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Abstract. The statistically unbounded p-convergence is an abstraction of the statistical order,
unbounded order, and p-convergences. We investigate the concept of the statistically unbounded
convergence on lattice-normed Riesz spaces with respect to statistical p-decreasing sequences.
Also, we get some relations between this concept and the other kinds of statistical convergences
on Riesz spaces.
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1. INTRODUCTION

A Riesz space is an ordered vector space, which was introduced by Riesz in
[21]. Most of the spaces encountered in the analysis are Riesz spaces. Moreover,
Riesz spaces have many applications in measure theory, operator theory, optimiza-
tion, problems of Banach spaces, measure theory, and applications in economics (cf.
[1–3, 19, 24]).

The order convergence is one of the fundamental concepts in the study of Riesz
spaces, which is not topological in general (cf. [15]). However, even without a
topological structure, several kinds of continuous operators can be defined. Another
fundamental concept in the theory of Riesz spaces is unbounded order convergence,
which was firstly introduced in [20] under the name individual convergence. A lot of
work has been done since then (cf. [7, 9, 14, 23]). The unbounded order convergence
will be the basic tool of this paper. Lattice-valued norms on vector lattices provide
natural and efficient tools in the theory of vector lattices. It is enough to mention the
theory of lattice-normed vector lattices (cf. [10, 17, 18]).

The theory of the statistical convergence is an active area of research, which is
a generalization of the ordinary convergence of a real sequence, and the idea of the
statistical convergence was firstly introduced by Zygmund [16]. After then, Fast
[12] and Steinhaus [22] independently improved that idea. Several applications and
generalizations of the statistical convergence of sequences have been investigated by
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several authors (cf. [4–6, 8, 11, 13]. Most of the works on the theory of the statistical
convergence are handled with respect to a given topology. But, Ercan introduced a
concept of the statistical convergence in Riesz spaces without topology in [11]. Then
Şençimen and Pehlivan extended this concept to Riesz spaces with respect to the
order convergence; see [8]. Recently, Aydın et al., have investigated some studies
about the statistical convergence on Riesz spaces, Riesz algebras, and locally solid
Riesz spaces; see [4–6]. In the present paper, we aim to introduce the concept of
the statistically unbounded p-convergence on lattice-normed spaces and illustrate the
usefulness of lattice-valued norms for the investigation of different types of statistical
convergence in Riesz spaces.

The structure of the paper is as follows. In Section 2, we give several notions re-
lated to lattice-normed spaces and statistical convergence. In Section 3, we introduce
the concept of the statistically unbounded convergence in lattice-normed spaces. In
the last section, we show some main results.

2. PRELIMINARIES

We begin the section with some basic concepts related to the theory of Riesz space
and refer to [1, 2, 17–19, 24] for more details.

Definition 1. A real-valued vector space E with a partial order relation ”≤” on
E (i.e. it is an antisymmetric, reflexive and transitive relation) is called an ordered
vector space whenever, for every x,y ∈ E, we have

(a) x≤ y implies x+ z≤ y+ z for all z ∈ E,
(b) x≤ y implies λx≤ λy for every 0≤ λ ∈ R.

An ordered vector space E is called a Riesz space or a vector lattice if, for any two
vectors x,y ∈ E, the infimum and the supremum

x∧ y = inf{x,y} and x∨ y = sup{x,y}

exist in E, respectively. A Riesz space is called Dedekind complete if every nonempty
bounded above subset has a supremum (or, equivalently, whenever every nonempty
bounded below subset has an infimum). For an element x in a Riesz spaces E, the
positive part, the negative part, and module of x, respectively

x+ := x∨0, x− := (−x)∨0 and |x| := x∨ (−x).

In the present paper, the vertical bar | · | of elements of the Riesz spaces will stand for
the module of the given elements. A Riesz space E is called Archimedean whenever
1
n x ↓ 0 holds in E for each x ∈ E+. Unless otherwise stated, we assume that all vector
lattices are real and Archimedean.

A sequence (xn) in a Riesz space E is said to be increasing whenever x1≤ x2≤ ·· · ,
and decreasing if x1 ≥ x2 ≥ ·· · . Then we denote them by xn ↑ and xn ↓ respectively.
Moreover, if xn ↑ and supxn = x then we write xn ↑ x. Similarly, if xn ↓ and infxn = x
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then we write xn ↓ x. Then we call that (xn) is increasing or decreasing as monotonic.
Moreover, we remind that a sequence (xn) in a Riesz space X is called

- order convergent to x∈X (xn
o−→x, for short) whenever there exists a sequence

(qn) ↓ 0 in X such that |xn− x| ≤ qn for all n ∈ N,
- unbounded order convergent (or uo-convergent, for short) to x ∈ X if
|xn− x|∧u o−→0 for every u ∈ X+, in this case, we write xn

uo−→x.

It is clear that order convergence implies uo-convergence because for any u ≥ 0
|a− b| ∧ u ≤ |a− b|. But, the converse need not be true. For example, consider the
sequence (en) of the standard unit vectors in c0. Then en

uo−→0, but does not converge
in order because (en) is not order bounded in c0. In Lp-spaces, where 1 ≤ p < ∞,
the uo-convergence of sequences is equivalent to almost everywhere convergence
(cf. [14]). Also, if E := `p, 1 ≤ p < ∞, c0 or c then uo-convergence is equivalent to
the coordinate-wise convergence (cf. [9]).

Definition 2. Let X be a vector space and E be a Riesz space. Then p : X → E+ is
called an E-valued vector norm whenever it satisfies the following conditions:

(1) p(x) = 0⇔ x = 0;
(2) p(λx) = |λ|p(x) for all λ ∈ R;
(3) p(x+ y)≤ p(x)+ p(y) for all x,y ∈ X .

Then the triple (X , p,E) is called a lattice-normed space, abbreviated as LNS. If,
in addition, X is a Riesz space and the vector norm p is monotone (i.e., |x| ≤ |y| ⇒
p(x)≤ p(y) holds for all x,y ∈ X) then the triple (X , p,E) is called a lattice-normed
vector lattice or a lattice-normed Riesz space. We abbreviate it as LNRS. While
dealing with LNRSs, we shall keep in mind also the following examples.

Example 1. Let X be a normed space with a norm ‖ · ‖. Then (X ,‖ · ‖,R) is an
LNS .

Example 2. Let X be a Riesz space. Then (X , | · |,X) is an LNRS .

We abbreviate the convergence p(xn− x) o−→0 as xn
p−→x and say in this case that

(xn) p-converges to x in an LNS (X , p,E). Moreover, an LNRS (X , p,E) is called
op-continuous if xn

o−→0 implies p(xn)
o−→0. In an LNS (X , p,E) a subset A of X is

called p-bounded if there exists e∈ E such that p(a)≤ e for all a∈ A. A vector e∈ X
is called a p-unit if, for any x ∈ X+, p(x−ne∧ x) o−→ 0. We refer the reader for more
information on LNSs to [7, 10, 17, 18].

Now, we recall some basic properties of the concepts related to the statistical con-
vergence. Consider a set K of positive integers. Then the natural density of K is
defined by

δ(K) := lim
n→∞

1
n
|{k ≤ n : k ∈ K}| ,
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where the vertical bar of sets will stand for the cardinality of the given sets. We refer
the reader to an exposition on the natural density of sets to [12,13]. In the same way,
a sequence x = (xk) is called statistical convergent to L provided that

lim
n→∞

1
n
|{k ≤ n : |xk−L| ≥ ε}|= 0

for each ε > 0. Then it is written by S− limxk = L. We take the following notions
from [6, 8]. Let (xn) be a sequence in a Riesz space E. Then (xn) is called

- statistically order decreasing to 0 if there exists a set K = {n1 < n2 < · · ·} ⊆
N with δ(K) = 1 such that (xkn) is decreasing and inf

kn∈K
(xkn) = 0, and so, it is

abbreviated as xn ↓st 0,
- statistically order convergent to x∈ E if there exists a sequence qn ↓st 0 with a

set K = {n1 < n2 < · · ·} ⊆N such that δ(K) = 1 and |xkn−x| ≤ qkn for every
kn ∈ K, and so, we write xn

st-o−−→x,
- statistically unbounded order convergent to x ∈ E if, for every u ∈ E+, there

exists a sequence qn ↓st 0 and a subset K of the natural numbers such that
δ(K) = 1 and

|xkn− x|∧u≤ qkn

for all kn ∈ K, and so, we abbreviate it as xn
st-uo−−→x.

Moreover, a sequence in an LNS (X , p,E) is said to be

- statistically p-decreasing to 0 if there exists a set K = {n1 < n2 < · · ·} ⊆ N
such that δ(K) = 1 and p(xkn) ↓ 0 on K, and so, we abbreviate it as xn ↓stp 0,

- statistically p-convergence to x if there exists a sequence qn ↓stp 0 in X with a
set K = {n1 < n2 < · · ·} ⊆ N such that δ(K) = 1 and p(xkn− x)≤ qkn for all

kn ∈ K, and so, we write xn
stp−→x.

3. STATISTICALLY UNBOUNDED p-CONVERGENCE

We introduce the statistically unbounded convergence on LNRSs in this section.
Recall that a sequence (xn) in an LNRS (X , p,E) is said to be unbounded p-convergent
to x ∈ X (shortly, xn

up−→ x), if p(|xn− x| ∧ u) o−→0 for all u ∈ X+; see [7, Def.6]. The
following definition is motivated by the notion of up-convergence.

Definition 3. Let (X , p,E) be an LNRS and (xn) be a sequence in X . Then (xn) is
said to be statistically unbounded p-convergence to x if, for any positive element u ∈
X+, there exists a sequence qn ↓stp 0 in X with an index set K = {n1 < n2 < · · ·} ⊆ N
such that δ(K) = 1 and

p(|xkn− x|∧u)≤ qkn

for all kn ∈ K. Then we write xn
st-up−−−→x.
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It is clear that a sequence xn
st-up−−−→x holds in an LNRS (X , p,E) if and only if

(xn− x)
st-up−−−→0 if and only if p(|xn− x|∧u) st-o−−→0 in E for all u ∈ X+.

Example 3. Let X∗ be the algebraic dual of a Riesz space X and Y be a sublattice
of X∗ such that 〈X ,Y 〉 is a dual system. Then define an LNRS (X , p,RY ) with a lattice
norm p : X → RY denoted by p(x)[ f ] := | f |(|x|). Take a sequence (xn) in X . Thus, it

is clear that |xn|∧u
|σ|(X ,Y )−−−−→ 0 for every u ∈ X+, and so, we have xn

st-up−−−→0.

The next observations follow directly from the basic definitions and results, and
so, we omit their proofs.

Remark 1.

(i) It follows from the inequality |a− b| ∧ u ≤ |a− b| in Riesz spaces and by
the monotonicity of p in LNRSs that statistical p-convergence implies st-up-
convergence.

(ii) Statistically unbounded p-convergence coincides with the notion of statistical
p-convergence for order bounded sequences.

(iii) Consider an LNRS (Lp(µ),‖·‖,R) for 1≤ p < ∞, where µ is a finite measure.
Then the convergence in measure implies st-up-convergence of sequences in
Lp(µ); see [23].

(iv) Take the LNRSs (Lp, |·|,Lp) for 1 ≤ p < ∞. Then the abstraction of a.e.-
convergence in Lp-spaces implies st-up-convergence of sequences in Lp; see
[14].

(v) Consider an LNRS (E, | · |,E) for an arbitrary Riesz space E. Then statistic-
ally unbounded order convergence and st-up-convergence agree.

(vi) Every up-convergent sequence is statistically unbounded p-convergent to its
up-limit.

(vii) A statistical p-decreasing sequence is st-up-convergent.
(viii) Take an LNRS (X , p,E), where E is `p (1 ≤ p < ∞), c0 or c. Then the

coordinate-wise convergence of a sequence implies st-up-convergence.
(ix) An order convergent sequence in op-continuous LNRSs is st-up-convergent

to its order limit.

The converse of the properties of Remark 1 need not be true in general. To see
some of them, we give the following examples.

Example 4. Consider the LNRS (c0, | · |,c0), where c0 is the set of all convergent to
zero real sequences. Take the sequence (en) of the standard unit vectors in c0. Then
(en) is statistically unbounded p-convergent to 0. However, it is not p-convergent
because it is not p-bounded in c0.
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Example 5. Let’s consider the LNRS (R2, | · |,R2), where Euclidean space R2 with
the coordinate-wise ordering. Take a sequence (xn) in R2 denoted by

xn :=

{
(0,n), k = n3

(1, 1
n), k 6= n3

for all n, where k ∈ N. Thus, (xn) is statistically unbounded p-convergent to
(1,0) ∈ R2. But, it does not up-convergent.

Example 6. Let’s take the LNRS c of all convergent real sequences. Consider
a sequence (xn) in LNRS (c, | · |,c) denoted by xn := (xn

k) = (xn
1,x

n
2, · · · ,xn

k , · · ·) ∈ E
such that

xn
k :=

{
1, k = n2

1
k+1 , k 6= n2

for all n,k ∈ N. Then it is clear that xn
st-up−−−→0. Observe that the whole sequence (xn)

is not monotonic.

It is clear from Example 5 that a statistical p-monotone decreasing sequence need
not be monotone convergent in general. It is well known that a subsequence of order
convergent sequence is order convergent to its order limit. However, this need not be
true for st-up-convergence. To illustrate this, we consider the following example.

Example 7. Take the Riesz space R and a sequence (xn) in R defined by

xn :=

{
(−1)n(2n+1), k = n5

1
2n+1 , k 6= n5

for all n, where k ∈ N. Fix u ∈ R+. Thus, for the sequence qn := 1
n+1 ↓ 0, we have

|xn|∧u≤ qn for all n ∈ N such that n 6= k5 for all k ∈ N. Hence, we obtain xn
st-up−−−→0.

But, by choosing a subsequence (xmn) of (xn) such that mn = k5 for some k ∈ N, it is
clear that (xmn) is not st-up-convergent.

By the following sense, we see that the lattice operations in an LNRS are statistic-
ally unbounded p-continuous.

Theorem 1. If xn
st-up−−−→x and yn

st-up−−−→y satisfy then xn∨ yn
st-up−−−→x∨ y in LNRSs.

Proof. Let xn
st-up−−−→x and yn

st-up−−−→y be in an LNRS (X , p,E). Take an arbitrary
u ∈ E+. Then there exist sequences qn ↓stp 0 and tn ↓stp 0 with δ(K) = δ(M) = 1 such
that p|(xkn− x|∧u)≤ qkn and p(|xmn− y|∧u)≤ tmn for each kn ∈ K and mn ∈M. By
using the inequality |a∨b−a∨ c| ≤ |b− c| (cf. [2, Thm.1.9(2)]) in Riesz spaces, we
have

p(|xn∨ yn− x∨ y|∧u)≤ p(|xn∨ yn− xn∨ y|∧u)+ p(|xn∨ y− x∨ y|∧u)

≤ p(|yn− y|∧u)+ p(|xn− x|∧u)
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for every n ∈ N. So, it follows that

p(|x jn ∨ y jn− x∨ y|∧u)≤ p(|y jn− y|∧u)+ p(|x jn− x|∧u)≤ q jn + t jn

for each jn ∈ J, where J :=K∩J. Therefore, we have xn∨yn
st-up−−−→x∨y by (q jn +t jn) ↓

0. �

Theorem 2. Let (X , p,E) be an LNRS, xn
st-up−−−→x and yn

st-up−−−→y. Then the following
statements hold;

(i) if xn
st-up−−−→x and xn

st-up−−−→z then x = y;
(ii) λxn +βyn

st-up−−−→λx+βy for all λ,β ∈ R;
(iii) |xn|

st-up−−−→|x|;
(iv) x+n

st-up−−−→x+;
(v) if xn ≥ yn for all n ∈ N then we have x≥ y.

Proof. The properties (iii) and (iv) are results of Theorem 1, and so, we omit their
proof. Moreover, (v) can be obtained by applying (iv), and (ii) has a straightforward
proof.

To prove (i), consider that a sequence (xn) in an LNRS (X , p,E) satisfies xn
st-up−−−→x

and xn
st-up−−−→y. Fix a positive element u ∈ X+. Then there exist sequences qn ↓stp 0 and

tn ↓stp 0 with index sets K,M ⊆ N such that δ(K) = δ(M) = 1 and

p(|xkn− x|∧u)≤ qkn and p(|xmn− y|∧u)≤ tmn

hold for all kn ∈K and mn ∈M. Take J :=K∩M, and so, we have δ(J) = 1. It follows
p(|x jn− x|∧u)≤ q jn and p(|x jn− y|∧u)≤ r jn for each jn ∈ J. Thus, we observe

0≤ p(|x− y|∧u)≤ p(|xmn− x|∧u)+ p(|xmn− y|∧u)≤ q jn + r jn

for every jn ∈ J. Thus, (q jn + r jn) ↓ 0 on J, and so, we obtain |x− y|∧u = 0. Since u
is arbitrary, we get x = y. �

By applying Theorem 2(v), we give the following result.

Corollary 1. Let (X , p,E) be an LNRS and (xn), (yn) and (zn) be sequences in X

such that xn ≤ yn ≤ zn for all n ∈ N. Then xn
stp−→x and zn

stp−→x implies yn
stp−→x.

In the following theorem, we give a relation between st-up- and order convergence.

Theorem 3. Any monotone st-up-convergent sequence in an LNRS is order con-
vergent to its st-up-limit.

Proof. Suppose that xn
st-up−−−→x and xn ↓ hold in an LNRS (X , p,E). Then, for a

fixed arbitrary m, we have xm− xn ∈ X+ for each n ≥ m. Thus, by using Theorem
2, we get xm− xn

st-up−−−→xm− x ∈ X+. So, it is clear that x is a lower bound of (xn)
because m is arbitrary. Choose another lower bound w of (xn), i.e., xn ≥ w for all n.
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Then, again by applying Theorem 2, we obtain xn− x
st-up−−−→x−w ∈ X+. Hence, we

have w≤ x, i.e., we get xn ↓ x. �

It follows from Remark 1(i) that statistical p-convergence implies st-up-conver-
gence. For the converse, we give the following result.

Theorem 4. Let (xn) be a monotone and xn
st-up−−−→x sequence in an LNRS (X , p,E).

Then xn
stp−→x.

Proof. Assume that 0 ≤ xn ↑ holds in X by without loss of generality. It follows
from Theorem 3 that xn

o−→x for some x∈ X . Thus, we get 0≤ x−xn ≤ x for all n∈N.
Fix u∈ X+. Then we have p((x−xn)∧u) st-o−−→0 because of xn

st-up−−−→x. If, in particular,
we choose u as x ∈ X+ then we get p(x− xn) = p((xn− x)∧ x) st-o−−→0, i.e., we have

xn
stp−→x. �

4. MAIN RESULTS

Recall that if (xn) is a sequence satisfying the property P for all n ∈N except a set
of natural density zero then we say that (xn) satisfies the property P for almost all n,
and it is abbreviated by a.a.n.; see [13].

Theorem 5. A sequence xn
st-up−−−→x holds in LNRSs if and only if there is another

sequence (yn) such that xn = yn for a.a.n and yn
st-up−−−→x.

Proof. Assume that there is a sequence (yn) in an LNRS (X , p,E) such that xn = yn

for a.a.n and yn
st-up−−−→x. Take an arbitrary u ∈ X+. Thus, there exists a sequence

qn ↓stp 0 with a set δ(K) = 1 such that p(|ykn − x| ∧ u) ≤ qkn for all kn ∈ K. It fol-
lows from xn = yn for a.a.n that the index sets {kn ∈ K : p(|xkn − x| ∧ u) ≤ qkn} and
{kn ∈ K : p(|ykn − x| ∧ u) ≤ qkn} are a.a.n. Therefore, there is a subset J of K such

that δ(J) = 1 and p(|x jn− x|∧u)≤ q jn for each jn ∈ J. So, we have xn
st-up−−−→x. �

In the general case, Example 7 shows that a subsequence of st-up-convergent se-
quence need not be st-up-convergent. But, in the following work, we give a positive
result for this.

Theorem 6. Let (X , p,E) be an LNRS and (xn) be a sequence in X. If xn
st-up−−−→x

and 0≤ xn ↓ then every subsequence (xkn) with an index set δ({k1,k2, · · · ,ki, · · ·}) = 1
is st-up-convergent to x.

Proof. Assume that xn ↓ and xn
st-up−−−→x in an LNRS (X , p,E). Then, for any u∈ X+,

there exists a sequence qn ↓stp 0 with a set δ(K) = 1 such that p(|xkn − x| ∧ u) ≤ qkn

for all kn ∈ K. Thus, it can be seen that xkn

st-up−−−→x holds.
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On the other hand, it follows from Theorem 4 that xn
stp−→x, i.e., p(xn− x) st-o−−→0.

Thus, we have p(xn− x)↓st 0 because of the monotonicity of p and (xn− x) ↓. Then,
for an arbitrary M = {m1, · · · ,mn, · · ·} ⊆ N such that δ(M) = 1 and M 6= K, we have
p(xmn − x) ↓ 0 by applying [8, Thm.3]. Hence, p(xmn − x)↓st 0, and so,

p(xmn− x) st-o−−→0, i.e., (xmn− x)
stp−→0. Therefore, we get xmn

st-up−−−→x. �

Recall that a Dedekind complete Riesz space Xδ is said to be a Dedekind comple-
tion of a Riesz space X whenever X is Riesz isomorphic to a majorizing order dense
Riesz subspace of Xδ. It is well known that every Archimedean Riesz space has a
Dedekind completion (cf. [2, Thm.2.24]). A sequence xn

o−→0 in a Riesz space X if
and only if xn

o−→0 in Xδ (cf. [14, Cor. 2.9]).

Theorem 7. Let (X , p,E) be an LNRS and e be a p-unit in X. Then we have

xn
st-up−−−→0 in X if and only if p(|xn|∧ e) st-o−−→0 in E.

Proof. Suppose that xn
st-up−−−→0 holds in X . Then, by taking u = e ∈ E+, we get

p(|xn|∧ e) st-o−−→0 in E.
Now, assume that p(|xn|∧e) st-o−−→0 in E. Then there exists a sequence qn ↓stp 0 with

a set δ(K) = 1 such that p(|xkn |∧e)≤ qkn for all kn ∈ K, i.e., we have p(|xkn |∧e) o−→0
on K. Take any u ∈ X+. Then we observe that

p(|xkn |∧u)≤ p(|xkn |∧ (u−u∧ne))+ p(|xkn |∧ (u∧ne))

≤ p(u−u∧ne)+np(|xkn |∧ e)

holds in Eδ for each kn ∈ K and for every n ∈ N. So, we have

limsup
kn

p(|xkn |∧u)≤ p(u−u∧ne)+n limsup
kn

p(|xkn |∧ e)

holds in Eδ for all n ∈ N. Since p(|xkn |∧ e) o−→0 in E, we have p(|xkn |∧ e) o−→0 in Eδ.
Thus, we see limsup

kn

p(|xkn |∧ e) = 0 in Eδ. Thus

limsup
kn

p(|xkn |∧u)≤ p(u−u∧ne)

holds in Eδ for all n ∈ N. Since e is a p-unit, we have limsup
kn

p(|xkn | ∧ u) = 0 in Eδ

or p(|xkn |∧u) o−→0 in Eδ. It follows that p(|xkn |∧u) o−→0 in E. Hence, xn
st-up−−−→0. �

Theorem 8. Let (X , p,E) be an LNRS. Then define a Riesz norm pδ : Xδ→ Eδ by

pδ(z) = sup
0≤x≤|z|

p(x) for every z ∈ Xδ. Then we have xn
st-up−−−→x in (X , p,E) if and only

if xn
st-up−−−→x in (Xδ, pδ,Eδ).
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Proof. It follows from [7, Prop.4.1] that (Xδ, pδ,Eδ) is an LNRS.
Take a sequence xn

st-up−−−→0 in (X , p,E) and fix an arbitrary positive element z in
Xδ
+. Then, for any positive element u ∈ X+, there exists a sequence qn ↓stp 0 in E with

a set δ(K) = 1 such that p(|xkn − x| ∧ u) ≤ qkn for every kn ∈ K. On the other hand,
since X is majorizing in its Dedekind completion Xδ, there exists u ∈ X such that
0 < z≤ u. By using |xkn− x|∧ z≤ |xkn− x|∧u, we obtain

pδ(|xkn− x|∧ z)≤ p(|xkn− x|∧u)≤ qkn

for each kn ∈ K. Thus, xn
st-up−−−→x in (Xδ, pδ,Eδ) because qkn ↓ 0 in X implies qkn ↓ 0

in Xδ; [14, Cor.2.9].
For the converse, suppose that xn

st-up−−−→0 in (Xδ, pδ,Eδ) and u be a positive element
in X+. Then there exists a sequence qn ↓stp 0 in Eδ with a set δ(K) = 1 such that
pδ(|xkn − x| ∧ u) ≤ qkn for every kn ∈ K. Again by applying [14, Cor.2.9], qkn ↓ 0 in
Xδ implies qkn ↓ 0 in X . So, we have

p(|xkn− x|∧u) = pδ(|xkn− x|∧u)≤ qkn

for every kn ∈ K because of (xn) in X . It follows that xn
st-up−−−→x in (X , p,E). �

Proposition 1. A statistical order convergent sequence in op-continuous LNRSs
is st-up-convergent.

Proof. Let xn
st-o−−→x be in an op-continuous LNRS (X , p,E). Then there exists a

sequence sn ↓st 0 in X with an index set I such that δ(I) = 1 and |xin−x| ≤ sin for each
in ∈ I. Hence, we get p(xin − x) ≤ p(sin), and so, p(|xin − x| ∧ u) ≤ p(sin) for every
in ∈ I and each u ∈ X+. By using sin ↓ 0 on I in X , it follows from op-continuity of

(X , p,E) that p(sin) ↓ 0 on I in E. Therefore, we get the desired result, xn
st-up−−−→0. �

Recall that a subset A of a Riesz space E is called solid if, for each x∈ A and y∈ E,
|y| ≤ |x| implies y ∈ A. Also, a solid vector subspace of a Riesz space is referred to
as an ideal. Moreover, an order closed ideal is called a band (cf. [1, 3]).

Proposition 2. Let B be a band in an LNRS (X , p,E). If bn
st-up−−−→x is a sequence

in B then x ∈ B.

Proof. Assume that bn
st-up−−−→x satisfies for a sequence (bn) in B and some x ∈ X .

By applying Theorem 1, we have |bn| ∧ |z|
st-up−−−→|x| ∧ |z| for any z ∈ Bd := {z ∈ X :

|z| ∧ |b| = 0 for all b ∈ B}. Also, |bn| ∧ |z| = 0 for all n because (bn) is a sequence
in B. Therefore, we obtain |x| ∧ |z| = 0. So, x ∈ Bdd . As a result, it follows from
[2, Thm.1.39] that we have B = Bdd , and so, we obtain x ∈ B. �

Proposition 3. Let B be a projection band in an LNRS (X , p,E) and pB be the

corresponding band projection of B. Then xn
st-up−−−→x implies PB(xn)

st-up−−−→PB(x).
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Proof. Let xn
st-up−−−→x be in an LNRS (X , p,E). Then, for any u ∈ X+, there exists a

sequence qn ↓stp 0 with a set δ(K) = 1 such that p(|xkn − x| ∧u) ≤ qkn for all kn ∈ K.
Also, it is well known that a band projection pB is a lattice homomorphism and it
satisfies the inequality 0≤ PB ≤ I. Hence, we have

p(|PB(xkn)−PB(x)|∧u) = p((PB|xkn− x|)∧u)≤ p(|xkn− x|∧u)≤ qkn

for every kn ∈ K. Thus, we have PB(xn)
st-up−−−→PB(x). �

Theorem 9. Let (X , p,E) be an LNRS and Y be a sublattice of X. If a sequence
(yn) in Y is st-up-convergent to zero in Y then it is st-up-convergent to zero in X for
each of the following cases:

(i) Y is majorizing in X;
(ii) Y is p-dense in X;

(iii) Y is a projection band in X.

Proof. Assume that (yn) is a sequence in Y such that yn
st-up−−−→0 in Y and u be a

positive element in X+.
(i) Since Y is majorizing in X , there exists y ∈ Y such that u≤ y. It follows from

0≤ p(|yn|∧u)≤ p(|yn|∧ y) st-o−−→0,

that p(|yn|∧u) st-o−−→0, i.e., yn
st-up−−−→0 in X .

(ii) Take any 0 6= w ∈ p(X). Thus, there is y ∈Y with p(u−y)≤ w. So, it follows
that

p(|yn|∧u)≤ p(|yn|∧ |u− y|)+ p(|yn|∧ |y|)≤ w+ p(|yn|∧ |y|).

Then p(|yn|∧u) st-o−−→0 because 0 6= w ∈ p(X) is arbitrary and p(|yn|∧ |y|)
st-o−−→0. So,

we get yn
st-up−−−→0 in X .

(iii) It is clear that Y = Y⊥⊥ implies X = Y ⊕Y⊥. Thus, u = u1 +u2 with u1 ∈ Y
and u2 ∈ Y⊥. It follows from yn∧u2 = 0 and [2, Lem.1.4] that we have

p(|yn|∧u) = p(|yn|∧ (u1 +u2))≤ p(|yn|∧u1)
st-o−−→0.

As a result, we get yn
st-up−−−→0 in X . �
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[8] C. Şençimen and S. Pehlivan, “Statistical order convergence in Riesz spaces,” Math. Slov., vol. 62,
no. 2, pp. 557–570, 2012, doi: 10.2478/s12175-012-0007-z.

[9] Y. Deng, M. O’Brien, and V. Troitsky, “Unbounded norm convergence in Banach lattices,” Posit-
ivity, vol. 21, no. 3, pp. 963–974, 2017, doi: 10.1007/s11117-016-0446-9.
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