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Abstract. In this paper, we consider integral boundary value problems of nonlinear fractional
differential equations. Existence results of positive solutions for the problem are obtained based
on the Guo-Krasnoselskii theorem and the Five functional fixed point theorem. Simple examples
follow the main results in successive sections.
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1. INTRODUCTION

In this study, we consider the following IBVP
Dβ(ϕp(

cDαy(t)))+ f (t,y(t)) = 0, t ∈ [0,1],
y(0) = y′′(0) = 0, y(1) = k

∫ 1
0 y(s)ds,

ϕp(
cDαy(0)) = [ϕp(

cDαy(0))]′ = 0,
(1.1)

where 2 < α ≤ 3, 1 < β ≤ 2, 0 < k < 2, cDα and Dβ are the Caputo and Riemann-
Liouville derivatives respectively, ϕp(y) = |y|p−2y such that p > 1, ϕ−1

p = ϕq with
1/p+1/q = 1 and f (t,y) ∈C([0,1]× [0,+∞), [0,+∞)).

A great deal of interest has emerged in the field of fractional differential equations.
To be more specific, in the scientific discipline, precisely the area of mathematical
modelling of processes in polymer rheology, physics, aerodynamics and chemistry
among others, has fully embraced fractional differential equations as a vital tool in
the description of hereditary properties for some materials and processes. Advances
in fractional calculus theories has led to its applications in engineering, mechanics,
chemistry, physics, among others, see [1, 3, 9, 10, 12–17, 20, 24].
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An appreciable amount of authors have intensively concentrated on the existence
and multiplicity of positive solution for boundary value problems of nonlinear frac-
tional differential equations by applying certain fixed point theorems which include
the Guo-Krasnosel’skii fixed point theorem, upper and lower solutions method, the
Leggett-Williams fixed point theorem and the Schauder fixed-point theorem to men-
tion but a few [5,6,8,26–28]. Some work has been covered involving integral bound-
ary value problems, detailed approaches on integral boundary value problems can be
seen in [4] and references entailed therein.

However, as far as we know, a limited number of work involving both a combina-
tion of Caputo-Riemann Liouville derivatives and integral boundary value conditions
have been considered some of which include [7, 18, 19, 25]. Our work presents an
in depth expansion and comprehensive approach inevitable in the field of fractional
differential equations addressing the limitation outlined above.

This paper is organized in such a manner, Section 2 presents some necessary back-
ground material, lemmas and definitions. Section 3 deals with the existence of single
and multiple positive solutions for the functional differential equation with fractional
order (1.1) based on the Guo-Krasnoselskii theorem. Section 4 focuses on the exist-
ence of multiple positive solutions for the fractional differential equation by means
of applying the Five functional fixed point theorem.

2. BASIC DEFINITIONS AND PRELIMINARIES

In this section, we introduce some necessary definitions and lemmas.

Definition 1 ([4, Definition 2.2]). The integral

Iβg(t) =
∫ t

a

(t − s)β−1

Γ(β)
g(s)ds,

where β > 0, is the fractional integral of order β for a function g(t).

Definition 2. The gamma function is defined by the integral formula

Γ(z) =
∫

∞

0
tz−1e−tdt.

The integral converges absolutely for Re(z) > 0. For any positive integer n, Γ(n) =
(n−1)!.

Definition 3 ([4, Definition 2.3]). For a function g(t) the expression

Dβ

0+g(t) =
1

Γ(n−β)

(
d
dt

)n ∫ t

0
(t − s)n−β−1g(s)ds,

is called the Riemann-Liouville fractional derivative of order β, where n = [β] + 1,
and [β] denotes the integer part of number β, provided that the right-hand side of the
previous equation is point-wise defined on (0,∞).
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Definition 4 ([21, Definition 2.2]). The α order Caputo fractional derivatives for
a function f (t) is defined as follows:

cDα f (t) =
1

Γ(n−α)

∫ t

0
(t − s)n−α−1 f (n)(s)ds, n−1 < α < n.

Definition 5 ([21, Definition 2.3]). Let P ⊆ K be a nonempty, convex closed set
and K a real Banach space. Then P is called a cone in K provided that

(1) λy ∈ P, for all y ∈ P and λ ≥ 0;
(2) y,−y ∈ P implies that y = 0.

Definition 6 ([21, Definition 2.4]). Let P be a cone in real Banach space K. If the
map
ϑ : P → [0,∞) is continuous and satisfies

ϑ(tx+(1− t)y)≥ tϑ(x)+(1− t)ϑ(y), x,y ∈ P, t ∈ [0,1],

then ϑ is called a nonnegative continuous concave functional on P.
In a similar way, the map ϒ is a nonnegative continuous convex function on a cone

P of a real Banach space K provided that ϒ : P → [0,∞) is continuous and

ϒ(tx+(1− t)y)≤ tϒ(x)+(1− t)ϒ(y),

for all x,y ∈ P and t ∈ [0,1].

Lemma 1 ([2, Lemma 2.2]). Assume that g ∈ C(0,1)∩L(0,1) with a fractional
derivative of order β > 0 that belongs to C(0,1)∩L(0,1). Then

IβDβg(t) = g(t)+ c1tβ−1 + c2tβ−2 + · · ·+ cNtβ−N ,

for some ci ∈R, i = 1,2, · · · ,N, where N is the smallest integer greater than or equal
to β.

Lemma 2 ([21, Lemma 2.1]). Assume that α > 0 and n = [α]+1. If the function
y ∈ L[0,1]∩C[0,1], then there exists ci ∈ R, i = 1,2, . . . ,n, such that

Iα(cDα f (t)) = f (t)− c1 − c2t · · ·− cntn−1.

Lemma 3. The problem (1.1) has a unique solution as follows:

y(t) =
∫ 1

0
G(t,s)ϕq(Iβ f (s,y(s)))ds, t ∈ [0,1]

where

G(t,s) =


2t(1−s)α−1(α−k(1−s))−α(2−k)(t−s)α−1

(2−k)Γ(α+1) , 0 ≤ s ≤ t ≤ 1,
2t(1−s)α−1(α−k(1−s))

(2−k)Γ(α+1) , 0 ≤ t ≤ s ≤ 1,
(2.1)

is the Green’s function.
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Proof. Let u(t) = ϕp(
cDαy(t)), we now show that IBVP (1.1) can be expressed as

the following IBVP: {
Dβu(t)+ f (t,y(t)) = 0,
u(0) = u′(0) = 0

(2.2)

and {
cDαy(t) = ϕq(u(t)), t ∈ (0,1)
y(0) = y′′(0) = 0, y(1) = k

∫ 1
0 y(s)ds.

(2.3)

Using Lemma 1 and (2.2), we get

u(t) =−Iβ f (t,y(t))+ c1tβ−1 + c2tβ−2,

since u(0) = u′(0) = 0, then c1 = c2 = 0 and we have

u(t) =−Iβ f (t,y(t)) =
−1

Γ(β)

∫ t

0
(t − s)β−1 f (s,y(s))ds.

Also, from (2.3) and [4], we get

y(t) =
∫ t

0

2t(1− s)α−1(α− k(1− s))−α(t − s)α−1(2− k)
(2− k)Γ(α+1)

ϕq(Iβ f (s,y(s)))ds

+
∫ 1

t

2t(1− s)α−1(α− k(1− s))
(2− k)Γ(α+1)

ϕq(Iβ f (s,y(s)))ds

=
∫ 1

0
G(t,s)ϕq(Iβ f (s,y(s)))ds.

This completes the proof. □

Lemma 4 ([21, Lemma 2.3]). The function G(t,s) defined in (2.1) satisfies the
following properties:

(1) 0 < G(t,s)≤ 2
(2−k)Γ(α) , for t,s ∈ (0,1) if and only if 0 < k < 2.

(2) tG(1,s)≤ G(t,s)≤ 2α

k(α−2)G(1,s), for all t,s ∈ (0,1), 2 < α < 3 and
0 < k < 2.

(3) G(t,s) and G(t,s)
t are two continuous functions for all t,s ∈ [0,1], 2 < α < 3

and k ̸= 2.

Lemma 5 ([11, Theorem 2.3]). Let K be a Banach space and let X ⊂ K be a cone
in K. Assume that Ω1 and Ω2 are open subsets of K with 0 ∈ Ω1 and Ω1 ⊂ Ω2. Let
T : X ∩ (Ω2 \Ω1)→ X be completely continuous operator. In addition, suppose that
either

(1) ∥Ty∥ ≤ ∥y∥, for all y ∈ X ∩∂Ω1 and ∥Ty∥ ≥ ∥y∥, for all y ∈ X ∩∂Ω2 or
(2) ∥Ty∥ ≤ ∥y∥, for all y ∈ X ∩∂Ω2 and ∥Ty∥ ≥ ∥y∥, for all y ∈ X ∩∂Ω1 holds.

Then T has a fixed point in X ∩ (Ω2 \Ω1).
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Lemma 6 ([22, Lemma 2.6]). Let K be a real Banach space, P ⊂ K be a cone,
Ωr = {y ∈ P : ∥y∥ ≤ r}. Let the operator T : P∩Ωr → P be completely continuous
and satisfying Tu ̸= u, ∀u ∈ ∂Ωr.

Then
(1) if ∥Tu∥ ≤ ∥u∥, ∀u ∈ ∂Ωr, then i(T,Ωr,P) = 1,
(2) if ∥Tu∥ ≥ ∥u∥, ∀u ∈ ∂Ωr, then i(T,Ωr,P) = 0.

3. MAIN RESULTS

In this section we show the existence results for (1.1). We define the operator
T : C[0,1]→C[0,1] as

Ty(t) : =
∫ 1

0
G(t,s)ϕq(Iβ f (s,y(s)))ds, (3.1)

with G defined in (2.1). Let K =C[0,1] be a Banach space endowed with norm ∥ · ∥
and P ⊂ K be the cone expressed as follows

P =

{
y ∈ K,

y(t)
t

∈ K, y(t)≥ tk(α−2)
2α

∥y∥, for all t ∈ [0,1]
}
. (3.2)

We set

f ∗0 = lim
y→0+

{
min

t∈[0,1]

f (t,y)
ϕp(y)

}
and f ∗∞ = lim

y→∞

{
max

t∈[0,1]

f (t,y)
ϕp(y)

}
.

Theorem 1. Suppose that either of the two following conditions is satisfied:
(1) f ∗0 = ∞ and f ∗∞ = 0.
(2) f ∗0 = 0, f ∗∞ = ∞ and there exists ν > 0 for which f (t,ωι)≥ νιδ f (t,ω) for all

ι ∈ (0,1].
Then, for all α ∈ (2,3) and k ∈ (0,2), the problem (1.1) has at least one solution that
belongs to the cone P defined in (3.2)

Proof. Firstly, we prove that T : P → P is completely continuous. By the continu-
ity and the non-negativeness of functions G and f on their domains of definition, we
get that if y ∈ P then Ty ∈ K and Ty(t)≥ 0 for all t ∈ [0,1].

Furthermore,

Ty(t)
t

=
∫ 1

0

G(t,s)
t

ϕq(Iβ f (s,y(s))))ds,

that is, from condition (3) in Lemma 4, a continuous function for all y ∈ K. We can
see that T (P)⊂ P. We take y ∈ P, then for all t ∈ [0,1] the following inequalities are
satisfied

Ty(t) =
∫ 1

0
G(t,s)ϕq(Iβ f (s,y(s)))ds
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≥ tk(α−2)
2α

max
t∈[0,1]

{∫ 1

0
G(t,s)ϕq(Iβ f (s,y(s)))ds

}
=

tk(α−2)
2α

∥Ty∥.

By the continuity of functions G and f , the operator T : P → P is continuous. Let
Ω ⊂ P be bounded, that is, there exists a positive constant M > 0 such that ∥y∥ ≤ M
for all y ∈ Ω.

We define L = max0≤t≤1,0≤y≤M | f (t,y)|+1.
Then, for all y ∈ Ω, it is satisfied that

|Ty(t)| ≤
∫ 1

0
G(t,s)ϕq(Iβ f (s,y(s)))ds

≤ Lq−1

(Γ(β+1))q−1

∫ 1

0
G(t,s)ds, for all t ∈ [0,1].

Therefore, the set T (Ω) is bounded in K. For each y ∈ Ω, we get

|(Ty)′(t)|=
∣∣∣∣−∫ t

0

(t − s)α−2

Γ(α−1)
ϕq(Iβ f (s,y(s)))ds

+
∫ 1

0

2(1− s)α−1(α− k+ ks)
(2− k)αΓ(α)

ϕq(Iβ f (s,y(s)))ds
∣∣∣∣

≤ Lq−1

(Γ(β+1))q−1

[
1

Γ(α)
+

2
Γ(α+1)

]
: = N .

Consequently, for all t1, t2 ∈ [0,1], t1 < t2, we obtain

|(Ty)(t2)−Ty)(t1)| ≤
∫ t2

t1
|(Ty)′(s)|ds ≤ N (t2 − t1).

and the set T (Ω) is equicontinuous. By the Arzela-Ascoli Theorem we conclude that
T (Ω) is compact, that is, T : P → P is a completely continuous operator. We now
consider the following cases:

Case 1: In part 1 of Theorem 1, f ∗0 = ∞ and f ∗∞ = 0. Since f ∗0 = ∞, then there
exists a constant η1 > 0 such that f (t,y)≥ ϕp(ϑ1y) for all 0 < y ≤ η1, where
ϑ1 > 0 satisfies

ϑ1
k(α−2)

2α(Γ(β+1))q−1

∫ 1

0
G(t,s)sβ(q−1)+1ds ≥ 1. (3.3)

We assign y ∈ P, such that ∥y∥= η1, then from (3.3), we get

∥Ty∥= max
t∈[0,1]

{∫ 1

0
G(t,s)ϕq(Iβ f (s,y(s)))ds

}
≥∥y∥ϑ1

k(α−2)
2α(Γ(β+1))q−1

∫ 1

0
G(t,s)sβ(q−1)+1ds ≥ ∥y∥.
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Since f (t, ·) is a continuous function on [0,∞], we denote

f (t,y) = max
u∈[0,y]

{ f (t,u)} .

Trivially, f (t, ·) is non-decreasing on [0,∞). Also, since f ∗∞ = 0, it is easy to
see from [4] that

lim
y→∞

{
max

t∈[0,1]

f (t,y)
y

}
= 0.

We assign ϑ2 > 0 satisfying

ϑ2
2

(2− k)Γ(α)(Γ(β+1))q−1 ≤ 1. (3.4)

Then, there exists η2, η1 > 0 such that f (t,y)≤ ϕp(ϑ2y) for all y ≥ η2. We
let y ∈ P be such that ∥y∥= η2, therefore, from the definition of f and (3.4),
we obtain the inequalities:

∥Ty∥= max
t∈[0,1]

{∫ 1

0
G(t,s)ϕq(Iβ f (s,y(s)))ds

}
≤∥y∥ϑ2

2
(2− k)Γ(α)(Γ(β+1))q−1 ≤ ∥y∥.

Therefore, from the Guo Krasnoselskii fixed point theorem, we conclude that
IBVP (1.1) has at least one positive solution.

Case 1: We let ϑ2 > 0 be as given in (3.4), since f0 = 0, there exists a constant
x1 > 0 such that f (t,y) ≤ ϕp(ϑ2y) for 0 ≤ y ≤ x1. We set y ∈ P, such that
∥y∥= x1. Then, we get

Ty(t) =
∫ 1

0
G(t,s)ϕq(Iβ f (s,y(s)))ds ≤ ϑ2

∫ 1

0
G(t,s)ϕq(Iβ f (s,y(s)))ds

≤ϑ2∥y∥ 2
(2− k)Γ(α)(Γ(β+1))q−1

≤∥y∥.
We now consider ϑ3 > 0 which satisfies

νϑ3
k(α−2)

2α(Γ(β+1))q−1 max
t∈[0,1]

{∫ 1

0
sβ(q−1)+δG(t,s)ds

}
≥ 1,

where ν> 0 and δ> 0 the constants given in Condition 2 of Theorem 1. f ∗∞ =
∞ implies that there exists constants x2 > x1 > 0 such that f (t,y)≥ ϕp(ϑ3y)

for all y ≥ x2. We let y ∈ P such that ∥y∥= 2α(Γ(β+1))q−1

k(α−2) x2. Therefore, for all
t > 0, the following inequality holds:

y(t)
t

≥ k(α−2)
2α(Γ(β+1))q−1 ∥y∥= x2.
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Condition 2 of Theorem 1 gives us the following property:

∥Ty∥= max
t∈[0,1]

{∫ 1

0
G(t,s)ϕq(Iβ f (s,y(s)))ds

}
≥ν max

t∈[0,1]

{∫ 1

0
sδG(t,s)ϕq

(
Iβ f

(
s,

y(s)
s

))
ds
}

≥νϑ3
k(α−2)

2α(Γ(β+1))q−1 ∥y∥ max
t∈[0,1]

{∫ 1

0
sβ(q−1)+δG(t,s)ds

}
≥ ∥y∥.

Since y(t)
t is a continuous on (0,1] and limt→0+

y(t)
t exist, then the integrals

in the previous inequalities are well defined. Thus by the Guo Krasnoselskii
fixed point theorem, we conclude that IBVP (1.1) has at least one positive
solution.

□

Remark 1. Condition 2 of Theorem 1 for problem (1.1) generalizes: f : [0,∞)→
(0,∞) is non-decreasing and there exists δ ∈ (0,1) such that f (ιω) ≥ ιδ f (ω) for all
ι ∈ (0,1) and ω ∈ [0,∞), which is condition (A3) imposed in [4]. This condition is
less restrictive if δ is greater since ι∈ (0,1). In addition, assumptions of monotonicity
are not imposed on the function f .

Example 1. Consider the fractional differential equation:
D

3
2 (ϕ2(

cD
5
2 y(t)))+1+ 1

2 sin(y) = 0, t ∈ [0,1],
y(0) = y′′(0) = 0, y(1) = π

3+sin(1)

∫ 1
0 y(s)ds,

ϕ2(
cD

5
2 y(0)) = [ϕ2(

cD
5
2 y(0))]′ = 0.

(3.5)

Trivially, f ∗0 = ∞ and f ∗∞ = 0. Therefore, from Theorem 1, we conclude that prob-
lem (3.5) has at least one positive solution.

We now proceed to show that IBVP (1.1) has at least two positive solutions. We
define

f 0 = lim
y→0+

sup
t∈[0,1]

f (t,y)
ϕp(l1∥y∥)

, f0 = lim
y→0+

inf
t∈[0,1]

f (t,y)
ϕp(l2∥y∥)

,

f ∞ = lim
y→+∞

sup
t∈[0,1]

f (t,y)
ϕp(l3∥y∥)

, f∞ = lim
y→+∞

inf
t∈[0,1]

f (t,y)
ϕp(l4∥y∥)

.

Let

B =
2

(2− k)Γ(α)(Γ(β+1))q−1 and B1 =
1

4(Γ(β+1))q−1

∫
s∈I

sβ(q−1)G(1,s)ds,

where I ∈ [1
4 ,

3
4 ].

Theorem 2. Assume that f ∈C([0,1]× [0,+∞), [0,+∞)), and the following con-
ditions hold;
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(N1) f0 = f∞ =+∞.
(N2) There exists a constant ρ1 > 0 such that f (t,y)≤ ϕp(l5∥y∥) for t ∈ [0,1],

y ∈ [0,ρ1].
Then, IBVP (1.1) has at least two positive solutions y1 and y2 such that

0 < ∥y1∥< ρ1 < ∥y2∥, for

0 <
1

l2B1
< 1 <

1
l5B

<+∞ and 0 <
1

l4B1
< 1 <

1
l5B

<+∞. (3.6)

Proof. Since

f0 = lim
y→0+

inf
t∈[0,1]

f (t,y)
ϕp(l2∥y∥)

= +∞,

there is ρ0 ∈ (0,ρ1) such that

f (t,y)≥ ϕp(l2∥y∥) for t ∈ [0,1], y ∈ [0,ρ0].

Let

Ωρ0 = {y ∈ P : ∥y∥ ≤ ρ0}.

Then, for any y ∈ ∂Ωρ0 , it follows from Lemma 4 that

(Ty)(t) =
∫ 1

0
G(t,s)ϕq

(∫ 1

0
Iβ f (s,y(s))

)
ds

≥ min
t∈I

{
l2t

(Γ(β+1))q−1

∫ 1

0
sβ(q−1)G(1,s)ds∥y∥

}
≥ l2

1
4(Γ(β+1))q−1

∫
s∈I

sβ(q−1)G(1,s)ds∥y∥.

Therefore,

∥Ty∥ ≥ l2B1∥y∥.

Considering also (3.6), we get

∥Ty∥ ≥ ∥y∥, ∀ y ∈ ∂Ωρ0 .

By Lemma 6, we get

i(T,Ωρ0 ,P) = 0. (3.7)

Also,

f∞ = lim
y→∞

inf
t∈[0,1]

f (t,y)
ϕp(l4∥y∥)

= +∞,

there is ρ∗
0, ρ∗

0 > ρ1, such that

f (t,y)≥ ϕp(l4∥y∥) for t ∈ [0,1], y ∈ [ρ∗
0,+∞).
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Let

Ωρ∗
0
= {y ∈ P : ∥y∥ ≤ ρ

∗
0}.

Then, for any y ∈ ∂Ωρ∗
0
, it follows from Lemma 4 that

(Ty)(t) =
∫ 1

0
G(t,s)ϕq

(∫ 1

0
Iβ f (s,y(s))

)
ds

≥ min
t∈I

{
l4t

(Γ(β+1))q−1

∫ 1

0
sβ(q−1)G(1,s)ds∥y∥

}
≥ l4

1
4(Γ(β+1))q−1

∫
s∈I

sβ(q−1)G(1,s)ds∥y∥.

Therefore,

∥Ty∥ ≥ l4B1∥y∥.
Considering also (3.6), we get

∥Ty∥ ≥ ∥y∥, ∀ y ∈ ∂Ωρ∗
0
.

By Lemma 6, we get

i(T,Ωρ∗
0
,P) = 0.

Finally, let Ωρ1 = {y ∈ P : ∥y∥ ≤ ρ1} for any y ∈ ∂Ωρ1 , it follows from Lemma 4,
6 and (N2) that

(Ty)(t) =
∫ 1

0
G(t,s)ϕq

(∫ 1

0
Iβ f (s,y(s))

)
ds

≤ max
0≤t≤1

{
l5

(Γ(β+1))q−1

∫ 1

0
sβ(q−1)G(t,s)ds∥y∥

}
= l5

2
(2− k)Γ(α)(Γ(β+1))q−1 ∥y∥.

Therefore,

∥Ty∥ ≤ l5B∥y∥.
Considering also (3.6), we get

∥Ty∥ ≤ ∥y∥, ∀ y ∈ ∂Ωρ1 .

By Lemma 6, we get

i(T,Ωρ1 ,P) = 1. (3.8)

From (3.7)-(3.8) and ρ0 < ρ1 < ρ∗
0, we get

i(T,Ωρ∗
0
\Ωρ1 ,P) =−1, i(T,Ωρ1 \Ωρ0 ,P) = 1.

Thus, T has a fixed point y1 ∈ Ωρ1 \Ωρ0 and a fixed point y2 ∈ Ωρ∗
0
\Ωρ1 . Trivially,

y1, y2 are both positive solutions of IBVP (1.1) and 0 < ∥y1∥< ρ1 < ∥y2∥. □
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Similarly, we get the following results;

Corollary 1. Assume that f ∈C([0,1]× [0,+∞), [0,+∞)) and the following
conditions hold:
(N1) f 0 = f ∞ = 0.
(N2) There exists a constant ρ2 > 0 such that f (t,y)≥ ϕp(l6∥y∥) for t ∈ [0,1],

y∈ [0,ρ2]. Then IBVP (1.1) has at least two positive solutions y1 and y2 such
that

0 < ∥y1∥< ρ2 < ∥y2∥ for

0 <
1

l6B1
< 1 <

1
l3B

<+∞ and 0 <
1

l6B1
< 1 <

1
l1B

<+∞.

Example 2. Consider the following integral boundary value problem:
D

9
5 (ϕ2(

cD
7
3 y(t)))+ 1

3(∥y∥ 1
2 + 2

3∥y∥) = 0, t ∈ [0,1],
y(0) = y′′(0) = 0, y(1) = 3

4
∫ 1

0 y(s)ds,
ϕ2(

cD
7
3 y(0)) = [ϕ2(

cD
7
3 y(0))]′ = 0,

(3.9)

where α = 7
3 , β = 9

5 , p = 2, k = 3
4 . By computation we see that B = 0.80159 and

B1 = 0.0022194. Taking ρ1 = 9, l5 = 1
3 , we get

f (t,y)≤ 1
3

(
3+

2
3
.9
)
= 3 = ϕp(l5∥y∥) = ϕ2

(
1
3
.9
)
, for t ∈ [0,1], y ∈ [0,ρ1].

Therefore, condition (N2) is satisfied. It can be easily seen that condition (N1) holds.
Also, let l2 = 130 and l4 = 121, we get

0 <
1

l2B1
< 1 <

1
l5B

<+∞ and 0 <
1

l4B1
< 1 <

1
l5B

<+∞.

Hence, by Theorem 2, IBVP (3.9) has at least two solutions y1 and y2 such that
0 < ∥y1∥< 9 < ∥y2∥ for the given values of l5, l2 and l4.

4. EXISTENCE OF MULTIPLE POSITIVE SOLUTIONS

Sufficient conditions for the existence of at least three positive solutions for the p-
Laplacian IBVP (1.1) are derived by means of the Five functional fixed point theorem
in this section. Let γ,ϒ and ω be nonnegative continuous convex functionals on P, ψ

and ϑ be a nonnegative continuous concave functionals on P. Therefore, for positive
real numbers h′,a′,b′,d′ and c′, we denote the following convex sets

P(γ,c′) = {y ∈ P : γ(y)< c′},
P(γ,ϑ,a′,c′) = {y ∈ P : a′ ≤ ϑ(y);γ(y)≤ c′},
R(γ,ϒ,d′,c′) = {y ∈ P : ϒ(y)≤ d′;γ(y)≤ c′},
P(γ,ω,ϑ,a′,b′,c′) = {y ∈ P : a′ ≤ ϑ(y);ω(y)≤ b′;γ(y)≤ c′},
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R(γ,ϒ,ψ,h′,d′,c′) = {y ∈ P : h′ ≤ ψ(y);ϒ(y)≤ d′;γ(y)≤ c′}.

Theorem 3 ([23, Theorem 4.1]). Suppose P be a cone in a real Banach space K.
Let ϑ and ψ be nonnegative continuous concave functionals on P, γ,ϒ and ω be a
nonnegative continuous convex functionals on P, such that for some positive numbers
c′ and e′, ϑ(y)≤ ϒ(y) and ∥y∥ ≤ e′γ(y), for all y ∈ P(γ,c′). Suppose further that

T : P(γ,c′) → P(γ,c′) is completely continuous and there exist constants h′,d′,a′

and b′ ≥ 0 with 0 < d′ < a′ such that each of the following is satisfied
(C1) {y ∈ P(γ,ω,ϑ,a′,b′,c′) : ϑ(y)> a} ̸=∅ and ϑ(Ty)> a′ for y ∈ P(γ,ω,ϑ,a′,b′,c′),
(C2) {y ∈ R(γ,ϒ,ψ,h′,d′,c′) : ϒ(y)> d′} ≠∅ and ϒ(Ty)> d′ for y ∈ R(γ,ϒ,ψ,h′,d′,c′),,
(C3) ϑ(Ty)> a′ provided y ∈ P(γ,ϑ,a′,c′) with ω(Ty)> b′,
(C4) ϒ(Ty)< d′ provided y ∈ R(γ,ϒ,ψ,h′,d′,c′) with ψ(Ty)< h′.

Then, T has at least three fixed points y1,y2,y3 ∈ P(γ,c′) such that
ϒ(y1)≤ d′,a′ < ϑ(y2) and d′ < ϒ(y3) with ϑ(y3)< a.

We denote the nonnegative continuous concave functionals ϑ,ψ and the nonneg-
ative continuous convex functionals ϒ,ω,γ on P by

ϑ(y) = min
t∈I

y(t), ψ(y) = min
t∈I1

y(t),

γ(y) = max
t∈[0,1]

y(t), ϒ(y) = max
t∈I1

y(t), ω(y) = max
t∈I

y(t),

where I = [1
4 ,

3
4 ] and I1 = [1

3 ,
2
3 ]. For any y ∈ P,

ϑ(y) = min
t∈I

y(t)≤ max
t∈I1

y(t) = ϒ(y) (4.1)

and

∥y∥ ≤ 4M min
t∈I

y(t)≤ 4M max
t∈[0,1]

y(t) = 4Mγ(y), (4.2)

where M = 2α

k(α−2) .
Let

E =

[
1

4(Γ(β+1))q−1

∫
s∈I

sβ(q−1)G(1,s)ds
]−1

,

Z =

[
M

(Γ(β+1))q−1

∫ 1

0
sβ(q−1)G(1,s)ds

]−1

.

Theorem 4. Suppose there exist constants 0 < a′ < b′ < 4Mb′ ≤ c′ and assume
that f satisfies the following conditions:
(H1) f (t,y)< ϕp (a′Z) for (t,y) ∈ [0,1]× [ 1

4M a′,a′];
(H2) f (t,y)> ϕp (b′E) for (t,y) ∈ [1

4 ,
3
4 ]× [b′,4Mb′];

(H3) f (t,y)< ϕp (c′Z) for (t,y) ∈ [0,1]× [0,c′].
Then the integral boundary value problem (1.1) has at least three positive solutions
y1,y2 and y3 such that ϒ(y1)< a′,b′ < ϑ(y2) and a′ < ϒ(y3) with ϑ(y3)< b′.
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Proof. We need to show that there exist three fixed points y1,y2,y3 ∈P of T defined
in (3.1).

Since T is completely continuous and from (4.1) - (4.2), for each y ∈ P, ϑ(y) ≤
ϒ(y) and ∥y∥ ≤ 4Mγ(y), we now show that T : P(γ,c′) → P(γ,c′). Let y ∈ P(γ,c′),
then

0 ≤ y ≤ c′. We use (H3) to get

γ(Ty) = max
t∈[0,1]

∫ 1

0
G(t,s)ϕq(Iβ f (s,y(s)))ds

≤ c′ZM
(Γ(β+1))q−1

∫ 1

0
sβ(q−1)G(1,s)ds < c′.

Thus, T : P(γ,c′) → P(γ,c′). We show that conditions (C1) and (C2) of Theorem 3
are satisfied. Trivially,

b′+4Mb′

2
∈ {y ∈ P(γ,ω,ϑ,b′,4Mb′,c′) : ϑ(y)> b} ̸=∅

and
1

4M a′+a′

2
∈ {y ∈ R(γ,ϒ,ψ,

1
4M

a′,a′,c′) : ϒ(y)< a′} ̸=∅.

We proceed by letting y ∈ P(γ,ω,ϑ,b′,4Mb′,c′) or y ∈ R(γ,ϒ,ψ, 1
4M a′,a′,c′). Then,

b′ ≤ y ≤ 4Mb′ and ηa′ ≤ y ≤ a′, where η > 0. We apply condition (H2) to obtain

ϑ(Ty) = min
t∈I

∫ 1

0
G(t,s)ϕq(Iβ f (s,y(s)))ds

>
1

4(Γ(β+1))q−1 b′E
∫

s∈I
sβ(q−1)G(1,s)ds = b′.

Intuitively, by condition (H1), we get

ϒ(Ty) = max
t∈I1

∫ 1

0
G(t,s)ϕq(Iβ f (s,y(s)))ds

<
Ma′Z

(Γ(β+1))q−1

∫ 1

0
sβ(q−1)G(1,s)ds = a′.

To show that (C3) is satisfied, let y ∈ P(γ,ϑ,b′,c′) with ω(Ty)> 4Mb′. Then

ϑ(Ty) = min
t∈I

∫ 1

0
G(t,s)ϕq(Iβ f (s,y(s)))ds

≥ 1
4M

max
t∈I

∫ 1

0
G(t,s)ϕq(Iβ f (s,y(s)))ds =

1
4M

ω(Ty)> b′.
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Finally, we prove that (H4) holds. Let y ∈ R(γ,ϒ,a′,c′) with ψ(Ty) < 1
4M a′. Then,

we get

ϒ(Ty) = max
t∈I1

∫ 1

0
G(t,s)ϕq(Iβ f (s,y(s)))ds

≤ 4M min
t∈I1

∫ 1

0
G(t,s)ϕq(Iβ f (s,y(s)))ds = 4Mψ(Ty)< a′.

We have shown that all conditions of Theorem 3 are satisfied. Therefore, the IBVP
(1.1) has at least three positive solutions y1,y2 and y3 such that ϒ(y1)< a′,b′ < ϑ(y2)
and a′ < ϒ(y3) with ϑ(y3)< b′. This completes the proof. □

Example 3. Consider the fractional differential equation:
D

3
2 (ϕ2(

cD
5
2 y(t)))+ f (t,y(t)) = 0, t ∈ [0,1],

y(0) = y′′(0) = 0, y(1) = 1
2
∫ 1

0 y(s)ds,
ϕ2(

cD
5
2 y(0)) = [ϕ2(

cD
5
2 y(0))]′ = 0.

(4.3)

where

f (t,y) =

{
t

20 + y2 +216y3, y ≤ 1,
t

20 + y+216, y > 1.

We set a′ = 1
10 , b′ = 1 and c′ = 100. By computation, 4Mb′ = 80, E = 216,02 and

Z = 4,0755. As a result, f (t,y) satisfies

f (t,y) =
t

20
+ y2 +216y3 ≤ 0,28 < ϕ2

(
a′Z

)
≈ 0,41 for (t,y) ∈ [0,1]×

[
1

400
,

1
10

]
,

f (t,y) =
t

20
+ y+216 ≥ 217,01 > ϕ2

(
b′E

)
≈ 216,02 for (t,y) ∈ I × [1,80],

f (t,y) =
t

20
+ y+216 ≤ 316,05 < ϕ2

(
c′Z

)
≈ 407,55 for (t,y) ∈ [0,1]× [0,100].

Since all conditions of Theorem 4 hold. Therefore, problem (4.3) has at least three
positive solutions by Theorem 4.
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