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Abstract. In this paper, we give all the solutions of the Diophantine equation x2 + 7% - 1 18 =
y", for the nonnegative integers «, 8, x, y, n > 3, where x and y coprime, except when «.x is
odd and f is even.
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1. INTRODUCTION
The Diophantine equation
x24+C=y", n=>3 (1.1)

in positive integers x, y, n for given a C has a rich history. In 1850, Lebesgue
[25] proved that the above equation has no solutions when C = 1. The equation of
the title is a special case of the Diophantine equation ay? 4+ by 4+ ¢ = dx", where
a #0,b, ¢ and d # 0 are integers with b2 —4ac # 0, which has at most finitely
many integer solutions x, y, n > 3 (see [23]). In 1993, J.H.E. Cohn [17] solved
the Diophantine equation (1.1) for several values of the parameter C in the range
1 < C < 100. The solution for the cases C = 74,86 was completed by Mignotte
and de Weger [31]. That had not been covered by Cohn (indeed, Cohn solved these
two equations of type (1.1) except for p = 5, in which case difficulties occur as the
class numbers of the corresponding imaginary quadratic fields are divisible by 5). In
[12], Bugeaud, Mignotte and Siksek improved modular methods to solve completely
(1.1) when n > 3, for C in the range [1, 100]. So they covered the remaining cases.
Different types of the Diophantine equation (1.1) were studied also by various
mathematicians. For effectively computable upper bounds for the exponent n, we
refer to [8] and [22]. However, these estimates are based on Baker’s theory of lower
bounds for linear forms in logarithms of algebraic numbers, so they are quite imprac-
tical. In [37], Tengely gave a method to solve the equation x> 4+ a? = y™ and applied
it to 3 < a <501, so it includes x? 4+ 7% = y" and x> 4 112 = y™. In [4], the equa-
tion x2 + C = 2y", where C is a fixed positive integer, under the similar restrictions
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n >3 and ged(x, y) = 1 was studied. Recently, Luca, Tengely and Togbé studied the
Diophantine equation x2? + C = 4y™ for nonnegative integers x, y, n > 3 with x and
¥ coprime for various shapes of the positive integer C in [28].

In recent years, a different form of the above equation has been considered, namely
where C is a power of a fixed prime. In [6], the equation x2 + 2k = y" was studied
under some conditions by Arif and Muriefah. A conjecture of Cohn (see [16]) was
verified. It says that x2 + 2K = y” has no solutions with x odd and even k > 2 by Le
[24]. In [7], Abu Muriefah and Arif, gave all the solutions of x2 + 3k = y" with k
odd and, Luca [27], gave all the solutions with k even. Again the same equation was
independently solved in 2008 by Liqun in [35] for both odd and even m. All solutions
of x2+45k = y" are given with k odd in [3] and with k even in [2]. Liqun solves
the same equation again in 2009, in [36]. Recently, Bérczes and Pink [9], gave all the
solutions of the Diophantine equation (1.1) when C = pk and k is even, where p is
any prime in the interval [2, 100].

The last variant of the Diophantine equation (1.1) where C is a product of at least
two prime powers were studied in some recent papers. In 2002, Luca gave com-
plete solution of x2 2430 = y™ in [30]. Since then, in 2006, all the solutions of
the Diophantine equation x2 + 2¢ 50 — y™ were found by Luca and Togbé in [30].
In 2008, the equations x2 + 5%.13% = y” and x2 4 295P.13¢ = y” were solved in
[5] and [21]. Recently, in [14] and [13], complete solutions of the equations x2+
24 112 = y” and x% 4 22.30.11¢ = y” were found. In [20], the complete solution
(n.a,b,x,y) of the equation x% 4 5%.11% = y” when ged(x, y) = 1, except for the
case when xab is odd, is given. In [34], Pink gave all the non-exceptional solu-
tions (in the terminology of that paper) with C = 2%.3%.5¢ 74 Note that finding all
the exceptional solutions of this equation seems to be a very difficult task. A more
exhaustive survey on this type of problems is [32].

Here, we study the Diophantine equation

x24+7% 118 =y, ged(x,y) =1 and n>3. (1.2)

There are three papers concerned with partial solutions for equation (1.2). The known
results include the following theorem:

Theorem 1. (i) If o is even and = 0, then the only integer solutions of the
Diophantine equation

x2+72k — yn
are
n=3 (x,y.k)=(524-73*65-72* 1+ 32),
n=4 (x,y,k)= (24-72’1,5-7’1,1 +2A) where A > 0 is any integer.
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(@i) If « = 1 and B = 0, then the only integer solutions (x,y,n) to the generalized
Ramanujan—Nagell equation
x24+7=y"
are
(1,2,3),(181,32,3),(3,2,4),(5,2,5),(181,8,5),(11,2,7),(181,2, 15).
(7ii) If o = 0, then the only integer solutions of the Diophantine equation
x24+118 = y"
are
(x’ y’ﬂ’n) = (2’5’2’3)7(4’39173)1 (587 15’ 1’3)7(9324’443’ 3’ 3)
Proof. See [29], [12] and [14]. O
Our main result is the following.

Theorem 2. The only solutions of the Diophantine equation (1.2) are

n=3: (x,y,a,B)€{(57,16,1,2),(797,86,1,2),(4229,284,3,4),
(3093,478,7,2)(4,3,0,1),(58,15,0,1),(2,5,0,2),(9324,443,0,3),
(1,2,1,0),(181,32,1,0),(524,65,2,0),(13,8,3,0)};

n=4: (x,y,a,p)€{(2,3,1,1),(57,8,1,2),(8343,92,5,2),(3,2,1,0),
(24,5,2,0)};

n=6: (x,y,a,8)=(57,4,1,2);

n=9: (x,y,a,B)=1(13,2,3,0);

n=12: (x,y,a,B) =(57,2,1,2);

Whenn > 5,n # 6,9,12, equation (1.2) has no solutions (x,y,o, B) with at least one

of a, x even or with B is odd.

Remark 1. Forn > 5,n # 6,9, 12 the above theorem lefts out the solutions
(o, B,x,y) when «.x is odd and B is even. These are exactly the exceptional solutions
of the equation (1.2) in the terminology of [34]; see also the remark 2 at the end of
this paper.

One can deduce from the Theorem 1 and Theorem 2 the following corollary.

Corollary 1. The only integer solutions of the Diophantine equation (1.2) are
n=3: (x,y,a,pB)e{(57,16,1,2),(797,86,1,2),(4229,284,3,4),
(3093,478,7,2),(4,3,0,1),(58,15,0,1),(2,5,0,2),
(9324,443,0,3), (1,2,1,0),(181,32,1,0),(524,65,2,0),(13,8,3,0)};
n=4: (x,y,a,p)€{(2,3,1,1),(57,8,1,2),(8343,92,5,2),(3,2,1,0),
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(24,5,2,0)}:
n=5: (x,y,ap)=(52,1,0),(181,8,1,0):
n=6: (x,y,a,p)=1(57,4,1,2);
n=7: (x,y,a,8)=(11,2,1,0);
n=9: (x,y,a,p)=1(13,2,3,0);
n=12: (x,y,a,B) =(57,2,1,2);
n=15: (x,y,a,B) = (181,2,1,0).

2. THE PROOF OF THEOREM 2

We distinguish the cases n = 3,6,9,12, n =4 and n > 4, devoting a subsection to
the treatment of each case. We first treat the cases n = 3 and n = 4. This is achieved
in Section 2.1 and Section 2.2, respectively. For the case n = 3, we transform equa-
tion (1.2) into several elliptic equations in Weierstrass form for which we need to
determine all their {7, 11}—integral points. In Section 2.2, we use the same method
as in Section 2.1 to determine the solutions of (1.2) for n = 4. In the last section, we
assume that n > 4 is prime and study the equation (1.2) under this assumption. Here
we use the method of primitive divisors for Lucas sequences. All the computations
are done with MAGMA [11] and with Cremona’s program mwrank.

2.1. The Casesn = 3,6,9 and 12

Lemma 1. When n = 3, then only solutions to equation (1.2) are
(57,16,1,2),(797,86,1,2),(4229,284,3,4),(3093,478,7,2), 2.1
(4,3,0,1),(58,15,0,1),(2,5,0,2),(9324,443,0,3),
(1,2,1,0),(181,32,1,0),(524,65,2,0),(13,8,3,0);

when n = 6, then only solution to equation (1.2) is (57,4,1,2); whenn =9, then only
solution to equation (1.2) is (13,2,3,0); when n = 12, then only solution to equation
(1.2) is (57,2,1,2).

Proof. Suppose n = 3. Writing « = 6k + a1, f = 6] + 81 in (1.2) with &1, B €

{0,1,2,3,4,5}, we get that
X y
73k 1131’ 72k 112!

is an S —Integral point (X, Y') on the elliptic curve
xX2=y3_79.11h, (2.2)

where S = {7,11} with the numerator of ¥ being coprime to 77, in view of the
restriction ged(x, y) = 1. Now we need to determine all the {7, 11}-integral points on
the above 36 elliptic curves. At this stage we note that in [33] Peth6, Zimmer, Gebel
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and Herrmann developed a practical method for computing all S —Integral points on
Weierstrass elliptic curve and their method has been implemented in MAGMA [11]
as a routine under the name SIntegralPoints.The subroutine SIntegralPoints
of MAGMA worked

without problems for all (a1, 81) except for (a1, 81) = (5,5). MAGMA determined
the appropriate Mordell-Weil groups except this case and we deal with this excep-
tional case separately. By computations done for equation (2.2) when n = 3, we
obtain the following solutions for the {7, 11}—integral points on the curves:

(1,0,0,0),(3,4,0,1),(15,58,0,1),(5.2,0,2),(11,0,0,3), (443,9324,0, 3),
(2,1,1,0),(32,181,1,0), (478/49,3093/3431,2), (11,22,1,2),(16,57,1,2),
(1899062/117649,2338713355/40353607, 1,2), (22,99, 1,2), (86,797, 1,2),
(88,825,1,2), (638,16115,1,2), (657547,533200074, 1,2), (242,3751, 1, 4),
(65,524,2,0),(7,0,3,0), (8,13,3,0), (14,49, 3,0), (28, 147,3,0),
(154,1911,3,0), (77,0,3,3), (242,3025,3,4), (284, 4229,3,4),
(1435907/49, 1720637666/343,3, 4).

We use the above points on the elliptic curves to find the corresponding solutions
for equation (2.2). Identifying the coprime positive integers x and y from the above
list, one obtains the solutions listed in (2.2) (note that not all of them lead to coprime
values for x and y).

We give the details in case («1,81) = (5,5) of equation (2.2). Observe that
if Y is even, then X is odd and X2+ 7°11° = 0 (mod 8), and hence X? = 3
(mod 8), which is a contradiction. Therefore Y is always odd. We consider solu-
tions such that X and Y are coprime.

Write K = Q(i +/77). In this field, the primes 2,7, 11 (all primes dividing the dis-
criminant dx = 4d ) ramify so there are prime ideals P,, P7, P11 such that 20k =
P}, 70k = P?, 110k = P} respectively. Now, we show that the ideals (X +
7211%2/77i)Ok and (X —7211%24/77i)O are coprime in the ring of integers O . To
show this, let us assume that the ideals (X +7%1124/77i)O and (X —7%112/77i)Ok
are not coprime. So, these ideals have a gcd that divides 2.72.11%+/77i. Hence there
is an ideal Pz"P7bPlc1 witha <2, and b,c <5. Ifb>0then7 | X.Hence7 | Y,
hence 73 | X2, hence 7% | X, hence 74| Y3, hence 72 | Y, hence 7° | X2, hence 77
X. So, we have a contradiction as 7 | X2 — Y 3. Thus » = 0. Similarly we can prove
that ¢ = 0.

Now let (X + 72112/77i)0k = Pz"p3 for some ideal g not divisible by P,
and (X —72112/77i) Ok = P2"59/3 (for its conjugate ideal). If we take norms, then
we get that y3 = 24[Nk(p)]3, where Nk (g) is odd. It follows that ¢ = 0 (as it
could be at most 2). So, we showed that the ideals (X + 7211%2+/77i)Ok and (X —
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721124/77i) Ok are coprime. Equation (2.2) now implies that
(X +7*112J771) 0k = 9> and (X —72112V/771)0k = "

for the ideals @ and g’. Let h(K) be the class number of the field K, then §#®) js
principal for any ideal §. Note that, 4(KK) =8 and so (3, /(KK)) =1. Thus since g and
’> are principal, g and g’ are also principal. Moreover, since the units of Q (i v/77)
are 1 and —1, which are both cubes, we conclude that

(X +72112V77i) = (u + V77iv)3 (2.3)
(X —7?112N77i) = (u—NT7iv)? (2.4)

for some integers u and v. After subtracting the conjugate equation we obtain
72112 = v(3uv —77v?). (2.5)

Since u and v are coprime, we have the following possibilities in equation (2.5)
v==1;v==47%v==11% v =£7%117

All cases lead to the conclusion that no solution is obtained.
For n = 6, equation
x24+7%118 =
becomes equation
x24+7% 117 = (»?)2.
Again, here we look in the list of solutions of equation (2.1) and observe that the only
solution whose y is a perfect square is (57,16, 1,2).Therefore the only solution to
equation (1.2) is (57,4,1,2). In the same way, one can see that the value of y above
which is a perfect square is y = 4 for the solution (57,4, 1,2), therefore the only
solution with n = 12 is (57,2, 1,2).
For n = 9, equation
X2 +7%11F =°
becomes equation
x2+7% 118 = (»3)3.
Again here, we look in the list of solutions of (2.1) and observe that only solution

whose y is a perfect cube is (13, 8,3, 0).Therefore the only solution to equation (1.2)
is (13,2,3,0).This completes the proof of lemma. O

If (x,y,a, B,n) is a solution of the Diophantine equation (1.2) and d is any proper
divisor of n, then (x, yd,oz, B,n/d) is also a solution of the same equation. Since
n > 3 and we have already dealt with case n = 3, it follows that it suffices to look at
the solutions n for which p | n for some odd prime p. In this case, we may certainly
replace n by p, and thus assume for the rest of the paper that n € {4, p}.
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2.2. The Casen =4

Lemma 2. The only solutions with n = 4 of the Diophantine equation (1.2) are
given by

(x,y,0,8)=(2,3,1,1),(57,8,1,2),(8343,92,5,2),(3,2,1,0), (24,5,2,0)
Proof. Suppose that n = 4. Rewrite equation (1.2) as
7%.118 = 2+ x) (2= x). (2.6)
From equation (2.6), we have that
y2+x=74.115
y2—x =7%.11%
where ay,a5,b1,by > 0. Then we get that
2y% =7 1151 4792 1122
from the sum of two equations. We multiply the above equation by 2 and we can
write the equation
Z2 =2.(7% 1151 + 792 1102) (2.7)
as
2U +2V =272 (2.8)

where Z =2y, U =79 1121 and V = 7%2.11b2,

Let pi1,pa2,..., ps (s = 1) be fixed distinct primes. The set of S—Units is defined
as S = {£py'p32..ps°| xi €Z, fori =1..k}. Let a,b € Q — {0} be fixed. In
[19], B.M.M. de Weger dealt with the solutions of the Diophantine equation ax +
by =z2,ina,b € S, z € Q. He showed that this equation has essentially only fi-
nitely many solutions. Moreover, he indicated how to find all the solutions of this
equation for any given set of parameters a,b, pi,..., ps. The tools are the theory of
p-adic linear forms in logarithms, and a computational p-adic diophantine approxim-
ation method. He actually performed all the necessary computations for solving (2.8)
completely for pyq,..., ps = 2,3,5,7 and a = b = 1, and reported on this elsewhere
(see [18], Chapter 7). Then we can find all the solutions of the Diophantine equa-
tion (2.7). But this requires a lot of additional manual effort. To solve the equation
x24+7%-118 = y4 instead of this method, we prefer using MAGMA (see [ 1]).

Writing in (1.2) @ = 4k + a1, B =4[+ B with ay, 81 € {0,1,2,3} we get that

X Y
72k 112! ’ 72k 112!

is an S —Integral point (X, Y') on the hyperelliptic curve
X2=y4—70.118, (2.9)
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where S = {7,11} with the numerator of Y being prime to 77, in view of the
restriction gcd(x, y) = 1. We use the subroutine SIntegralljunggrenPoints of
MAGMA to determine the {7, 11}-integral points on the above hyperelliptic curves
and we only find the following solutions

(X7 Yaal’ﬁl) = {(1’070’0)7(273» 170)9(372’ 19 l)v(87577 172)7
(92/7,8343/49,1,2),(5,24,2,0)}

With the conditions on x and y and the definition of X, Y, one can obtain the solutions
listed in the statement of the lemma. O

2.3. The Case n > 4 and Prime

Lemma 3. The Diophantine equation (1.2) has no solutions with n > 4 prime
except possibly for o and x are odd and B even.

Proof. Since in section 2 we have finished the study of equation x2 +7%-1 18 = "
with n = 3, we can assume that n is a prime > 4. One can write the Diophantine
equation (1.2) as x? 4 dz? = y", where

defl,7, 11,77}, z=7%-11#A (2.10)

the relation of &y and B with o and 8, respectively, is clear. If x is odd, then by z also
being odd we have that y is even, so y” =0 (mod 8). Asx?2=z2=1 (mod 8) we
have 1 +d =0 (mod 8),sod =7,implyingae =1 (mod 2) and 8 =0 (mod 2).
This case is excluded in the lemma. Hence we have that x is even, and y is odd. We
study in the field K = Q(i Vd). As gcd(x,z) = 1 standard argument tells us now that
in K we have

(x+ivdz)(x—ivdz) = y", @2.11)
where the ideals generated by x +iz Vd and x —iz~/d are coprime in K. Hence, we
obtain the ideal equation

(x +ivdz)=06" (2.12)

Then, since the ideal class number of K is 1 or 8, and n is odd, we conclude that the
ideal 0 is principal. The cardinality of the group of units of O is 2 or 4, all coprime
to . Furthermore, {1,i+/d} is always an integral base for O except for when d =7,
and d = 11, in which cases an integral basis for O is {1, (1 +i~/d)/2}. Thus, we
may assume that

i d
x+iﬁz=¢”,<p=%

the relation holds with some algebraic integer ¢ € Q. The algebraic integers in this

number field are of the form ¢ = M, where u,v € Z, with u,v both even, if
d = 1,77 and u,v both odd if d = 7, 11. Note that

2 2
_ . _ . _ u“+dv
go—go:vzx/g, <p+<p:l\/2v, (p(p:T

(2.13)



ON THE DIOPHANTINE EQUATION x2 4 7%.118 = y” 523

We thus obtain
2.7% 118 27 " —g"
v v -9
Let (Lm)m>o0 be the sequence with general term L, = (¢™ —¢™)/(¢ — @) for all
m > 0. This is called a Lucas sequence. Note that

e”Z. (2.14)

2 2
u®+dv
Lo=0,Ly=1and Ly, =ul,—1— TLm_z, m>2. (2.15)
Following the nowadays standard strategy based on the important paper [10], we
distinguish two cases according as L, has or has not primitive divisors.
Suppose first that L, has a primitive divisor, say g. By definition, this means that
the prime ¢ divides L, and ¢ does not divide (4 —)*L1...Ln—1, hence
3u? —dv?® u?—dv?

g+ (@—9)*Li...Ls = (dv?).u. 5 (2.16)

If ¢ = 2, then (2.16) implies that uv is odd, hence d = 11 or 77. If d = 11, then
third factor in the right hand-most side of (2.16) is even, a contradiction. If d = 77,
then, from (2.15) we see that L, = L,,—1 (mod 2), hence L,, is odd for every
m > 1, implying that 2 cannot be a primitive divisor of L.

If ¢ = 7, then (2.16) implies that d = 1,11 and 7 does not divide uv(3u? —
dv?)(u? — dv?). It follows easily then that v2 = —du? (mod 7), so that, by (2.15),
Ly =ul,,—1 (mod 8) for every m > 2. Therefore, 7 } Ly, so that 7 can not be a
prime divisor of L,,.

If ¢ = 11, then by (2.16), d = 1 or 7. If d = 1 then we write u = 2v1,v = 2v;
with uy,v; € Z, so that ¢ = u; +ix/3v1 and (2.16) becomes ¢ 4 u1v1(3u% —
dv%)(u% —dv%). Moreover, Ly, = 2u1Ly—1 — (u% + dv%)Lm_z for m > 2. Note
that ¢ = u% +d v% =% 0 (mod 8); therefore, by corollary 2.2 of [10], there exists a
positive integer 71 such that 11 | L,,,, and my1 | m for every m such that 11 | L,,.
It follows then that 11 | gcd(Ln,Lm,,) = Lgca(n,m,,)- Because of the minimality
property of mj1, we conclude that gcd(n,m 1), hence, since n is a prime, m1; = n.
On the other hand, the Legendre symbol (%) = —1, hence by Theorem XII of
[15] (or by theorem 2.2.4 (iv) of [26]), 11 | L15. Therefore m; | 12, i.e. n | 12, a
contradiction, since n is a prime> 5. If d = 7, then (2.16) implies 11 } ujv (3u% —
dv%)(u% —dv%). Moreover, Ly, = 2u1Ly—1 — (u% + dv%)Lm_z for m > 2. Note
that oo = u% +d v% # 0 (mod 8); therefore, by corollary 2.2 of [10], there exists a
positive integer m11 such that 11 | L,,,, and my1 | m for every m such that 11 | L, It
follows then that 11 | ged(Lp, Lmy,) = Lgca(n,m,,)- Because of the minimality prop-
erty of m11, we conclude that gcd(n,m11), hence, since n is a prime, m;; = n. On

2
the other hand, the Legendre symbol (%) = 1, hence by Theorem XII of [15]
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(or by theorem 2.2.4 (iii) of [26]), 11 | L1g. Therefore mqq | 10, i.e. n | 10. Since
n > 5 is a prime, we get that n = 5.

We conclude that 11 is primitive divisor for d = 7.

In particular, u and v are integers. Since 11 is coprime to —4dv? = —28v2, we
get that v = +7%1. Since y = u? + 7v2, we get that u is even.

In the case v = £7%!, equation (2.14) becomes

+1181 = 5u* — 700202 + 49v*.

Since u is even, it follows that the right hand side of the last equation above is con-
gruent to 1 (mod 8). So £1 11 =1 (mod 8), showing that the sign on the left hand
side is positive and 87 is odd, or the sign on the left hand side is negative and f; is
even.

Assume first that 81 = 28¢ + 1 be odd. We get

11V2 =5U0%-70U2 + 49,

where (U, V) = (u/v,11P0/v2) is a {7}-integral point on the above elliptic curve.
We get that the only such points on the above curve are (U, V) = (47, 428). This
does not lead to solutions of our original equation.

Assume now that 81 = 28 is even and we get that

V2 =5U%-70U% + 49,

where (U, V) = (u/v,11P0/v2) is a {7}-integral point on the above elliptic curve.
With MAGMA, we get that the only such point on the above curve are (U, V') = (0, 7).
This does not lead to solutions of our original equation.

We now recall that a particular instance of the Primitive Divisor Theorem for Lucas
sequences implies that, if n > 5 is prime, then L, always has a prime factor except
for finitely many exceptional triples (¢, @,n), and all of them appear in the Table 1
in [10] (see also [1]). These exceptional Lucas numbers are called defective.

Let us assume that we are dealing with a number L, without primitive divisors.
Then a quick look at Table 1 in [10] reveals that this is impossible. Indeed, all ex-
ceptional triples have n = 5,7 or 13. The defective Lucas numbers whose roots
are in K = Q(iv/d) with d =7 and n = 5,7 or 13 appearing in the list (2.10) is
(¢, @) = ((1+i7)/2, (1—i~/7)/2) for which L7 =7, L3 = —1. Furthermore,
with such a value for ¢ we get that y = |¢|?> = 2. However, this is not convenient
since for us x and y are coprime so y cannot be even. Forn =5 and d = 11,we
get Ls = 1 and y = 3 with (¢, @) = ((14i~/11)/2, (1—i~/11)/2). Therefore the
equation is x2+C =35, where C =7%-118, with a even and b odd. Since 113 > 35,
we have b = 1, and next that ¢ = 0. But it doesn’t yield an integer value for x. The
proof is completed. O

Remark 2. We mention here why the method applied for the proof of Lemma
3 does not apply when o« and x are odd, 8 is even. In this case d = 7, the class
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number of Q(~+/7i) is 1. With & = Lgﬁl a prime dividing 2, and o' its conjugate,
let us now write (x 4+ z+/7i) = wPw®E, where £ is an integer in Q(+/7i) of odd
norm, not divisible by 7 and £’ its conjugate. As both x and z are odd and they are
coprime, we may take ¢ = 1, b > 1. Taking norms we get y” = 20+ 1£¢/ and it easily
follows that £ = ¢” and b + 1 = k.n. Now we take ¢ = 2" 1¢, o = 20" 2, and then
we have x +z+/7i = p¢™. A way to look at the rest of argument why this case
is essentially different from the primitive divisors in Lucas sequences thing: From
x +2+/7i = p¢" and its conjugate it follows that

_ 99" 9"

24/7i

If p is in @ then the right hand side is the n-th term of a Lucas sequence. As z has a
very nice prime factorization 77117 then theory of primitive divisors will work. But
in our case g is not in Q. Hence the right side, while it is the n-th term of a recur-

rence sequence, this is not a Lucas sequence, and does not have the nice divisibility
properties of Lucas sequences. That’s why the method of [10] fails in our case.

<
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