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Abstract. In this paper, we consider norm convergence for a special matrix-based de la Vallée
Poussin-like mean of Fourier series for the Walsh system. We estimate the difference between
the named mean above and the corresponding function in norm, and the upper estimation is given
by the modulus of continuity of the function.
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1. DEFINITIONS AND NOTATIONS

We follow the standard notions of dyadic analysis introduced by F. Schipp, W. R.
Wade, P. Simon, and J. Pál [17] and others.

Let P be the set of positive natural numbers and N := P∪{0}. Let denote by Z2
the discrete cyclic group of order 2, the group operation is the modulo 2 addition. Let
be every subset open. The normalized Haar measure µ on Z2 is given in the way that
µ({0}) := µ({1}) := 1/2. G :=

∞

×
k=0

Z2, G is called the Walsh group. The elements of

Walsh group G are sequences of numbers 0 and 1, that is x = (x0,x1, . . . ,xk, . . .) with
xk ∈ {0,1} (k ∈ N).

The group operation on G is the coordinate-wise addition (denoted by +), the
normalized Haar measure µ is the product measure and the topology is the product
topology. Dyadic intervals are defined in the usual way

I0(x) := G, In(x) := {y ∈ G : y = (x0, . . . ,xn−1,yn,yn+1, . . .)}
for x ∈ G,n ∈ P. They form a base for the neighbourhoods of G. Let 0 := (0 : i ∈
N) ∈ G denote the null element of G and In := In(0) for n ∈ N.

Let Lp(G) denote the usual Lebesgue spaces on G (with the corresponding norm
‖.‖p), where 1≤ p < ∞.

For the sake of brevity in notation, we agree to write L∞(G) instead of C(G) and
set ‖ f‖∞ := sup{| f (x)| : x ∈ G}. Of course, it is clear that the space L∞(G) is not the
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same as the space of continuous functions, i.e. it is a proper subspace of it. But since
in the case of continuous functions the supremum norm and the L∞(G) norm are the
same, for convenience we hope the reader will be able to tolerate this simplification
in notation.

Next, we define the modulus of continuity in Lp(G),1 ≤ p ≤ ∞, of a function
f ∈ Lp(G) by

ωp( f ,δ) := sup
|t|<δ

‖ f (.+ t)− f (.)‖p, δ > 0,

with the notation

|x| :=
∞

∑
i=0

xi

2i+1 for all x ∈ G.

The Lipschitz classes in Lp(G) (for each α > 0) are defined as

Lip(α, p,G) := { f ∈ Lp(G) : ωp( f ,δ) = O(δα) as δ→ 0}.

We introduce some concepts of Walsh-Fourier analysis. The Rademacher func-
tions are defined as

rk(x) := (−1)xk (x ∈ G,k ∈ N).

The Walsh-Paley functions are the product functions of the Rademacher functions.
Namely, each natural number n can be uniquely expressed in the number system
based 2, in the form

n =
∞

∑
k=0

nk2k, nk ∈ {0,1} (k ∈ N),

where only a finite number of nk’s different from zero. Let the order of n ∈ P be
denoted by |n| := max{ j ∈ N : n j 6= 0}. Walsh-Paley functions are w0 := 1 and for
n ∈ P

wn(x) :=
∞

∏
k=0

rnk
k (x) = (−1)∑

|n|
k=0 nkxk .

Let Pn be the collection of Walsh polynomials of order less than n, that is, functions
of the form

P(x) =
n−1

∑
k=0

akwk(x),

where n ∈ P and {ak} is a sequence of complex numbers.
It is known [10] that the system (wn,n ∈N) is the character system of (G,+). The

nth Fourier-coefficient, the nth partial sum of the Fourier series and the nth Dirichlet
kernel is defined by

f̂ (n) :=
∫

G
f wndµ, Sn( f ) :=

n−1

∑
k=0

f̂ (k)wk, Dn :=
n−1

∑
k=0

wk, D0 := 0.
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Fejér kernels are defined as the arithmetical means of Dirichlet kernels, that is,

Kn :=
1
n

n

∑
k=1

Dk.

Let T := (ti, j)
∞

i, j=1 be a doubly infinite matrix of numbers. It is always supposed
that matrix T is upper triangular.

Let us define the (m,n)th matrix transform de La Vallée Poussin mean determined
by the matrix T as

σ
T
m,n( f ) :=

n

∑
k=m

tk,nSk( f ),

where m,n ∈ P and m≤ n.
The (m,n)th matrix transform de La Vallée Poussin kernel is defined as

KT
m,n :=

n

∑
k=m

tk,nDk.

It is very easy to verify that

σ
T
m,n( f ;x) =

∫
G

f (u)KT
m,n(u+ x)dµ(u).

We introduce the notation ∆tk,n := tk,n−tk+1,n, where k∈ {1, . . . ,n} and tn+1,n := 0.

2. HISTORICAL OVERVIEW

Matrix transform means are common generalizations of several well-known sum-
mation methods. It follows by simple consideration that the Nörlund means, the
Fejér (or the (C,1)) and the (C,α) means are special cases of the matrix transform
summation method introduced above.

Our paper is motivated by the work of Móricz, Siddiqi [14] on the Walsh-Nörlund
summation method and the result of Móricz and Rhoades [13] on the Walsh weighted
mean method. As special cases, Móricz and Siddiqi obtained the earlier results given
by Yano [23], Jastrebova [11] and Skvortsov [19] on the rate of the approximation by
Cesàro means. The approximation properties of the Walsh-Cesàro means of negative
order were studied by Goginava [9], the Vilenkin case was investigated by Shav-
ardenidze [18] and Tepnadze [20]. A common generalization of these two results of
Móricz and Siddiqi [14] and Móricz and Rhoades [13] was given by Nagy and the
author [2].

In 2008, Fridli, Manchanda and Siddiqi generalized the result of Móricz and Sid-
diqi for homogeneous Banach spaces and dyadic Hardy spaces [8]. Recently, the
author, Baramidze, Memić, Nagy, Persson, Tephnadze and Wall presented some res-
ults with respect to this topic [1],[3], [5],[12]. See [7, 22], as well. For the two-
dimensional results see [4, 15, 16].

It is important to note that in the paper of Chripkó [6] some methods and results
with respect to Jacobi-Fourier series gave us some ideas and used in this paper.
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3. AUXILIARY RESULTS

To prove Theorem 1 we need the following Lemmas.

Lemma 1 (Paley’s Lemma [17], p. 7.). For n ∈ N

D2n(x) =

{
2n, if x ∈ In,

0, if x /∈ In.

Lemma 2 ([17], p. 34.). For j,n ∈ N, j < 2n we have

D2n+ j = D2n + rnD j.

Lemma 3 (Yano’s Lemma [24]). The norm of the Fejér kernel is bounded uni-
formly. That is, for all n ∈ P

‖Kn‖1 ≤ 2.

In 2018, Toledo improved this result.

Lemma 4. [21]

sup
n∈P
‖Kn‖1 =

17
15

.

Lemma 5. [14] Let n ∈ P, g ∈ P2n , f ∈ Lp(G) (1≤ p≤ ∞). Then∥∥∥∥∫G
rn(t)g(t)( f (·+ t)− f (·))dµ(t)

∥∥∥∥
p
≤ 1

2
‖g‖1ωp

(
f ,2−n)

holds.

In the next lemma, we give a decomposition of the kernels KT
2n,2n+1−1.

Lemma 6. Let n be a positive integer, then we have

KT
2n,2n+1−1 =

2n−1

∑
k=0

t2n+k,2n+1−1D2n + rn

2n−2

∑
k=1

∆t2n+k,2n+1−1kKk

+ rnt2n+1−1,2n+1−1(2
n−1)K2n−1 =:

3

∑
j=1

K j,n.

Proof. We write

KT
2n,2n+1−1 =

2n+1−1

∑
l=2n

tl,2n+1−1Dl.

Now, we apply Lemma 2. We get

2n+1−1

∑
l=2n

tl,2n+1−1Dl =
2n−1

∑
k=0

t2n+k,2n+1−1D2n+k
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=
2n−1

∑
k=0

t2n+k,2n+1−1D2n + rn

2n−1

∑
k=1

t2n+k,2n+1−1Dk.

Using Abel-transform
2n−1

∑
k=1

t2n+k,2n+1−1Dk =
2n−2

∑
k=1

∆t2n+k,2n+1−1kKk

+ t2n+1−1,2n+1−1(2
n−1)K2n−1.

Summarizing these it completes the proof of Lemma 6. �

4. THE RATE OF THE APPROXIMATION

Theorem 1. Let f ∈ Lp(G) (1 ≤ p ≤ ∞). For every n ∈ P, {tk,2n+1−1 : 2n ≤ k ≤
2n+1−1} be a finite sequence of non-negative numbers such that

2n+1−1

∑
k=2n

tk,2n+1−1 = 1 (4.1)

be satisfied.
a) If the finite sequence {tk,2n+1−1 : 2n ≤ k≤ 2n+1−1} is non-decreasing for a fixed

n and

t2n+1−1,2n+1−1 = O
(

1
2n+1−1

)
, (4.2)

or
b) if the finite sequence {tk,2n+1−1 : 2n ≤ k≤ 2n+1−1} is non-increasing for a fixed

n, then ∥∥∥σ
T
2n,2n+1−1( f )− f

∥∥∥
p
≤ cωp

(
f ,2−n)

holds.

Proof of Theorem 1. The proof is carried out in cases where 1≤ p < ∞, while the
proof of case p = ∞ is similar. Recall that by the case p = ∞ we mean that we are
considering the space of continuous functions.

During our proofs c denotes a positive constant, which may vary at different ap-
pearances.

We use condition (4.1), the usual Minkowski inequality and Lemma 6∥∥∥σ
T
2n,2n+1−1( f )− f

∥∥∥
p
=

(∫
G
|σT

2n,2n+1−1( f ;x)− f (x)|pdµ(x)
) 1

p

=

(∫
G

∣∣∣∣∫G
KT

2n,2n+1−1(u)F(x,u)dµ(u)
∣∣∣∣p dµ(x)

) 1
p

≤
3

∑
j=1

(∫
G

∣∣∣∣∫G
K j,n(u)F(x,u)dµ(u)

∣∣∣∣p dµ(x)
) 1

p

=:
3

∑
j=1

I j,n
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with notation F(x,u) := f (x+u)− f (x).
Using generalized Minkowski inequality, Lemma 1 and condition (4.1) for the

expressions I1,n, we obtain

I1,n ≤
2n−1

∑
k=0

t2n+k,2n+1−1

∫
G

D2n(u)
(∫

G
|F(x,u)|p dµ(x)

) 1
p

dµ(u)

≤
2n+1−1

∑
k=2n

tk,2n+1−1ωp
(

f ,2−n)= ωp
(

f ,2−n) .
Now, applying Lemma 4 and Lemma 5 we get

I2,n ≤
2n−2

∑
k=1

∣∣∆t2n+k,2n+1−1
∣∣k

×
(∫

G

∣∣∣∣∫G
rn(u)Kk(u)F(x,u)dµ(u)

∣∣∣∣p dµ(x)
) 1

p

≤
2n−2

∑
k=1

∣∣∆t2n+k,2n+1−1
∣∣k 1

2
‖Kk‖1ωp

(
f ,2−n)≤ 2n−2

∑
k=1

∣∣∆t2n+k,2n+1−1
∣∣kωp

(
f ,2−n) .

We write in case a)

2n−2

∑
k=1
|∆t2n+k,2n+1−1|k =

2n−2

∑
k=1

(t2n+k+1,2n+1−1− t2n+k,2n+1−1)k

= (2n−2)t2n+1−1,2n+1−1−
2n−2

∑
k=1

t2n+k,2n+1−1

≤ (2n+1−1)t2n+1−1,2n+1−1

and using condition (4.2)

I2,n ≤ (2n+1−1)t2n+1−1,2n+1−1ωp
(

f ,2−n)≤ cωp
(

f ,2−n) .
We estimate the expression I3,n in case a). Lemma 4, Lemma 5 and condition (4.2)

yield

I3,n ≤ (2n−1)t2n+1−1,2n+1−1

×
(∫

G

∣∣∣∣∫G
rn(u)K2n−1(u)F(x,u)dµ(u)

∣∣∣∣p dµ(x)
) 1

p

≤ (2n+1−1)t2n+1−1,2n+1−1
1
2
‖K2n−1‖1ωp

(
f ,2−n)

≤ (2n+1−1)t2n+1−1,2n+1−1ωp
(

f ,2−n)≤ cωp
(

f ,2−n) .
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In case b) we estimate I2,n + I3,n. In this situation
2n−2

∑
k=1

∣∣∆t2n+k,2n+1−1
∣∣k = 2n−2

∑
k=1

t2n+k,2n+1−1− (2n−2)t2n+1−1,2n+1−1,

so Lemma 4, Lemma 5 and condition (4.1) imply

I2,n + I3,n ≤
2n−2

∑
k=1

∣∣∆t2n+k,2n+1−1
∣∣k

×
(∫

G

∣∣∣∣∫G
rn(u)Kk(u)F(x,u)dµ(u)

∣∣∣∣p dµ(x)
) 1

p

+(2n−1)t2n+1−1,2n+1−1×

×
(∫

G

∣∣∣∣∫G
rn(u)K2n−1(u)F(x,u)dµ(u)

∣∣∣∣p dµ(x)
) 1

p

≤

(
2n−2

∑
k=1

t2n+k,2n+1−1 +(2n−1)t2n+1−1,2n+1−1− (2n−2)t2n+1−1,2n+1−1

)

× 1
2
· 17

15
ωp
(

f ,2−n)= 2n−1

∑
k=1

t2n+k,2n+1−1
17
30

ωp
(

f ,2−n)
≤ 17

30
ωp
(

f ,2−n) .
This completes the proof of our Theorem 1. �

Remark 1. We mention, that assuming (4.1) is natural, because many well-known
means satisfy it and this equality is a part of regularity conditions [25, page 74.].

Corollary 1. Let us suppose that the conditions in Theorem 1 are satisfied. If
f ∈ Lip(α, p,G), then

‖σ2n,2n+1−1( f )− f‖p = O
(
2−nα

)
.

Remark 2. In case b) we can formulate the statement of Theorem 1 in following
form ∥∥∥σ

T
2n,2n+1−1( f )− f

∥∥∥
p
≤ 47

30
ωp
(

f ,2−n) .
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1220 ISTVÁN BLAHOTA

[4] I. Blahota, K. Nagy, and G. Tephnadze, “Approximation by Marcinkiewicz Θ-means of double
Walsh-Fourier series,” Math. Inequal. Appl., vol. 22, no. 3, pp. 837–853, 2019, doi: 10.7153/mia-
2019-22-58.

[5] I. Blahota and G. Tephnadze, “A note on maximal operators of Vilenkin-Nörlund means,” Acta
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