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Abstract. A. M. Mercer prove a new version of well-known Jensen inequality which is called
Jensen-Mercer inequality [16]. By using Jensen-Mercer inequality, Kian and Moslehian establish
a new variant of Hermite-Hadamard inequality which is called Hermite-Jensen-Mercer inequality
[15]. In this paper, we extend the Hermite-Jensen-Mercer inequality for quantum integrals by
utilizing Jensen-Mercer inequality. Then we investigate the connections between our results
and those in earlier works. Moreover we give some examples to illustrate the main results in
this paper. This is the first paper focusing on Hermite-Jensen-Mercer inequalities for quantum
integrals.
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1. INTRODUCTION

In quantum mathematical research, it is an unlimited analysis of calculus and is
known as q - calculus. We get original mathematical formulas for q-calculus as
q reaches 1−. The beginning of the analysis of q-calculus was initiated by Euler
(1707-1783). The results mentioned above lead to a thorough investigation into the
q-calculus of the twentieth century. The concept of q-calculus is used in many areas in
mathematics and physics such as numerical theory, orthogonal polynomials, integra-
tion, basic hypergeometric functions, mechanics, and quantum and relativity theory.
For more information about q -calculus, one can refer to [5,11,13,14] and references
cited therein.

On the other hand, the celebrated discrete Jensen inequality states that: let 0 <
κ1≤κ2≤ . . .≤κn and let µ= (µ1,µ2, . . . ,µn) nonnegative weights such that Σn

i=1µ=
1. If ψ is a convex function on the interval [κ1,κ2], then

ψ

(
n

∑
i=1

µiκi

)
≤

n

∑
i=1

µiψ(κi),

where for all κi ∈ [κ1,κ2] and µi ∈ [0,1], (i = 1,n) [10]. The Hermite–Hadamard
inequality states that, if a mapping ψ : I ⊆ R→ R is a convex on I with κ1,κ2 ∈ I and
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κ1 < κ2, then

ψ

(
κ1 +κ2

2

)
≤ 1

κ2−κ1

∫
κ2

κ1

ψ(κ)dκ ≤ ψ(κ1)+ψ(κ2)

2
.

The double inequality holds in the reversed direction if ψ is concave [9].

Theorem 1 ([16, Theoem 1.2]). If ψ is convex function on I = [κ1,κ2], then

ψ

(
κ1 +κ2−

n

∑
i=1

µiκi

)
≤ ψ(κ1)+ψ(κ2)−

n

∑
i=1

µiψ(κi), (1.1)

for each κi ∈ [κ1,κ2] and µi ∈ [0,1], (i = 1,n) with ∑
n
i=1 µ = 1.

Inequality (1.1) is known as the Jensen-Mercer inequality. By using inequality
(1.1), Kian and Moslehian prove the Hermite-Jensen-Mercer inequality in [15]. Re-
cently several papers have devoted to generalization of Hermite-Jensen-Mercer in-
equality. For more recent and related results connected with Jensen-Mercer inequal-
ity and Hermite-Jensen–Mercer inequality, see [1, 6–8, 19].

In this study, we extend the Hermite-Jensen-Mercer for quantum integrals. We
also present some examples to illustrate our results.

2. PRELIMINARIES OF q-CALCULUS AND SOME INEQUALITIES

In this section we present some required definitions and related inequalities about
q-calculus. Also, here and further we use the following notation(see [14]):

[n]q =
1−qn

1−q
= 1+q+q2 + ...+qn−1, q ∈ (0,1) .

In [13], Jackson gave the q-Jackson integral from 0 to κ2 for 0 < q < 1 as follows:
κ2∫

0

ψ(κ) dqκ = (1−q)κ2

∞

∑
n=0

qn
ψ(κ2qn)

provided the sum converge absolutely.
Jackson in [13] gave the q-Jackson integral in a generic interval [κ1,κ2] as:

κ2∫
κ1

ψ(κ) dqκ =

κ2∫
0

ψ(κ) dqκ −
κ1∫

0

ψ(κ) dqκ .

Definition 1 ([21, Definition 3.3]). Let ψ : [κ1,κ2]→R be a continuous function.
Then, the qκ1-definite integral on [κ1,κ2] is defined as

κ2∫
κ1

ψ(κ) κ1dqκ = (1−q)(κ2−κ1)
∞

∑
n=0

qn
ψ(qn

κ2 +(1−qn)κ1)
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= (κ2−κ1)

1∫
0

ψ((1− t)κ1 + tκ2) dqt .

Many of the most well-known inequalities in the classical analysis such as Hölder’s
inequality, Hermite-Hadamard’s inequality and Ostrowski’s inequality, Cauchy-Bu-
nyakovsky-Schwarz, Gruss, Gruss-Cebysev and other integral inequalities have been
proven and applied for q-calculus . For more q-calculus results please refer [2–5, 12,
17, 18, 20–22].

In [4], Alp et al. proved the following qκ1-Hermite-Hadamard inequalities for
convex functions in the setting of quantum calculus:

Theorem 2 ([4, Theoem 6]). Let ψ : [κ1,κ2]→R be a convex differentiable func-
tion on [κ1,κ2] and 0< q< 1. Then q-Hermite-Hadamard inequalities are as follows:

ψ

(
qκ1 +κ2

1+q

)
≤ 1

κ2−κ1

κ2∫
κ1

ψ(κ) κ1dqκ ≤ qψ(κ1)+ψ(κ2)

1+q
. (2.1)

In [18] and [4], authors established some bounds for left and right hand sides of
the inequality (2.1).

On the other hand, Bermudo et al. gave the following new definition and related
Hermite-Hadamard type inequalities:

Definition 2 ([5, Definition 6]). Let ψ : [κ1,κ2]→ R be a continuous function.
Then, the qκ2-definite integral on [κ1,κ2] is defined as

κ2∫
κ1

ψ(κ) κ2dqκ = (1−q)(κ2−κ1)
∞

∑
n=0

qn
ψ(qn

κ1 +(1−qn)κ2)

= (κ2−κ1)

1∫
0

ψ(tκ1 +(1− t)κ2) dqt .

Theorem 3 ([5, Theorem 11]). Let ψ : [κ1,κ2] → R be a convex function on
[κ1,κ2] and 0 < q < 1. Then, q-Hermite-Hadamard inequalities are as follows:

ψ

(
κ1 +qκ2

1+q

)
≤ 1

κ2−κ1

κ2∫
κ1

ψ(κ) κ2dqκ ≤ ψ(κ1)+qψ(κ2)

1+q
.

From Theorem 2 and Theorem 3, one can get the following inequalities:

Corollary 1 ([5, Corollary 14]). For any convex function ψ : [κ1,κ2]→ R and
0 < q < 1, we have

ψ

(
qκ1 +κ2

1+q

)
+ψ

(
κ1 +qκ2

1+q

)
(2.2)
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≤ 1
κ2−κ1


κ2∫

κ1

ψ(κ) κ1dqκ +

κ2∫
κ1

ψ(κ) κ2dqκ


≤ ψ(κ1)+ψ(κ2)

and

ψ

(
κ1 +κ2

2

)
≤ 1

2(κ2−κ1)


κ2∫

κ1

ψ(κ) κ1dqκ +

κ2∫
κ1

ψ(κ) κ2dqκ

 (2.3)

≤ ψ(κ1)+ψ(κ2)

2
.

In the next section, we’ll get integral inequalities that are our main results.

3. QUANTUM HERMITE-JENSEN-MERCER INEQUALITIES

In this section, we prove some Quantum Hermite-Jensen-Mercer type inequalities
for quantum integrals.

Theorem 4. Let ψ : [κ1,κ2]→ R be a convex function on [κ1,κ2] and 0 < q < 1.
Then we have the following quantum Jensen-Mercer inequalities

ψ

(
κ1 +κ2−

κ+ γ

2

)
(3.1)

≤ ψ(κ1)+ψ(κ2)−
1
2

 1
γ−κ

γ∫
κ

ψ(υ) γdqυ+
1

γ−κ

γ∫
κ

ψ(υ) κdqυ


≤ ψ(κ1)+ψ(κ2)−

1
2

[
ψ

(
κ+qγ

[2]q

)
+ψ

(
qκ+ γ

[2]q

)]

≤ ψ(κ1)+ψ(κ2)−ψ

(
κ+ γ

2

)
for all κ,γ ∈ [κ1,κ2] with κ < γ.

Proof. It follows from the Jensen-Mercer inequality,

ψ

(
κ1 +κ2−

υ+ν

2

)
≤ ψ(κ1)+ψ(κ2)−

1
2
[ψ(υ)+ψ(ν)]

for υ,ν ∈ [κ1,κ2] . By choosing υ = tκ+(1− t)γ and ν = tγ+(1− t)κ for t ∈ [0,1] ,
we obtain

ψ

(
κ1 +κ2−

υ+ν

2

)
≤ ψ(κ1)+ψ(κ2) (3.2)

− 1
2
[ψ(tκ+(1− t)γ)+ψ(tγ+(1− t)κ)] .
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By taking q-integral of both sides of (3.2), we have

ψ

(
κ1 +κ2−

υ+ν

2

)
≤ ψ(κ1)+ψ(κ2) (3.3)

− 1
2

 1∫
0

ψ(tκ+(1− t)γ)dqt +
1∫

0

ψ(tγ+(1− t)κ)dqt

 .
From Definition 1 and Theorem 2, we get

1∫
0

ψ(tγ+(1− t)κ)dqt =
1

γ−κ

γ∫
κ

ψ(υ) κdqυ≥ ψ

(
qκ+ γ

[2]q

)
(3.4)

and similarly by Definition 2 and Theorem 3, we have

1∫
0

ψ(tκ+(1− t)γ)dqt =
1

γ−κ

γ∫
κ

ψ(υ) γdqυ≥ ψ

(
κ+qγ

[2]q

)
. (3.5)

By substituting the inequalities (3.4) and (3.5) in (3.3), we obtain

ψ

(
κ1 +κ2−

κ+ γ

2

)

≤ ψ(κ1)+ψ(κ2)−
1
2

 1
γ−κ

γ∫
κ

ψ(υ) γdqυ+
1

γ−κ

γ∫
κ

ψ(υ) κdqυ


≤ ψ(κ1)+ψ(κ2)−

1
2

[
ψ

(
κ+qγ

[2]q

)
+ψ

(
qκ+ γ

[2]q

)]
which gives the proof of first and second inequalities in (3.1).

Since ψ is a convex function we have

ψ

(
κ+ γ

2

)
= ψ

(
1
2
κ+qγ

[2]q
+

1
2

qκ+ γ

[2]q

)
≤ 1

2

[
ψ

(
κ+qγ

[2]q

)
+ψ

(
qκ+ γ

[2]q

)]
.

This proves the last inequality in (3.1). �

Remark 1. If we take the limit q→ 1− in Theorem 4, then inequalities (3.1) reduce
to inequalities (2.1) of Theorem 2.1 in [15].

Corollary 2. If we choose κ = κ1 and γ = κ2 in Theorem 4, we have

ψ

(
κ1 +κ2

2

)
≤ ψ(κ1)+ψ(κ2)−

1
2(κ2−κ1)

 κ2∫
κ1

ψ(υ) κ2dqυ+

κ2∫
κ1

ψ(υ) κ1dqυ


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≤ ψ(κ1)+ψ(κ2)−
1
2

[
ψ

(
κ1 +qκ2

[2]q

)
+ψ

(
qκ1 +κ2

[2]q

)]

≤ ψ(κ1)+ψ(κ2)−ψ

(
κ1 +κ2

2

)
.

This inequalities give the first inequalities in (2.2)and (2.3).

Theorem 5. Let ψ : [κ1,κ2]→ R be a convex function on [κ1,κ2] and 0 < q < 1.
Then we have the following quantum Jensen-Mercer inequalities

ψ

(
κ1 +κ2−

κ+qγ

[2]q

)
≤ 1

γ−κ

κ1+κ2−κ∫
κ1+κ2−γ

ψ(υ) (κ1+κ2−γ)dqυ (3.6)

≤ ψ(κ1)+ψ(κ2)−
ψ(κ)+qψ(γ)

[2]q

for all κ,γ ∈ [κ1,κ2] with κ < γ, where 0 < q < 1.

Proof. From Definition 1 and Theorem 2, we get
1∫

0

ψ(κ1 +κ2− (tκ+(1− t)γ))dqt

=

1∫
0

ψ(t (κ1 +κ2−κ)+(1− t)(κ1 +κ2− γ))dqt

=
1

γ−κ

κ1+κ2−κ∫
κ1+κ2−γ

ψ(υ) (κ1+κ2−γ)dqυ

≥ ψ

(
q(κ1 +κ2− γ)+κ1 +κ2−κ

[2]q

)

= ψ

(
κ1 +κ2−

κ+qγ

[2]q

)
which gives prof of first inequality in (3.6). By Jensen-Mercer inequality, we obtain

1
γ−κ

κ1+κ2−κ∫
κ1+κ2−γ

ψ(υ) (κ1+κ2−γ)dqυ =

1∫
0

ψ(κ1 +κ2− (tκ+(1− t)γ))dqt

≤
1∫

0

ψ(κ1)+ψ(κ2)− [tψ(κ)+(1− t)ψ(γ)]dqt
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= ψ(κ1)+ψ(κ2)−

[
ψ(κ)+qψ(γ)

[2]q

]
.

This completes the proof. �

Remark 2. If we take the limit q→ 1− in Theorem 5, then inequalities (3.6) reduce
to inequalities (2.2) of Theorem 2.1 in [15]..

Remark 3. If we choose κ = κ1 and γ = κ2 in Theorem 5, then Theorem 5 reduces
to Theorem 2.

Theorem 6. Let ψ : [κ1,κ2]→ R be a convex function on [κ1,κ2] and 0 < q < 1.
Then we have the following quantum Jensen-Mercer inequalities

ψ

(
κ1 +κ2−

qκ+ γ

[2]q

)
≤ 1

γ−κ

κ1+κ2−κ∫
κ1+κ2−γ

ψ(υ) (κ1+κ2−κ)dqυ (3.7)

≤ ψ(κ1)+ψ(κ2)−
qψ(κ)+ψ(γ)

[2]q

for all κ,γ ∈ [κ1,κ2] with κ < γ, where 0 < q < 1.

Proof. From Definition 2 and Theorem 3, we get

1∫
0

ψ(κ1 +κ2− (tγ+(1− t)κ))dqt

=

1∫
0

ψ(t (κ1 +κ2− γ)+(1− t)(κ1 +κ2−κ))dqt

=
1

γ−κ

κ1+κ2−κ∫
κ1+κ2−γ

ψ(υ) (κ1+κ2−κ)dqυ

≥ ψ

(
q(κ1 +κ2−κ)+κ1 +κ2− γ

[2]q

)

= ψ

(
κ1 +κ2−

γ+qκ
[2]q

)
which proves the first inequality in (3.7). By Jensen-Mercer Inequality, we have

1∫
0

ψ(κ1 +κ2− (tγ+(1− t)κ))dqt ≤
1∫

0

ψ(κ1)+ψ(κ2)− [tψ(γ)+(1− t)ψ(κ)]dqt
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= ψ(κ1)+ψ(κ2)−

[
ψ(γ)+qψ(κ)

[2]q

]
which completes the proof. �

Remark 4. If we take the limit q→ 1− in Theorem 6, then inequalities (3.7) reduce
to inequalities (2.2) of Theorem 2.1 in [15].

Remark 5. If we choose κ = κ1 and γ = κ2 in Theorem 6, then Theorem 6 reduces
to Theorem 3.

4. EXAMPLES

We provide some examples of our main theorems in this section.

Example 1. We define a convex function ψ : [κ1,κ2] = [−1,2]→ R by ψ(x) = x2

for κ = 0, γ = 1 and q = 1
2 . Then we have

ψ

(
κ1 +κ2−

κ+ γ

2

)
= ψ

(
1
2

)
=

1
4
, (4.1)

and

ψ(κ1)+ψ(κ2) = 5,

1
γ−κ

γ∫
κ

ψ(υ) γdqυ =

1∫
0

ψ(υ) 1d 1
2
υ =

5
21

1
γ−κ

γ∫
κ

ψ(υ) κdqυ =

1∫
0

ψ(υ) 0d 1
2
υ =

4
7
.

Thus,

ψ(κ1)+ψ(κ2)−
1
2

 1
γ−κ

γ∫
κ

ψ(υ) γdqυ+
1

γ−κ

γ∫
κ

ψ(υ) κdqυ

=
193
42

. (4.2)

Now, we observe that

ψ

(
κ+qγ

[2]q

)
= ψ

(
1
3

)
=

1
9

ψ

(
qκ+ γ

[2]q

)
= ψ

(
2
3

)
=

4
9
.

Thus,

ψ(κ1)+ψ(κ2)−
1
2

[
ψ

(
κ+qγ

[2]q

)
+ψ

(
qκ+ γ

[2]q

)]
=

85
18

. (4.3)

Again, we observe that

ψ(κ1)+ψ(κ2)−ψ

(
κ+ γ

2

)
=

19
4

(4.4)
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Finally, we conclude from the equalities (4.1–4.4) that the inequality (3.1) is valid
and

1
4
<

193
42

<
85
18

<
19
4
.

Example 2. We also consider the convex function ψ : [−1,2]→ R by ψ(x) = x2

with κ = 0, γ = 1 and q = 1
2 . Then we get

ψ

(
κ1 +κ2−

κ+qγ

[2]q

)
=

4
9
, (4.5)

1
γ−κ

κ1+κ2−κ∫
κ1+κ2−γ

ψ(υ) (κ1+κ2−γ)dqυ =

1∫
0

ψ(υ) 0d 1
2
υ =

4
7

(4.6)

and

ψ(κ1)+ψ(κ2)−
ψ(κ)+qψ(γ)

[2]q
=

14
3
. (4.7)

By the equalities (4.5–4.7), the inequality (3.6) is valid and
4
9
<

4
7
<

14
3
.

Example 3. Let’s consider again the convex function ψ : [−1,2]→ R, ψ(x) = x2

with κ = 0, γ = 1 and q = 1
2 . Then we have

ψ

(
κ1 +κ2−

κ+qγ

[2]q

)
=

1
9
, (4.8)

1
γ−κ

κ1+κ2−κ∫
κ1+κ2−γ

ψ(υ) (κ1+κ2−κ)dqυ =

1∫
0

ψ(υ) 1d 1
2
υ =

5
21

(4.9)

and

ψ(κ1)+ψ(κ2)−
ψ(κ)+qψ(γ)

[2]q
=

13
3
. (4.10)

From the equalities (4.8–4.10), the inequality (3.7) is valid and
1
9
<

5
21

<
13
3
.

5. CONCLUSION

In this research paper, we generalize Hermite-Jensen-Mercer inequality for quan-
tum integrals. This is the first study obtaining Hermite-Jensen-Mercer inequalities
for quantum integrals. In the future works, authors can try to generalize our results
by utilizing different kinds of convex function classes.
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