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Abstract. In this paper, we study the following two-dimesional system of difference equations

xn =
xn−4yn−5xn−6

yn−1xn−2 (a+byn−3xn−4yn−5xn−6)
, yn =

yn−4xn−5yn−6

xn−1yn−2 (c+dxn−3yn−4xn−5yn−6)
, n ∈ N0,

where the parameters a,b,c,d and the initial values x−i,y−i, i∈ {1,2,3,4,5,6}, are real numbers.
We show that some subclasses of nonlinear two-dimensional system of difference equations are
solvable in closed form. We also describe the forbidden set of solutions of the system of differ-
ence equations. Some numerical examples are given to demonstrate the theoretical results.
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1. INTRODUCTION AND PRELIMINARIES

Difference equations and systems of difference equations usually state the nat-
ural models of discrete processes, containing non-linear difference equations such
as rational difference equations, Riccati difference equations, exponential difference
equations. They play a key role in numerous applications in applied sciences such
as Genetics, Biomathematics, Population Dynamics, Bioengineering, Biology and
other sciences. So, there has been a lot of interest in difference equations which can
be solved in explicit form or closed form (see, [1–4, 13, 14, 17, 19, 20, 23, 24, 36, 40–
42, 44]) as well as in difference equations systems (see, e.g. [6–9, 11, 16, 21, 25–28,
30–35, 37–39, 45, 46, 48–50]). For example, the difference equations

xn+1 =
xn−3xn−4

xn (±1± xn−1xn−2xn−3xn−4)
, n ∈ N0, (1.1)

where the initial conditions are arbitrary real numbers, were studied in [12]. In addi-
tion, they investigated the behavior of the solutions of equations in (1.1).

The authors of [43] studied the periodicity and the solutions of the following sys-
tems of difference equations

xn+1 =
ynxn−1

±xn−1± yn
, yn+1 =

xnyn−1

±yn−1± xn
, n ∈ N0,
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where the initial conditions are non-zero real numbers.
The existence, uniqueness and attractivity of prime period two solutions of the

following difference equation

xn+1 = a+bxn−1e−xn , n ∈ N0,

where a, b are positive constants and the initial values x−1, x0 are positive numbers,
was studied in [15].

Recently, Yazlik and Gungor solved the following non-linear difference equation

xn =
xn−4xn−5xn−6

xn−1xn−2 (a+bxn−3xn−4xn−5xn−6)
, n ∈ N0, (1.2)

in closed form. Also, the asymptotic behavior of well-defined solution of equation
(1.2) was obtained in [47].

In [22], Ibrahim gave the solutions of the rational difference equation

xn+1 =
xnxn−2

xn−1 (a+bxnxn−2)
, n ∈ N0, (1.3)

where initial values x0, x−1, x−2 are non-negative real numbers with bx0x−2 6= −a
and x−1 6= 0. In addition, he investigated some properties for difference equation
(1.3) such as the local stability and the boundedness for the solutions.

Alzubaidi et al. [5] presented the solutions of the following recursive sequences

xn+1 =
xn−2xn−3

xn (±1± xn−2xn−3)
, n ∈ N0, (1.4)

where the initial conditions x−3, x−2, x−1 and x0 are arbitrary real numbers. Also,
they studied some dynamic behavior of equations in (1.4).

El-Dessoky et al. dealt with the existence of solutions and the periodicity character
of the following systems of rational difference equations

xn+1 =
xnyn−3

yn−2 (±1± xnyn−3)
, yn+1 =

ynxn−3

xn−2 (±1± ynxn−3)
, n ∈ N0,

with initial conditions are non-zero real numbers in [10].
In [29], Kara et al. showed that the following system of difference equations

xn =
xn−2yn−3

yn−1 (an +bnxn−2yn−3)
, yn =

yn−2xn−3

xn−1 (αn +βnyn−2xn−3)
, n ∈ N0, (1.5)

where the sequences ∀n ∈ N0, (an), (bn), (αn), (βn) and the initial values x− j, y− j,
j ∈ {1,2,3} are non-zero real numbers, could be solved in the closed form. Further,
they investigated the asymptotic behavior and periodicity of solutions of system (1.5)
for the case when all the sequences (an), (bn), (αn), (βn) are constant.

Also, Halim et al. [18] gave a representation formula for the general solutions to
the following two-dimensional system of difference equations

xn+1 =
yn−1xn−2

yn (a+byn−1xn−2)
, yn+1 =

xn−1yn−2

xn (a+bxn−1yn−2)
, n ∈ N0,
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where parameters a, b and initial values x−2, x−1, x0, y−2, y−1, y0 are real numbers.
In addition, they gave some theoretical explanations related to the representation.

Motivated by the above papers we will expand the difference equation (1.2) to
following system of difference equations

xn =
xn−4yn−5xn−6

yn−1xn−2 (a+byn−3xn−4yn−5xn−6)
, (1.6)

yn =
yn−4xn−5yn−6

xn−1yn−2 (c+dxn−3yn−4xn−5yn−6)
,

for n ∈ N0, where the parameters a,b and the initial values x−i, i ∈ {1,2,3,4,5,6},
are real numbers. Our aim here is to show that system (1.6) is solvable in closed
form by using the method of transformation. The forbidden set of initial values for
solutions of system (1.6) is also described. Some numerical examples are given to
demonstrate the theoretical results.

Definition 1. A solution (xn,yn)n≥−6 of system (1.6) is called eventually periodic
with period p if there exist n0 ≥−6 such that xn+p = xn and yn+p = yn for all n≥ n0.
If n0 = −6, then the solution (xn,yn)n≥−6 of system (1.6) is said to be periodic with
period p.

2. SOLUTIONS OF THE SYSTEM (1.6) IN CLOSED FORM

In this section is studied solvability of system (1.6) and our main results are proved,
also some applicateions are given. We will deal only with well-defined solutions to
system of difference equations. Hence, we assume that

xn 6= 0, yn 6= 0, n≥−6,

and

a+byn−3xn−4yn−5xn−6 6= 0, c+dxn−3yn−4xn−5yn−6 6= 0, n ∈ N0.

It is clear that if x− j = 0 or y− j = 0, for some j ∈ {1,2}, then x0 or y0 is not defined.
Similarly, if x−3 = 0 or y−3 = 0, then x1 = 0 or y1 = 0 and y2 or x2 is not defined,
respectively, while if x−l = 0 or y−l = 0, for some l ∈ {4,5,6}, then x0 = 0 or y0 = 0
so that x1 or y1 is not defined. On the other hand, we suppose that xn0 = 0 for some
n0 ∈N0 and xn 6= 0, for every n < n0, then from system (1.6), it follows that xn0−4 = 0
or yn0−5 = 0, which is impossible. Thus, the set{

~S : x−i = 0 or y−i = 0, i ∈ {1,2,3,4,5,6}
}

is a subset of forbidden set of solutions of the initial values for system (1.6). Hence,
for well-defined solutions of system (1.6), (xn,yn)n≥−6, we have that

xnyn 6= 0, n≥−6, (2.1)

if and only if x− jy− j 6= 0, j ∈ {1,2,3,4,5,6}. After this, we assume that (xn,yn)n≥−6
is a solution of system (1.6) with holding the condition (2.1). Now, we will investigate



1408 D. KARAKAYA, Y. YAZLIK, AND M. KARA

the solutions in 10 different cases depending on whether the parameters are zero or
nonzero.

Case 1: Let a = c = 0, bd 6= 0. In this case, system (1.6) is equivalent to the
system

xn =
1

byn−1xn−2yn−3
, yn =

1
dxn−1yn−2xn−3

, n ∈ N0. (2.2)

Multiplying the first equation in system (2.2) by yn−1, for all n ∈ N0 and the
second by xn−1, for all n ∈ N0, it follows that

xnyn−1 =
1

bxn−2yn−3
, ynxn−1 =

1
dyn−2xn−3

, n ∈ N0.

Now, we may use the change of variables

kn = xnyn−1, k̂n = ynxn−1, n≥−2,

and transform (2.2) into the following equations

kn =
1

bkn−2
= kn−4, k̂n =

1

dk̂n−2
= k̂n−4, n≥ 2,

which means that (kn)n≥−2 and
(

k̂n

)
n≥−2

are four-periodic, that is,

k4n+i = ki, k̂4n+i = k̂i,

where n ∈ N0, i ∈ {−2,−1,0,1}, from which along with the substitutions
kn = xnyn−1, k̂n = ynxn−1, it follows that

x4n+i =
d
b

x4(n−1)+i, y4n+i =
b
d

y4(n−1)+i,

for every n ∈ N0, i ∈ {−2,−1,0,1}, and we get

x4n+i =

(
d
b

)n

xi, y4n+i =

(
b
d

)n

yi, (2.3)

for every n ∈ N0, i ∈ {−2,−1,0,1}.
Case 2: Let b = d = 0, ac 6= 0. In this case, system (1.6) is written as in the

form

xn =
xn−4yn−5xn−6

ayn−1xn−2
, yn =

yn−4xn−5yn−6

cxn−1yn−2
, n ∈ N0. (2.4)

Multiplying the first equation in system (2.4) by yn−1xn−2, for all n ∈N0 and
the second by xn−1yn−2, for all n ∈ N0, it follows that

xnyn−1xn−2 =
xn−4yn−5xn−6

a
, ynxn−1yn−2 =

yn−4xn−5yn−6

c
, n ∈ N0. (2.5)
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By change the change of variables

wn = xnyn−1xn−2, ŵn = ynxn−1yn−2, n≥−4,

system (2.5) becomes

wn =
1
a

wn−4, ŵn =
1
c

ŵn−4, n ∈ N0. (2.6)

From (2.6), we see that the sequences (w4m+i)m≥−1 and (ŵ4m+i)m≥−1, for i ∈
{0,1,2,3}, are the solutions of the homogeneous linear first-order difference
equation with constant coefficients, respectively,

sm =
1
a

sm−1, ŝn =
1
c

ŝn−1, m ∈ N0.

From which it follows that

sm =

(
1
a

)m+1

s−1, ŝn =

(
1
c

)m+1

ŝ−1, m ∈ N0,

and consequently we have

w4m+i =

(
1
a

)m+1

wi−4, ŵ4m+i =

(
1
c

)m+1

ŵi−4, m ∈ N0, (2.7)

for i ∈ {0,1,2,3}. From (2.6), we easily get

xn =
wnŵn−3

ŵn−1wn−4
xn−6, yn =

ŵnwn−3

wn−1ŵn−4
yn−6, n ∈ N0,

from which along with the solutions in (2.7), we obtain the general solutions
of system (2.4)

x12m+4r+s = x4r+s−12

m

∏
j=0

(
w4(3 j+r)+sŵ4(3 j+r)+s−3

ŵ4(3 j+r)+s−1w4(3 j+r−1)+s

w4(3 j+r−1)+s−2ŵ4(3 j+r−2)+s−1

ŵ4(3 j+r−1)+s−3w4(3 j+r−2)+s−2

)
,

and

y12m+4r+s = y4r+s−12

m

∏
j=0

(
ŵ4(3 j+r)+sw4(3 j+r)+s−3

w4(3 j+r)+s−1ŵ4(3 j+r−1)+s
,

ŵ4(3 j+r−1)+s−2w4(3 j+r−2)+s−1

w4(3 j+r−1)+s−3ŵ4(3 j+r−2)+s−2

)
,

for every m ∈ N0, r ∈ {1,2,3} and s ∈ {2,3,4,5}, from which along with
(2.7) it follows that

x12m+4r+s = x4r+s−12

( c
a2

)m+1
, y12m+4r+s = y4r+s−12

( a
c2

)m+1
, (2.8)

for every m ∈ N0, r ∈ {1,2,3} and s ∈ {2,3,4,5}.
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Case 3: Let a = d = 0, bc 6= 0. In this case, system (1.6) is expressed as

xn =
1

byn−1xn−2yn−3
, yn =

yn−4xn−5yn−6

cxn−1yn−2
, n ∈ N0. (2.9)

Multiplying the first equation in system (2.9) by yn−1xn−2yn−3, for all n ∈N0
and the second by xn−1yn−2xn−3, for all n ∈ N0, it follows that

xnyn−1xn−2yn−3 =
1
b
, ynxn−1yn−2xn−3 =

xn−3yn−4xn−5yn−6

c
, n ∈ N0. (2.10)

By using the change of variables

rn = xnyn−1xn−2yn−3, r̂n = ynxn−1yn−2xn−3, n ∈ N0, (2.11)

system (2.10) becomes{
rn =

1
b , n ∈ N0,

r̂n =
rn−3

c = 1
bc , n≥ 3.

(2.12)

From (2.11), we easily obtain

xn =
rn

yn−1xn−2yn−3
=

rn

r̂n−1
xn−4, yn =

r̂n

xn−1yn−2xn−3
=

r̂n

rn−1
yn−4, n≥ 1,

from which along with (2.12), we get the general solutions of system (2.9)

x4n+i = cnxi, y4n+i =

(
1
c

)n

yi, (2.13)

for every n ∈ N0 and i ∈ {0,1,2,3}.
Case 4: Let b = c = 0, ad 6= 0. In this case, we obtain the system

xn =
xn−4yn−5xn−6

ayn−1xn−2
, yn =

1
dxn−1yn−2xn−3

, n ∈ N0. (2.14)

By interchanging variables xn, yn and d instead of b and a instead of c, system
(2.9) is transformed into (2.14). So, by interchanging x− j and y− j, for j ∈
{1,2,3,4,5,6}, the formula in (2.13) is transformed into the formula

x4n+i =

(
1
a

)n

xi, y4n+i = anyi, (2.15)

for every n ∈ N0 and i ∈ {0,1,2,3}.
Case 5: Let a = 0, bcd 6= 0. In this case, system (1.6) becomes

xn =
1

byn−1xn−2yn−3
, yn =

yn−4xn−5yn−6

xn−1yn−2 (c+dxn−3yn−4xn−5yn−6)
, n ∈ N0. (2.16)

Multiplying the first equation in system (2.16) by yn−1xn−2yn−3, for all n∈N0
and the second by xn−1yn−2xn−3, for all n ∈ N0, it follows that

xnyn−1xn−2yn−3 =
1
b
, n ∈ N0,
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ynxn−1yn−2xn−3 =
xn−3yn−4xn−5yn−6

c+dxn−3yn−4xn−5yn−6
, n ∈ N0. (2.17)

By using the first equation of (2.17) in the second one, we get that

xnyn−1xn−2yn−3 =
1
b
, n ∈ N0,

ynxn−1yn−2xn−3 =
1

bc+d
, n ∈ N0,

from which it follows that

x4n+i =

(
bc+d

b

)n

xi, y4n+i1 =

(
b

bc+d

)n

yi1 , (2.18)

where n ∈ N, i ∈ {0,1,2,3} and i1 ∈ {−1,0,1,2}.
Case 6: Let b = 0, acd 6= 0. In this case, system (1.6) is expressed as

xn =
xn−4yn−5xn−6

ayn−1xn−2
, yn =

yn−4xn−5yn−6

xn−1yn−2 (c+dxn−3yn−4xn−5yn−6)
, n ∈ N0. (2.19)

Multiplying the first equation in system (2.19) by yn−1xn−2yn−3, for all n∈N0
and the second by xn−1yn−2xn−3, for all n ∈ N0, it follows that

xnyn−1xn−2yn−3 =
1
a

yn−3xn−4yn−5xn−6, n ∈ N0,

ynxn−1yn−2xn−3 =
xn−3yn−4xn−5yn−6

c+dxn−3yn−4xn−5yn−6
, n ∈ N0. (2.20)

By using the first equation of (2.20) in the second one, we get that

ynxn−1yn−2xn−3 =
yn−6xn−7yn−8xn−9

ac+dyn−6xn−7yn−8xn−9
, n≥ 3. (2.21)

By employing the substitution ynxn−1yn−2xn−3 = 1
sn

, n ≥ −3, to (2.21), we
obtain the linear six-order equation

sn = acsn−6 +d, n≥ 3, (2.22)

from which it easily follows that

s6n+i2 =
d +(ac)n ((1−ac)si2−d)

1−ac
, n ∈ N0, (2.23)

if ac 6= 1, and
s6n+i2 = si2 +dn, n ∈ N0, (2.24)

if ac = 1, where i2 ∈ {−3,−2,−1,0,1,2}. The equalities in (2.23) and
(2.24) are formulas for the general solution of (2.22). From the substitution
ynxn−1yn−2xn−3 = 1

sn
, for n ≥ −3, and xnyn−1xn−2yn−3 = 1

asn−3
, for n ∈ N0,

we get

xn =
sn−1sn−5sn−9

a3sn−3sn−7sn−11
xn−12, n≥ 8,
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yn =
a3sn−12

sn
yn−12, n≥ 9,

from which it follows that

x12m+6r1+i1 = x6r1+i1−12
1

a3m+3

m

∏
j=0

s12 j+6r1+i1−1s12 j+6r1+i1−5s12 j+6r1+i1−9

s12 j+6r1+i1−3s12 j+6r1+i1−7s12 j+6r1+i1−11
,

y12m+6r2+i2 = y6r2+i2−12a3m+3
m

∏
j=0

s6(2 j+r2−2)+i2

s6(2 j+r2)+i2

= y6r2+i2−12a3m+3 s6(r2−2)+i2

s6(2m+r2)+i2
,

where

m ∈ N0, r1 ∈ {1,2}, r2 ∈ {2,3}, i1 ∈ {2,3,4,5,6,7} and

i2 ∈ {−3,−2,−1,0,1,2}.

From this, along with (2.23) and (2.24), we get

x12m+6r1+i1 = x6r1+i1−12
1

a3m+3 (2.25)

×
m

∏
j=0

d +(ac)
(

2 j+r1+1+b i1−4
6 c
)(

(1−ac)si1−7−6b i1−4
6 c
−d
)

d +(ac)
(

2 j+r1+1+b i1−6
6 c
)(

(1−ac)si1−9−6b i1−6
6 c
−d
)

×
d +(ac)

(
2 j+r1+b

i1−2
6 c
)(

(1−ac)si1−5−6b i1−2
6 c
−d
)

d +(ac)
(

2 j+r1+b
i1−4

6 c
)(

(1−ac)si1−7−6b i1−4
6 c
−d
)

×
d +(ac)

(
2 j+r1+b

i1−6
6 c
)(

(1−ac)si1−9−6b i1−6
6 c
−d
)

d +(ac)
(

2 j+r1−1+b i1−2
6 c
)(

(1−ac)si1−5−6b i1−2
6 c
−d
) ,

y12m+6r2+i2 = y6r2+i2−12a3m+3
m

∏
j=0

d +(ac)(2 j+r2−2) ((1−ac)si2−d)

d +(ac)(2 j+r2) ((1−ac)si2−d)

= y6r2+i2−12a3m+3 d +(ac)(r2−2) ((1−ac)si2−d)

d +(ac)(2m+r2) ((1−ac)si2−d)
, (2.26)

if ac 6= 1, and

x12m+6r1+i1 = x6r1+i1−12
1

a3m+3 (2.27)
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×
m

∏
j=0

 si1−7−6b i1−4
6 c

+d
(
2 j+ r1 +1+ b i1−4

6 c
)

si1−9−6b i1−6
6 c

+d
(

2 j+ r1 +1+ b i1−6
6 c
)


×

si1−5−6b i1−2
6 c

+d
(
2 j+ r1 + b i1−2

6 c
)

si1−7−6b i1−4
6 c

+d
(
2 j+ r1 + b i1−4

6 c
)


×

 si1−9−6b i1−6
6 c

+d
(

2 j+ r1 + b i1−6
6 c
)

si1−5−6b i1−2
6 c

+d
(
2 j+ r1−1+ b i1−2

6 c
)
 ,

y12m+6r2+i2 = y6r2+i2−12a3m+3 si2 +d (r2−2)
si2 +d (2m+ r2)

, (2.28)

if ac = 1, where m ∈ N0, r1 ∈ {1,2}, r2 ∈ {2,3}, i1 ∈ {2,3,4,5,6,7} and
i2 ∈ {−3,−2,−1,0,1,2}.

Case 7: Let c = 0, abd 6= 0. In this case, system (1.6) becomes

xn =
xn−4yn−5xn−6

yn−1xn−2 (a+byn−3xn−4yn−5xn−6)
, yn =

1
dxn−1yn−2xn−3

, n ∈ N0. (2.29)

By interchanging variables xn, yn and d instead of b, a instead of c and b
instead of d, system (2.16) is transformed into (2.29). So, by interchanging
x− j and y− j, for j ∈ {1,2,3,4,5,6}, the formula in (2.18) is transformed into
the formula

x4n+i1 =

(
d

ad +b

)n

xi1 , y4n+i =

(
ad +b

d

)n

yi, (2.30)

where n ∈ N, i ∈ {0,1,2,3} and i1 ∈ {−1,0,1,2}.
Case 8: Let d = 0, abc 6= 0. In this case, system (1.6) is equivalent to the system

xn =
xn−4yn−5xn−6

yn−1xn−2 (a+byn−3xn−4yn−5xn−6)
, yn =

yn−4xn−5yn−6

cxn−1yn−2
, n ∈ N0. (2.31)

Similarly, by interchanging variables xn, yn and b instead of d, c instead of
a and a instead of c, system (2.19) is transformed into (2.31). So, by inter-
changing x− j and y− j, for j ∈ {1,2,3,4,5,6}, the formula in (2.25)-(2.28) is
transformed into the formula

x12m+6r2+i2 = x6r2+i2−12c3m+3
m

∏
j=0

b+(ac)(2 j+r2−2) ((1−ac)si2−b)

b+(ac)(2 j+r2) ((1−ac)si2−b)

= x6r2+i2−12c3m+3 b+(ac)(r2−2) ((1−ac)si2−b)

b+(ac)(2m+r2) ((1−ac)si2−b)
, (2.32)

y12m+6r1+i1 = y6r1+i1−12
1

c3m+3 (2.33)
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×
m

∏
j=0

b+(ac)
(

2 j+r1+1+b i1−4
6 c
)(

(1−ac)si1−7−6b i1−4
6 c
−b
)

b+(ac)
(

2 j+r1+1+b i1−6
6 c
)(

(1−ac)si1−9−6b i1−6
6 c
−b
)

×
b+(ac)

(
2 j+r1+b

i1−2
6 c
)(

(1−ac)si1−5−6b i1−2
6 c
−b
)

b+(ac)
(

2 j+r1+b
i1−4

6 c
)(

(1−ac)si1−7−6b i1−4
6 c
−b
)

×
b+(ac)

(
2 j+r1+b

i1−6
6 c
)(

(1−ac)si1−9−6b i1−6
6 c
−b
)

b+(ac)
(

2 j+r1−1+b i1−2
6 c
)(

(1−ac)si1−5−6b i1−2
6 c
−b
) ,

if ac 6= 1, and

x12m+6r2+i2 = x6r2+i2−12c3m+3 si2 +b(r2−2)
si2 +b(2m+ r2)

, (2.34)

y12m+6r1+i1 =y6r1+i1−12
1

c3m+3

m

∏
j=0

 si1−7−6b i1−4
6 c

+b
(
2 j+ r1 +1+ b i1−4

6 c
)

si1−9−6b i1−6
6 c

+b
(

2 j+ r1 +1+ b i1−6
6 c
)


×

si1−5−6b i1−2
6 c

+b
(
2 j+ r1 + b i1−2

6 c
)

si1−7−6b i1−4
6 c

+b
(
2 j+ r1 + b i1−4

6 c
)
 (2.35)

×

 si1−9−6b i1−6
6 c

+b
(

2 j+ r1 + b i1−6
6 c
)

si1−5−6b i1−2
6 c

+b
(
2 j+ r1−1+ b i1−2

6 c
)
 ,

if ac = 1, where m ∈ N0, r1 ∈ {1,2}, r2 ∈ {2,3}, i1 ∈ {2,3,4,5,6,7} and
i2 ∈ {−3,−2,−1,0,1,2}.

Case 9: Let abcd 6= 0. Employing the change of variables

un =
1

xnyn−1xn−2yn−3
, vn =

1
ynxn−1yn−2xn−3

, n≥−3, (2.36)

system (1.6) is transformed into the following system of linear difference
equations

un = avn−3 +b, vn = cun−3 +d, n ∈ N0, (2.37)

from which it follows that

un = acun−6 +b+ad, (2.38)
vn = acvn−6 +d +bc, n≥ 3, (2.39)
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which are nonhomogeneous linear sixth-order difference equations with con-
stant coefficients. If we apply the decomposition of indexes n→ 6m+ j, for
some m ∈N0 and j ∈ {3,4,5,6,7,8}, to (2.38) and (2.39), then they become

u6m+ j = acu6(m−1)+ j +b+ad, (2.40)
v6m+ j = acv6(m−1)+ j +d +bc, (2.41)

which are first-order 6-equations. Let u6m+ j = u( j)
m = zm and v6m+ j = v( j)

m =
ẑm, for m ≥ −1 and j ∈ {3,4,5,6,7,8}. Then Eqs. (2.40) and (2.41) can be
written in the form

zm = aczm−1 +b+ad, (2.42)

ẑm = acẑm−1 +d +bc, m ∈ N0, (2.43)

which are nonhomogeneous linear first-order difference equations with con-
stant coefficients. Contrary to the usual, here, Eqs. (2.42) and (2.43) can be
solved by using transformation zm = wm +C and ẑm = ŵm + Ĉ, for chosen
suitable values of C and Ĉ, to reduce them to homogeneous linear first-order
difference equations with constant coefficients. That is, by employing these
transformations to Eqs. (2.42) and (2.43), they become

wm = acwm−1 +C(ac−1)+b+ad,

ŵm = acŵm−1 +Ĉ(ac−1)+d +bc, m ∈ N0,

which for C = b+ad
1−ac and Ĉ = d+bc

1−ac , if ac 6= 1, reduce to the next equations

wm = acwm−1,

ŵm = acŵm−1, m ∈ N0,

whose general solutions are

wm = w−1 (ac)m+1 ,

ŵm = ŵ−1 (ac)m+1 , m≥−1.

From this and by using the relation zm = wm + b+ad
1−ac and ẑm = ŵm + d+bc

1−ac , we
obtain

zm =

(
z−1 +

b+ad
ac−1

)
(ac)m+1 +

b+ad
1−ac

, (2.44)

ẑm =

(
ẑ−1 +

d +bc
ac−1

)
(ac)m+1 +

d +bc
1−ac

, m≥−1, (2.45)

when ac 6= 1. If ac = 1, then Eqs. (2.42) and (2.43) becomes

zm = zm−1 +b+ad,

ẑm = ẑm−1 +d +bc, m≥−1,
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from which they immediately follow that

zm = z−1 +(m+1)(b+ad) , (2.46)

ẑm = ẑ−1 +(m+1)(d +bc) , m≥−1. (2.47)

From (2.44), (2.45), (2.46) and (2.47) and the substitutions u6m+ j = u( j)
m = zm

and v6m+ j = v( j)
m = ẑm, we can write the solutions of (2.40) and (2.41) as in

the following

u6m+ j =

(
u j−6 +

b+ad
ac−1

)
(ac)m+1 +

b+ad
1−ac

,

v6m+ j =

(
v j−6 +

d +bc
ac−1

)
(ac)m+1 +

d +bc
1−ac

,

m≥−1, j ∈ {3,4,5,6,7,8}, when ac 6= 1, or

u6m+ j = u j−6 +(m+1)(b+ad) ,

v6m+ j = v j−6 +(m+1)(d +bc) .

m ≥ −1, j ∈ {3,4,5,6,7,8}, when ac = 1. Now note that from (2.36) we
have that

xm =
1

umym−1xm−2ym−3
=

vm−1

um
xm−4

=
vm−1vm−5

umum−4
xm−8 =

vm−1vm−5vm−9

umum−4um−8
xm−12,

ym =
1

vmxm−1ym−2xm−3
=

um−1

vm
ym−4

=
um−1um−5

vmvm−4
ym−8 =

um−1um−5um−9

vmvm−4vm−8
ym−12,

for m≥ 6, from which it follows that

x12m+6r+i = x6r+i−12

m

∏
s=0

v6(2s+r+b i−4
6 c)+i−1−6b i−4

6 c

u6(2s+r+b i−3
6 c)+i−6b i−3

6 c

v6(2s+r+b i−8
6 c)+i−5−6b i−8

6 c

u6(2s+r+b i−7
6 c)+i−4−6b i−7

6 c

×
v6(2s+r+b i−12

6 c)+i−9−6b i−12
6 c

u6(2s+r+b i−11
6 c)+i−8−6b i−11

6 c

and

y12m+6r+i = y6r+i−12

m

∏
s=0

u6(2s+r+b i−4
6 c)+i−1−6b i−4

6 c

v6(2s+r+b i−3
6 c)+i−6b i−3

6 c

u6(2s+r+b i−8
6 c)+i−5−6b i−8

6 c

v6(2s+r+b i−7
6 c)+i−4−6b i−7

6 c

×
u6(2s+r+b i−12

6 c)+i−9−6b i−12
6 c

v6(2s+r+b i−11
6 c)+i−8−6b i−11

6 c
,



ON A SOLVABLE SYSTEM OF DIFFERENCE EQUATIONS OF SIXTH-ORDER 1417

for every m ∈ N0, r ∈ {1,2} and i ∈ {0,1,2,3,4,5}.
Case ac 6= 1: In this case, we obtain that

x12m+6r+i = x6r+i−12 (2.48)

×
m

∏
s=0

d +bc+
(
(1−ac)v−7+i−6b i−4

6 c
− (d +bc)

)
(ac)2s+r+1+b i−4

6 c

b+ad +
(
(1−ac)u−6+i−6b i−3

6 c
− (b+ad)

)
(ac)2s+r+1+b i−3

6 c

×
d +bc+

(
(1−ac)v−11+i−6b i−8

6 c
− (d +bc)

)
(ac)2s+r+1+b i−8

6 c

b+ad +
(
(1−ac)u−10+i−6b i−7

6 c
− (b+ad)

)
(ac)2s+r+1+b i−7

6 c

×
d +bc+

(
(1−ac)v−15+i−6b i−12

6 c
− (d +bc)

)
(ac)2s+r+1+b i−12

6 c

b+ad +
(
(1−ac)u−14+i−6b i−11

6 c
− (b+ad)

)
(ac)2s+r+1+b i−11

6 c

and

y12m+6r+i = y6r+i−12 (2.49)

×
m

∏
s=0

b+ad +
(
(1−ac)u−7+i−6b i−4

6 c
− (b+ad)

)
(ac)2s+r+1+b i−4

6 c

d +bc+
(
(1−ac)v−6+i−6b i−3

6 c
− (d +bc)

)
(ac)2s+r+1+b i−3

6 c

×
b+ad +

(
(1−ac)u−11+i−6b i−8

6 c
− (b+ad)

)
(ac)2s+r+1+b i−8

6 c

d +bc+
(
(1−ac)v−10+i−6b i−7

6 c
− (d +bc)

)
(ac)2s+r+1+b i−7

6 c

×
b+ad +

(
(1−ac)u−15+i−6b i−12

6 c
− (b+ad)

)
(ac)2s+r+1+b i−12

6 c

d +bc+
(
(1−ac)v−14+i−6b i−11

6 c
− (d +bc)

)
(ac)2s+r+1+b i−11

6 c
,

for every m ∈ N0, r ∈ {1,2} and i ∈ {0,1,2,3,4,5}.
Case ac = 1: In this case, we get that

x12m+6r+i = x6r+i−12

m

∏
s=0

v−7+i−6b i−4
6 c

+
(
2s+ r+1+ b i−4

6 c
)
(d +bc)

u−6+i−6b i−3
6 c

+
(
2s+ r+1+ b i−3

6 c
)
(b+ad)

×
v−11+i−6b i−8

6 c
+
(
2s+ r+1+ b i−8

6 c
)
(d +bc)

u−10+i−6b i−7
6 c

+
(
2s+ r+1+ b i−7

6 c
)
(b+ad)

(2.50)

×
v−15+i−6b i−12

6 c
+
(
2s+ r+1+ b i−12

6 c
)
(d +bc)

u−14+i−6b i−11
6 c

+
(
2s+ r+1+ b i−11

6 c
)
(b+ad)
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and

y12m+6r+i = y6r+i−12

m

∏
s=0

u−7+i−6b i−4
6 c

+
(
2s+ r+1+ b i−4

6 c
)
(b+ad)

v−6+i−6b i−3
6 c

+
(
2s+ r+1+ b i−3

6 c
)
(d +bc)

×
u−11+i−6b i−8

6 c
+
(
2s+ r+1+ b i−8

6 c
)
(b+ad)

v−10+i−6b i−7
6 c

+
(
2s+ r+1+ b i−7

6 c
)
(d +bc)

(2.51)

×
u−15+i−6b i−12

6 c
+
(
2s+ r+1+ b i−12

6 c
)
(b+ad)

v−14+i−6b i−11
6 c

+
(
2s+ r+1+ b i−11

6 c
)
(d +bc)

,

for every m ∈ N0, r ∈ {1,2} and i ∈ {0,1,2,3,4,5}.
From the above considerations, we see that the following result holds.

Theorem 1. Assume that a,b,c,d and the initial values x−i,y−i, i∈{1,2,3,4,5,6},
are real numbers. Then, the next statements hold.

a) If a = c = 0 and bd 6= 0, then the general solutions of system (1.6) is given
by formulas in (2.3).

b) If b = d = 0 and ac 6= 0, then the general solutions of system (1.6) is given
by formulas in (2.8).

c) If a = d = 0 and bc 6= 0, then the general solutions of system (1.6) is given
by formulas in (2.13).

d) If b = c = 0 and ad 6= 0, then the general solutions of system (1.6) is given
by formulas in (2.15).

e) If a = 0 and bcd 6= 0, then the general solutions of system (1.6) is given by
formulas in (2.18).

f) If b = 0, acd 6= 0 and ac 6= 1, then the general solutions of system (1.6) is
given by formulas in (2.25)-(2.26).

g) If b = 0, acd 6= 0 and ac = 1, then the general solutions of system (1.6) is
given by formulas in (2.27)-(2.28).

h) If c = 0 and abd 6= 0, then the general solutions of system (1.6) is given by
formulas in (2.30).

i) If d = 0, abc 6= 0 and ac 6= 1, then the general solutions of system (1.6) is
given by formulas in (2.32)-(2.33).

j) If d = 0, abc 6= 0 and ac = 1, then the general solutions of system (1.6) is
given by formulas in (2.34)-(2.35).

k) If abcd 6= 0 and ac 6= 1, then the general solutions of system (1.6) is given by
formulas in (2.48) and (2.49).

l) If abcd 6= 0 and ac = 1, then the general solutions of system (1.6) is given by
formulas in (2.50) and (2.51).

By the following theorem, we characterize the forbidden set of the initial values
for system (1.6).
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Theorem 2. The forbidden set of the initial values for system (1.6) is the union of
two sets {

~S : x−i = 0 or y−i = 0, i ∈ {1,2,3,4,5,6}
}

and ⋃
m∈N0

8⋃
j=3

{
~S :

1
x j−3y j−4x j−5y j−6

= ( f ◦g)−m
(
−d

c

)
, or

1
y j−3x j−4y j−5x j−6

= (g◦ f )−m
(
−b

a

)}
,

where~S= (x−6,x−5,x−4,x−3,x−2,x−1,y−6,y−5,y−4,y−3,y−2,y−1) .

Proof. We have already obtained that the set{
~S : x−i = 0 or y−i = 0, i ∈ {1,2,3,4,5,6}

}
belongs to the forbidden set of the initial values for system (1.6). If x−i 6= 0 6= y−i,
i ∈ {1,2,3,4,5,6}, (i.e., xnyn 6= 0, n ≥ −6), then such a solution (xn,yn)n≥−6 is not
defined if and only if

a+byn−3xn−4yn−5xn−6 = 0, c+dxn−3yn−4xn−5yn−6 = 0,

for some n ∈ N0, which correspond to the statements yn−3xn−4yn−5xn−6 =−a
b and

xn−3yn−4xn−5yn−6 =− c
d , for n ∈ N0, respectively. Hence, from (2.36), we get

un−3 =−
d
c

and vn−3 =−
b
a
, (2.52)

for n ∈ N0. Now, we consider system (2.37) and the functions

f (t) = at +b, g(t) = ct +d

which correspond to the equations of (2.37). Thus, we can describe the solutions of
(2.38) and (2.39) as follows:

u6(m−1)+ j = ( f ◦g)m (u j−6) ,

v6(m−1)+ j = (g◦ f )m (v j−6) ,

for m ∈ N0 and j ∈ {3,4,5,6,7,8}. By using (2.52), we get

u j−6 = ( f ◦g)−m
(
−d

c

)
, (2.53)

v j−6 = (g◦ f )−m
(
−b

a

)
, (2.54)

for m ≥ −1 and j ∈ {3,4,5,6,7,8}, where f−1(t) = t−b
a and g−1(t) = t−d

c . This
means that if one of the conditions in (2.53) and (2.54) holds, then 6(m−1)-th or
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6m-th iteration in (1.6) can not be calculated. Consequently, desired result follows
from (2.36).

�

3. NUMERICAL EXAMPLES

To support our theoretical results, we present numerical examples for the solutions
of system (1.6) regard to the different values of a, b, c and d.

Example 1. Consider the system (1.6) with the initial values x−6 =−15.71, x−5 =
87.76, x−4 = 48.97, x−3 = 12.23, x−2 = 0.45, x−1 = 1.34, y−6 = 5.2, y−5 = 8.6,
y−4 = 22.7, y−3 = 2.2, y−2 = 0.5, y−1 = 1.4 and the parameters, a = 0, b = 1.34,
c = 0, d = 1.34 the solutions are represented as in the Figure 1.

FIGURE 1. Plots of xn,yn in case a = 0, b = 1.34, c = 0, d = 1.34
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In this case, equations in (2.3) are satisfied. Hence, the solutions of system (1.6)
have periodic solutions with period four.

Example 2. Consider the system (1.6) with the initial values x−6 =−4.37, x−5 =
1.5, x−4 = 2.4, x−3 =−3.6, x−2 = 7.5, x−1 =−0.6, y−6 =−5.7, y−5 = 2, y−4 = 3.2,
y−3 =−2.8, y−2 = 71.5, y−1 = 0.1 and the parameters, a = 1, b = 0, c = 1, d = 0 the
solutions are represented as in the Figure 2.

In this case, equations in (2.8) are satisfied. Hence, the solutions of system (1.6)
have periodic solutions with period twelve.

Example 3. Consider the system (1.6) with the initial values x−6 = 4.8, x−5 = 1.68,
x−4 = 7.8, x−3 = 2.68, x−2 = 70.8, x−1 =−10.4, y−6 = 4.2, y−5 = 25.6, y−4 = 4.26,
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FIGURE 2. Plots of xn,yn in case a = 1, b = 0, c = 1, d = 0
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y−3 = 1.8, y−2 = 0.5, y−1 =−1.79 and the parameters, a = 0, b = 0.987, c = 1, d = 0
the solutions are represented as in the Figure 3.

FIGURE 3. Plots of xn,yn in case a = 0, b = 0.987, c = 1, d = 0
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In this case, equations in (2.13) are satisfied. Hence, the solutions of system (1.6)
have periodic solutions with period four.
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Example 4. Consider the system (1.6) with the initial values x−6 = 0.8, x−5 =
−5.7, x−4 = 2.47, x−3 = −10.65, x−2 = 5, x−1 = −0.01, y−6 = 1.9, y−5 = −9.2,
y−4 = 3.7, y−3 = −3.51, y−2 = 4.22, y−1 = −2.9 and the parameters, a = 0, b = 2,
c = 3, d =−4 the solutions are represented as in the Figure 4.

FIGURE 4. Plots of xn,yn in case a = 0, b = 2, c = 3, d =−4
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In this case, equations in (2.18) are satisfied. Hence, the solutions of system (1.6)
have periodic solutions with period four.

4. CONCLUSION

In this study, we obtain solutions of the following system of difference equations

xn =
xn−4yn−5xn−6

yn−1xn−2 (a+byn−3xn−4yn−5xn−6)
, yn =

yn−4xn−5yn−6

xn−1yn−2 (c+dxn−3yn−4xn−5yn−6)
,

for n ∈ N0, where the parameters a,b and the initial values x−i, i ∈ {1,2,3,4,5,6},
are real numbers. In addition, we show that some solvable subclasses of the class
of nonlinear two-dimensional system of difference equations are solvable in closed
form. We also describe the forbidden set of solutions of the system of difference
equations. Some numerical examples are given to demonstrate the theoretical results.
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