA j). (2.27)

This equation means that Ak is in the form (1.8). Taking the covariant derivative of
(2.27) and using the equation (2.27) again, we get

Ai, jk = fk(gi j +AiA j)+ f 2 [(gik +AiAk)A j +(g jk +A jAk)Ai
]

(2.28)

where fk = f,k. From [29], we have fk = µAk.
Interchanging the indices in (2.28), subtracting these two equations and assuming

the following equation

wk = fk − f 2Ak (2.29)

where µ is a scalar function, then we obtain from (2.28) and (2.29)

Ai, jk −Ai,k j = wkgi j −w jgik. (2.30)

The equation (2.30) reduces to

Rh
i jkAh = (µ− f 2)[gi jAk −gikA j]. (2.31)

With the help of (2.26), we can write

Ei j = Rki jlAkAl − 1
2
(
gi jRkl −gilRk j +gklRi j −gk jRil

)
AkAl (2.32)

+
R
6
(
gi jgkl −gilg jk

)
AkAl.

From (2.17), we have

Ri j =
R
18

gi j −
7R
9

AiA j. (2.33)

By using (2.32), we get

Ei j = Rki jlAkAl +
5R
18

(gi j +AiA j). (2.34)

Considering the equations (2.31) and (2.34), it can be found that

Ei j =

[
−(µ− f 2)+

5R
18

]
(gi j +AiA j). (2.35)

On the other hand, from (2.31), we have

RhkAh = 3(µ− f 2)Ak. (2.36)

Finally, by using (2.33), (2.36) reduces to

µ− f 2 =
5R
18

. (2.37)

In this case, with the help of (2.35) and (2.37), it can be found that the electric part
of the Weyl tensor is vanishing. Then, we complete the proof. □
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Theorem 8. A (PZS)4 spacetime obeying harmonic conformal curvature tensor
has a Riemannian compatible vector field.

Proof. Considering a (PZS)4 obeying harmonic conformal curvature tensor, us-
ing the equation (2.31) and the properties of the curvature tensor known as Rh

i jk =

ghmRmi jk, we find

Rmi jkAm = (µ− f 2) [gi jAk −gikA j] . (2.38)

In this case, considering the equation (2.38) and Rmi jk = Rk jim, we can write

(R jklmAm)Ai +(RkilmAm)A j +(Ri jlmAm)Ak = 0. (2.39)

Finally, from (2.39), we can write

(R jklmAi +RkilmA j +Ri jlmAk)Am = 0. (2.40)

Comparing the equations (1.7) and (2.40) gives that this spacetime has a Riemann
compatible vector field Ak. □

Theorem 9. In a (PZS)4 spacetime obeying harmonic conformal curvature tensor,
the magnetic part for the Weyl tensor is vanishing.

Proof. For a (PZS)4 spacetime admitting harmonic conformal curvature tensor, by
the aid of the equations (1.12) and (2.18), we have EMT in the form

Ti j = γgi j +ηAiA j

where γ =−4R
9k and η =−7R

9k .
We know that for a (PZS)4 spacetime, if the trace of Z-tensor is non-zero , then this

spacetime is Weyl compatible and it is of Weyl compatible EMT, [19]. In addition,
on a four-dimensional spacetime admitting a Weyl compatible EMT of the form Tjl =
αg jl +βA jAl , the magnetic part for the Weyl tensor is vanishing [19].

From the above results, we complete the proof. □

Theorem 10. A (PZS)4 spacetime obeying harmonic conformal curvature tensor
is conformally flat.

Proof. Theorem 7 and Theorem 9 accomplish the proof. □

Theorem 11. A (PZS)4 spacetime obeying harmonic conformal curvature tensor
is of Petrov type O.

Proof. The proof follows from the Theorem 10. □

Theorem 12. A (PZS)4 spacetime admitting harmonic conformal curvature tensor
is a warped product written as -I ×q2 M∗ such that M∗ is an 3-dimensional Einstein
manifold.
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Proof. Let us consider a (PZS)4 with the property Cm
i jl,m = 0. Then, this spacetime

is a GRW-spacetime, [20].
Since the GRW-spacetime has the proper concircular vector field, then it is the

necessary and sufficient condition that a coordinate system exists with respect to
which the fundamental quadratic differential form may be given in the following

ds2 =−(dx1)2 + eqg∗
αβ

dxαdxβ (2.41)

where (α,β = 2,3, . . . ,n) and q is a scalar function of x1 only, i.e.,
q = q(x1) ̸= const. The first fundamental form for a GRW-spacetime is the form as
in (2.41).

Since eq is a positive function for all q, from (2.41), this spacetime is a warped
product space written by

g =−dt2 ⊕ f 2(t)g∗

here we assume that g∗ is the metric tensor of an 3-dimensional Riemannian manifold
M∗ and f is a smooth function defined by f : I → (0,∞) on M∗. The warped product
is conformally conservative if and only if M∗ is an Einstein manifold, [14]. Hence,
the proof is completed. □

Theorem 13. In a (PZS)4 spacetime admitting harmonic conformal curvature
tensor, the metric of this spacetime is conformal to a RW-spacetime.

Proof. From Theorem 12, a (PZS)4 spacetime admitting harmonic curvature ten-
sor is a warped product spacetime. The warped product is conformally conservative
if and only if M∗ is an Einstein manifold, [14].

For a warped product spacetime if g∗ is a 3-dimensional Riemannian manifold
admitting constant curvature, then we get the manifold (M4,g) and this manifold is
called a RW-spacetime. Thus, this result completes the proof. □

Theorem 14. A (PZS)4 spacetime obeying harmonic conformal curvature tensor
is a subprojective space.

Proof. Assume that (PZS)4 obeys harmonic curvature tensor. Thus, from The-
orem 10, our spacetime is conformally flat. Since the associated covector Ak is a
timelike vector field, then this space is subprojective, [20]. From this result, we com-
plete the proof. □

Theorem 15. In a (PZS)4 spacetime obeying harmonic conformal curvature ten-
sor, the flow is geodesic, irrotational and has no shear.

Proof. From [6], it is known that a four-dimensional perfect fluid spacetime ad-
mitting an equation of state given by p = p(σ) and divergence-free Weyl conformal
curvature tensor is conformally flat, and this spacetime is endowed with the RW met-
ric. Also, the flow is irrotational, geodesic and it has no shear, [6]. From Theorem 4
and the equation (1.5), we complete the proof. □
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Theorem 16. For a perfect fluid (PZS)4 spacetime, if the conditions σ = T
3 and

p = 4T
9 are satisfied, then the following facts hold for this spacetime:

It is

(1) conformally flat and also Petrov type O.
(2) a GRW-spacetime and also a RW-spacetime.
(3) a subprojective spacetime.

Proof. We know from [20, Propopositon 3.6], that in a perfect fluid (PZS)4 space-
time, if the conditions σ = T

3 and p = 4T
9 are satisfied, then Cm

i jl,m = 0 on any coordin-
ate domain of (PZS)4. Also, we know from [20], [Prop.5.10] that if an n-dimensional
(n ≥ 4) spacetime satisfies the property Cm

i jl,m = 0, then this spacetime is a GRW-
spacetime.

From these results and by using Theorem 10, Theorem 11, Theorem 13 and The-
orem 14, the proof is clear. □
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[27] G. Soos, “Über die geodátischen abbildungen von Riemanschen ráumen and projectiv-
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