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Abstract. A new approach for constructing vector Lyapunov function for nonlinear non-
autonomous large-scale systems is proposed. It is assumed that independent subsystems are
linear periodic systems. The components of the vector Lyapunov function are chosen as a quad-
ratic form with a variable matrix. This matrix is an approximate solution of the Lyapunov matrix
differential equation. This solution is constructed using the discretization method and the repres-
entation of the evolution operator proposed by Magnus. Sufficient conditions for the asymptotic
stability of a trivial solution of a nonlinear large-scale system are established. The effectiveness
of obtained results are illustrated by the example of stability investigation for coupled systems.
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1. INTRODUCTION

Vector Lyapunov functions (VLF) method is widely used to study the stability of
complex nonlinear large-scale systems. The main reason for the emergence of this
method is the complexity of constructing the Lyapunov function for systems of large
dimension. In this situation, the VLF is a more convenient tool for studying the sta-
bility of systems than the scalar Lyapunov function, and has been first presented in
[4,12]. Method of VLF assumes a preliminary decomposition of a large-scale system
into subsystems of smaller dimensions. Further, independent subsystems are singled
out, for which the problem of constructing the Lyapunov function is much easier to
solve than for the whole system. The constructed (scalar) Lyapunov functions for in-
dependent subsystems are combined into VLF. It should be noted that the application
of VLF method is possible only if the independent subsystems are asymptotically
stable.

This research was supported by the German Research Foundation (DFG), grant No. SL 343/1-1 and
Deutscher Akademischer Austauschdienst (DAAD), Personal ref. no.: 91775148.

© 2023 Miskolc University Press

http://dx.doi.org/10.18514/MMN.2023.4207


612 I. V. ATAMAS, V. S. DENYSENKO, AND V. I. SLYN’KO

There are two approaches to study the stability of large-scale systems based on
VLF. The first [12] approach involves obtaining a system of differential inequalit-
ies for VLF and applying the comparison principle. The second [13] one involves
constructing a scalar function by convolution of the constructed VLF with a positive
vector and then applying the Lyapunov theorem for scalar function.

The methods of constructing VLF for nonlinear systems with asymptotically stable
linear subsystems are presented in [3]. Advances in the development of computa-
tional mathematics and computer calculations methods stimulated the development
of discretization method for constructing Lyapunov functions. In [1], the discret-
ization method is used to study the robust stability of a switched linear differential
system. In [18], a continuous switched system with all unstable subsystems is con-
sidered. To study asymptotic stability, the direct Lyapunov method is used, based
on the idea of time discretization of solutions of the Lyapunov matrix differential
equation.

Vector Lyapunov functions method is widely used in various branches of control
theory and systems theory. In [15], the concept of decentralized control is proposed
for various classes of autonomous control systems and, based on the method of vector
functions, algorithms for stabilization of nonlinear large-scale systems are proposed.
The efficiency of these algorithms is primarily due to the fact that nonlinear systems
with linear autonomous subsystems are considered, for which there is an explicit
procedure for constructing the Lyapunov function.

In [14], a generalized vector Lyapunov function is developed to analyze the sta-
bility of nonlinear dynamical systems using the generalized comparison principle.
In particular, a cascade of nonlinear dynamical system with continuous mapping is
considered. A generalization of the inverse Lyapunov theorem, which establishes the
existence of a Lyapunov vector function for the asymptotic stability of equilibrium
of a nonlinear dynamical system, is presented. This result is used to establish an
equivalence between asymptotic stabilizability and the existence of a vector control
function. The problem of feedback control is also considered and the concept of
a vector control function is introduced as a generalization of the Lyapunov control
function.

In [2, 16], using the Matrosov comparison method, in combination with methods
of convex geometry, the approaches of constructing VLF for studying the stability of
fixed points of dynamical systems in the space of convex compact sets are proposed.
As a result, for a dynamical system in the space of convex compact sets, a comparison
system in a finite-dimensional space has been obtained and investigated. The cases of
nonlinear systems with nilpotent and idempotent operators are also considered, and
the case on the plane is studied in detail. A construction of an infinite-dimensional
VLF for cascades in the space of convex compact sets is proposed in [2].

Vector Lyapunov function is widely used in the theory of nonlinear control systems
[9], the main result of which shows that the existence of vector Lyapunov control
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function is a necessary and sufficient condition for the existence of a smooth globally
stabilizing feedback.

Note also that VLF is applicable to the study of impulsive nonlinear systems
[7, 8]. In [6], this method is used to study the critical equilibrium states of nonlinear
impulsive large-scale systems in the case when continuous and discrete dynamics are
both unstable.

In the theory of stability of autonomous nonlinear systems, the concept of input-
to-state stability (ISS) and the based on it stability theorems for coupled nonlinear
systems (small-gain theorems) (see [5]) is a reliable alternative to the method of vec-
tor Lyapunov functions. This approach as well as VLF method assumes the existence
of the property of asymptotic stability of independent subsystems.

The main contribution of our article is to develop a new method for constructing
the VLF for studying the stability of a nonlinear nonautonomous coupled system of
differential equations with linear periodic subsystems. To study the stability of the
zero solution, the method of VLF and the comparison principle are used.

For independent subsystems, a new method for constructing scalar Lyapunov func-
tions, which are used as components of the vector Lyapunov function is proposed.
The methods of commutator calculus [10, 11] in combination with the discretization
method are used. Our approach develops the ideas from [17], which is proposed
to use the identities of the commutator calculus to study the asymptotic stability of
linear periodic systems.

A linear impulsive comparison system is obtained and investigated. The asymp-
totic stability of this comparison systems implies the stability of the equilibrium of
the considered nonlinear system. An illustrative example of the study of asymptotic
stability of nonlinear system consisting of two coupled subsystems is given. For each
linear independent subsystem, the Lyapunov function is constructed as a quadratic
form with a variable matrix. In this example, there is no Lyapunov function of a
quadratic form with a constant matrix.

The paper consists of 8 Sections and is organized as follows. Section 2 provides
basic notation and information from linear algebra. In Section 3, the problem state-
ment of stability of the equilibrium of a nonlinear large-scale system, which consists
of coupled linear periodic systems, is presented. In Section 4 a new method for con-
structing the vector Lyapunov function is proposed and an appropriate comparison
system is constructed. The main result of the paper is formulated and proved in
Section 5, and in Section 6, the problem of stability of linear impulsive comparison
systems is discussed. Section 7 gives an example of constructing a vector Lyapunov
function. Section 8 is devoted to a discussion of the results and their possible devel-
opment.
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2. PRELIMINARIES

Let Z be a set of integers, Z+ — set of non-negative integers, R — set of real
numbers, R+ — set of real non-negative numbers.

Let Rn denote the n -dimensional Euclidean space with standard scalar product,
Rn×m is a linear space of n×m matrices, Rn×n is the Banach algebra with a norm
‖A‖= λ

1/2
max(AT A). Let Sn ⊂Rn×n be the subspace of symmetric matrices, for P ∈ Sn

the inequality P � 0 means that the matrix P is positive definite, let σ(A) and rσ(A)
denote the spectrum and spectral radius for the matrix A ∈ Rn×n respectively. If for
A the spectrum σ(A) ⊂ R, then λmin(A) and λmax(A) are the smallest and largest
eigenvalues, respectively, In ∈ Rn×n is an identity matrix.

C− = {z ∈ C, Rez < 0}, C+ = {z ∈ C, Rez > 0},

C is a set of complex numbers. The Kronecker symbol δi j is defined as δi j = 1 for
i = j and δi j = 0 for i 6= j.

Next we present some information from the commutator calculus that is important
for further research [11].

The commutator of two matrices A,B ∈ Rn×n which is defined as

[A,B] = AB−BA

introduces the structure of a Lie algebra in Rn×n. The commutation operator ad A,
A ∈ Rn×n is defined as a linear mapping

Rn×n→ Rn×n, Y 7→ ad A(Y ) = [A,Y ], Y ∈ Rn×n.

Let X , Y and Z be the independent matrix variables, F(X ,Y ) is a formal series of
variables X and Y , λ ∈ R, then the polarization identity

F(X +λZ,Y ) = F(X ,Y )+λF1(X ,Y,Z)+λ
2F2(X ,Y,Z)+ ...

defines the Hausdorff derivative
(

Z ∂

∂X

)
F(X ,Y )

d f
= F1(X ,Y,Z).

We define recursively the following Lie polynomials of matrix variables X and Y
(definition and more details about Lie elements see in [10])

{Y,X0}= Y, {Y,X l+1}= [{Y,X l},X ], l ∈ Z+.

It is easy to see that
ad l

X(Y ) = (−1)l{Y,X l}.
For the further discussion we need the following F. Hausdorff’s identities

e−X
((

Y
∂

∂X

)
eX
)
= Y +

∞

∑
k=1

1
(k+1)!

{Y,Xk},

((
Y

∂

∂X

)
eX
)

e−X = Y +
∞

∑
k=1

(−1)k

(k+1)!
{Y,Xk}.

(2.1)
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We also need a chain rule for differentiating the composition of mappings. Let P(X)
be a series of matrix variable X , A : (a,b)→ Rn×n is a mapping differentiable at the
point t0 ∈ (a,b) and B(t) := P(A(t)) exists in a neighborhood of the point t0, then we
obtain the chain rule

dB
dt

∣∣∣
t=t0

=
(

Y
∂

∂X

)
P(X), Y =

dA
dt

∣∣∣
t=t0

, X = A(t0). (2.2)

3. PROBLEM STATEMENT

Consider a coupled nonautonomous system of differential equations consisting of
r subsystems

ẋi(t) = Ai(t)xi(t)+ fi(t,x1(t), . . . ,xr(t)), (3.1)
where xi ∈Rni , i = 1, . . . ,r, Ai : R→Rni×ni is a piecewise continuous mapping. Sup-
pose Ai(t) are θ -periodic functions, Ai(t +θ) = Ai(t) for all t ∈ R, fi : R×Ω→ Rni ,
Ω⊂ Rn is an open connected set containing x = 0. If

x = (xT
1 , . . . ,x

T
r )

T , f = (fT
1 , . . . , f

T
r )

T ,

then f : R×Ω→Rn, n=∑
r
k=1 nk. Suppose that the mapping f satisfies the conditions

guaranteeing the existence and uniqueness of solutions of the Cauchy problem for the
system (3.1) with the initial conditions xi(t0) = xi0, i = 1, . . . ,r and f(t,0) ≡ 0. This
condition guarantees that x = 0 is a solution of the system (3.1).

Let N be a fixed positive integer, h = θ

N . Let us define the positive constants ami,
bmi, cmi, where m = 0, . . . ,N− 1, i = 1, . . . ,r, so that the following inequalities are
satisfied

‖Ai(t)‖ ≤ ami,
∥∥∥ t∫

mh

Ai(s)ds
∥∥∥≤ cmi(t−mh), (3.2)

∥∥∥[Ai(t),
t∫

mh

Ai(τ)dτ

]∥∥∥≤ bmi(t−mh) (3.3)

for all t ∈ (mh,(m+1)h].
Regarding the function f let us make the following assumptions:
(i) there exist piecewise continuous functions fi j : R→ R+, i, j = 1, . . . ,r such

that for all x ∈Ω⊂ Rn the following inequalities hold

‖fi(t,x)‖ ≤
r

∑
j=1

fi j(t)‖x j‖; (3.4)

(ii) there exist finite piecewise continuous functions f̂i j : (0,θ]→ R+ such that

sup{ fi j(t + kθ) : k ∈ Z+} ≤ f̂i j(t). (3.5)

Remark 1. The θ - periodic continuation of the functions f̂i j to R will also be
denoted by f̂i j.
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Let x(t, t0,x0) be a solution of the Cauchy problem for the system (3.1) with the
initial condition x(t0, t0,x0) = x0.

Definition 1. The equilibrium state x = 0 of the system of differential equations
(3.1) is called

1) Lyapunov stable if for any ε > 0, t0 ∈R there exists δ = δ(ε, t0)> 0 such that
inequality ‖x0‖< δ implies ‖x(t, t0,x0)‖< ε for all t ≥ t0;

2) asymptotically stable in the sense of Lyapunov if it is stable and for any
t0 ∈R there exists a number ρ = ρ(t0)> 0 such that from condition ‖x0‖< ρ

it follows that lim
t→+∞

‖x(t, t0,x0)‖= 0;

3) uniformly asymptotically stable, if δ = δ(ε, t0) and ρ(t0) can be chosen inde-
pendent of t0.

Remark 2. Using the θ - periodicity of the Ai(t) and inequalities (3.4)–(3.5), one
can show that the asymptotic stability of the equilibrium state x = 0 is equivalent to
the uniform asymptotic stability of x = 0.

The aim of the paper is to prove sufficient conditions for the stability of the equi-
librium state x = 0 of the large-scale system (3.1).

4. CONSTRUCTION OF THE VECTOR LYAPUNOV FUNCTION

Without loss of generality, it is assumed that t0 = 0. To study the stability, we
will use the VLF method. Let v : R×Rn → Rr

+ be a vector Lyapunov function.
We choose the components of this function as quadratic forms vi(t,xi) = xT

i Pi(t)xi,
where Pi : R→ Sni is left continuous and θ -periodic mapping.

Obviously, it is sufficient to define the functions Pi(t), i = 1, . . . ,r on the period
(0,θ]. If N is certain positive integer, h = θ

N , than for t ∈ (mh,(m+ 1)h] we can
define the matrices

Âmi(t) =
t∫

mh

Ai(s)ds, Ãmi =
1
h

Âmi((m+1)h) =
1
h

(m+1)h∫
mh

Ai(s)ds,

Φi = ehÃN−1,i . . .ehÃ0,i .

Suppose that the number N can be chosen so that rσ(Φi) < 1. If this condition is
satisfied, then we choose a symmetric positive definite matrix P0i that satisfies the
linear matrix inequality

Φ
T
i P0iΦi−P0i ≺ 0.

Next, we define the matrices

Pm+1,i = e−hÃT
miPmie−hÃmi , m = 0, . . . ,N−1

and, finally, the function Pi(t) is defined as

Pi(t) = e−ÂT
mi(t)Pmie−Âmi(t), t ∈ (mh,(m+1)h].
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Using the inequalities (3.2)– (3.5) we can obtain the estimate of the total derivat-
ive of the constructed vector function v(t,x) along the trajectories of the large-scale
system (3.1).

Consider the total derivative of the function vi(t,xi) along the trajectory of the
large-scale system (3.1)

v̇i(t,xi(t)) = xT
i (Ṗi(t)+AT

i (t)Pi(t)+Pi(t)Ai(t))xi +2xT
i Pi(t)fi(t,x).

For t ∈ (mh,(m + 1)h], we need to compute the value of the expressions
Ṗi(t)+AT

i (t)Pi(t)+Pi(t)Ai(t), i = 1, . . . ,r. Let us first consider the expression for
d
dt e−Âmi(t). Applying the chain rule of differentiation (2.2), we obtain

d
dt

e−Âmi(t) =−
(dÂmi(t)

dt
∂

∂X

)
eX
∣∣∣
X=−Âmi(t)

=−
(

A(t)
∂

∂X

)
eX
∣∣∣
X=−Âmi(t)

.

From the Hausdorff identity (2.1), it follows

d
dt

e−Âmi(t) =−e−Âmi(t)
(

Ai(t)+
∞

∑
k=1

(−1)k

(k+1)!
{Ai(t), Âk

mi(t)}
)
.

Consequently, we obtain

d
dt

e−ÂT
mi(t) =−

(
AT

i (t)+
∞

∑
k=1

(−1)k

(k+1)!
{Ai(t), Âk

mi(t)}T
)

e−ÂT
mi(t)

and therefore

Ṗi(t)+AT
i (t)Pi(t)+Pi(t)Ai(t) =−

( ∞

∑
k=1

(−1)k

(k+1)!
{Ai(t), Âk

mi(t)}
)T

Pi(t)

−Pi(t)
( ∞

∑
k=1

(−1)k

(k+1)!
{Ai(t), Âk

mi(t)}
)
.

From (3.2)– (3.3) it follows the estimates for t ∈ (mh,(m+1)h]

‖{Ai(t), Âk
mi(t)}‖ ≤ bmi(2cmi)

k−1(t−mh)k,∥∥∥ ∞

∑
k=1

(−1)k

(k+1)!
{Ai(t), Âk

mi(t)}
∥∥∥≤ bmi

∞

∑
k=1

(2cmi)
k−1(t−mh)k

(k+1)!
≤ ηmi(t−mh),

where ηmi = bmi ∑
∞
k=1

(2cmih)k−1

(k+1)! , so we obtain

xT
i (Ṗi(t)+AT

i (t)P(t)+P(t)Ai(t))xi ≤ 2‖P−1/2
i (t)‖‖P1/2

i (t)‖(t−mh)ηmixT
i Pi(t)xi(t).

Using the following estimates

‖P1/2
i (t)‖= λ

1/2
max(Pi(t)) = ‖Pi(t)‖1/2 = ‖e−ÂT

mi(t)Pmie−Âmi(t)‖1/2



618 I. V. ATAMAS, V. S. DENYSENKO, AND V. I. SLYN’KO

≤ ecmi(t−mh)‖Pmi‖1/2,

λmin(Pi(t)) = min
‖xi‖=1

xT
i Pi(t)xi

= min
‖xi‖=1

(e−Âmi(t)xi)
T Pmie−Âmi(t)xi ≥ λmin(Pmi) min

‖xi‖=1
‖e−Âmi(t)xi‖2

≥ min
‖xi‖=1

λmin(Pmi)e−2cmi(t−mh)‖xi‖2 = λmin(Pmi)e−2cmi(t−mh)

and
‖P−1/2

i (t)‖= λ
1/2
max(P−1

i (t)) = λ
−1/2
min (Pi(t))≤ λ

−1/2
min (Pmi)ecmi(t−mh),

which are valid for t ∈ (mh,(m+1)h], we obtain

xT
i (Ṗi(t)+AT

i (t)Pi(t)+Pi(t)Ai(t))xi ≤ 2e2cmi(t−mh)

√
λmax(Pmi)

λmin(Pmi)
(t−mh)ηmivi(t,xi)

for all t ∈ (mh,(m+1)h).
Let us now consider the problem of estimation the expression xT

i Pi(t)fi(t,x).
Applying the Cauchy-Bunyakovsky inequality and the assumptions (3.4)– (3.5) about
the function f, for t ∈ (mh,(m+1)h], we obtain

xT
i Pi(t)fi(t,x) = (P1/2

i (t)xi)
T P1/2

i (t)fi(t,x)≤
√

vi(t,xi)‖P
1/2
i (t)‖

r

∑
j=1

fi j(t)‖x j‖

≤
√

vi(t,xi)‖P
1/2
i (t)‖

r

∑
j=1

f̂i j(t)‖P
−1/2
j (t)‖

√
v j(t,x j)

≤
√

vi(t,xi)
r

∑
j=1

f̂i j(t)e(cmi+cm j)(t−mh)

√
λmax(Pmi)

λmin(Pm j)

√
v j(t,x j).

Let us define the matrix Γ(t) = (γi j(t))r
i, j=1, where

γi j(t) = e2cmi(t−mh)

√
λmax(Pmi)

λmin(Pmi)
(t−mh)ηmiδi j + f̂i j(t)e(cmi+cm j)(t−mh)

√
λmax(Pmi)

λmin(Pm j)
.

Then we get the estimate

v̇i(t,xi(t))≤ 2γii(t)vi(t,xi)+2
√

vi(t,xi)
r

∑
j=1, j 6=i

γi j(t)
√

v j(t,xi)

for all t ∈ (0,θ]. If t = θ, then based on the periodicity of the functions Pi(t), we
obtain

vi(θ+0,xi(θ+0)) = xT
i (θ+0)Pi(θ+0)xi(θ+0) = xT

i (θ)Pi(0+0)xi(θ)

= xT
i (θ)P0ixi(θ) = (P1/2

Ni xi(θ))
T P−1/2

Ni P0iP
−1/2
Ni P1/2

Ni xi(θ)

≤ λmax(P0iP−1
Ni )x

T
i (θ)PNixi(θ) = λmax(P0iP−1

Ni )x
T
i (θ)Pi(θ)xi(θ)
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= λmax(P0iP−1
Ni )vi(θ,xi(θ)) := δivi(θ,xi(θ)).

Extending the function Γ(t) to R+ in a periodic manner, we conclude that the com-
ponents of the vector Lyapunov function satisfy the inequalities

v̇i(t,xi(t))≤ 2γii(t)vi(t,xi)+2
√

vi(t,xi)
r

∑
j=1, j 6=i

γi j(t)
√

v j(t,xi), t 6= kθ,

vi(t +0,xi(t +0))≤ δivi(t,xi(t)), t = kθ.

(4.1)

Applying comparison theorems for impulsive differential inequalities, we get the es-
timates

vi(t,xi(t))≤ u+i (t), t ≥ 0, i = 1, . . . ,r,

where u+(t) = (u1(t), . . . ,ur(t))T is the maximum solution of the Cauchy problem
(u0 = (v1(0+0,x10), . . . ,vr(0+0,xr0))

T ) for a system of impulsive differential equa-
tions

u̇i(t) = 2γii(t)ui(t)+2
√

ui(t)
r

∑
j=1, j 6=i

γi j(t)
√

u j(t), t 6= kθ,

ui(t +0) = δiui(t), t = kθ, u(0+0) = u0.

(4.2)

It is easy to see that for comparison system (4.2) if u0 > 0, u0 6= 0, then u(t)> 0 for
t ≥ 0.

In this case, by changing variables ζi = u1/2
i , i = 1, . . . ,r the system of comparison

(4.2) is reduced to a linear system of impulsive differential equations

ζ̇(t) = Γ(t)ζ(t), t 6= kθ,

ζ(t +0) = ∆
1/2

ζ(t), t = kθ,
(4.3)

where ζ = (ζ1, . . . ,ζr)
T , ∆ = diag{δ1, . . . ,δr}.

5. STABILITY THEOREM

The VLF constructed in the previous section and the obtained estimates of its
derivative allow us to reduce the study of the stability of the equilibrium state of a
nonlinear nonautonomous system to the study of the stability of a linear impulsive
system (4.3) (linear comparison system).

Theorem 1. Assume the linear impulsive system (4.3) is asymptotically stable
in the sense of Lyapunov. Then the equilibrium state x = 0 of the system (3.1) is
asymptotically stable in the sense of Lyapunov.

Proof. Let x0 = (xT
10, . . . ,xT

r0)
T be an initial conditions for the solution x(t) of the

system of differential equations (3.1). Denote by η> 0 an arbitrary number. Consider
the solution of the Cauchy problem for the differential comparison equation (4.2) with
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the initial conditions ui0 = vi(0+0,xi0)+η. Then, by the comparison principle, the
following inequalities hold

vi(t,xi(t))≤ ui(t).

Since, u0 > 0, then ui(t) = ζ2
i (t,ζ0), where ζ(t) = (ζ1(t), . . . ,ζr(t))T is the solution

of the Cauchy problem for (4.3) with initial condition ζ(0 + 0) = ζ0,
ζ0 = (u1/2

10 , . . . ,u1/2
r0 )T and

vi(t,xi(t))≤ ζ
2
i (t).

Passing to the limit η→ 0+ and taking into account that the solutions of the lin-
ear impulsive differential equation continuously depend on the initial conditions, we
obtain the estimate

vi(t,xi(t))≤ ζ̂
2
i (t), for all t ≥ 0, i = 1, . . . ,r,

where ζ̂2
i (t) is the solution of the Cauchy problem for (4.2) with initial condition

ζ̂(0) = (ζ̂10, . . . , ζ̂r0)
T , ζ̂i0 = (xT

i0P0ixi0)
1/2.

In particular, for t = kθ+0 we obtain

λmin(P0i)‖xi(kθ)‖2 ≤ vi(kθ+0,xi(kθ+0))≤ ζ̂
2
i (kθ+0)

for all k ∈ Z+, i = 1, . . . ,r.

From asymptotic stability of the comparison system (4.3) it follows that for a given
ε1 > 0 there exists δ1(ε1)> 0 such that inequalities ζ̂i0 < δ1(ε1) imply ζ̂i(t)< ε1 for
all t ≥ 0. Let ε be an arbitrary positive number,

ε1 =
1√
r

ε min
i=1,...,r

{
√

λmin(P0i)}, δ(ε) = min
i=1,...,r

{
δ1(ε1)√
λmax(P0i)

}
.

If ‖xi0‖< δ(ε), then
√

xT
i0P0ixi0 < δ1(ε1) and

λmin(P0i)‖xi(kθ)‖2 ≤ vi(kθ+0,xi(kθ+0))≤ ζ̂
2
i (kθ+0)≤ ε2

r
λmin(P0i)

for all k ∈ Z+, i = 1, . . . ,r.

Hence, we have the estimate ‖xi(kθ)‖< ε√
r for all k ∈ Z+ and ‖x(kθ)‖< ε.

Using the Cauchy-Bunyakovsky inequality, we obtain
d
dt
‖xi(t)‖2 = 2xT

i (t)Ai(t)xi(t)+2xT
i (t) fi(t,x1(t), . . . ,xr(t))

≤ 2‖Ai(t)‖‖xi(t)‖2 +2‖xi(t)‖
r

∑
j=1

f̂i j(t)‖x j(t)‖.

Denote

a = max
i=1,...,r

sup
t∈[0,θ]

‖Ai(t)‖, f ∗ = max
i=1,...,r

sup
t∈[0,θ]

√
r

∑
k=1

f̂ 2
i j,
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then, again applying the Cauchy-Bunyakovsky inequality, we get

d
dt
‖xi(t)‖2 ≤ 2a‖xi(t)‖2 +2 f ∗‖xi(t)‖‖x(t)‖ ≤ (2a+ f ∗)‖xi(t)‖2 + f ∗‖x(t)‖2.

Hence, it follows that
d
dt
‖x(t)‖2 ≤ (2a+ f ∗)‖x(t)‖2 + r f ∗‖x(t)‖2 = (2a+(r+1) f ∗)‖x(t)‖2 := L‖x(t)‖2.

And therefore, we have the estimate

‖x(t)‖ ≤ ‖x(kθ)‖e
L
2 (t−kθ) ≤ e

L
2 θ‖x(kθ)‖, for all t ∈ [kθ,(k+1)θ].

As proved above, for εe−Lθ there exists δ = δ(ε) > 0 such that from inequality
‖x0‖< δ it follows sup

k∈Z+

‖x(kθ)‖< εe−
L
2 θ. So, we obtain the following estimate

sup
t≥0
‖x(t)‖ ≤ e

L
2 θ sup

k∈Z+

‖x(kθ)‖< ε,

which proves the stability of the equilibrium state x = 0. To prove the attraction
property of the equilibrium state x = 0, note that from inequality

λmin(P0i)‖xi(kθ)‖2 ≤ ζ̂
2
i (kθ+0) for all k ∈ Z+, i = 1, . . . ,r

it follows that limk→∞ ‖x(kθ)‖= 0, and therefore

lim
t→∞
‖x(t)‖ ≤ e

L
2 θ lim

k→∞

‖x(kθ)‖= 0.

�

6. STABILITY OF COMPARISON SYSTEM

Theorem 1 reduces the problem of stability of the equilibrium state x = 0 of
the original nonautonomous system (3.1) to the study of the linear comparison sys-
tem (4.3). The study of the comparison system is easier, since it, as a rule, has a
lower dimension and has an important property of positivity with respect to the cone
K =Rr

+. The last property makes it possible to significantly simplify the study of this
system and to obtain sufficient conditions for the stability of the linear comparison
system (4.3).

Let us define the matrices Γm = (γ
(m)
i j )r

i, j=1, m = 0, . . . ,N−1, where

γ
(m)
i j = e2cmih

√
λmax(Pmi)

λmin(Pmi)
hηmiδi j + sup

t∈(mh,(m+1)h]
f̂i j(t)e(cmi+cm j)h

√
λmax(Pmi)

λmin(Pm j)
.

It is obvious that Γ(t)≤ Γm for all t ∈ (mh,(m+1)h]. So, we get

ζ(t)≤ ζ̃(t), (6.1)
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where ζ(t) is a solution of the Cauchy problem for the linear comparison system
(4.3) with the initial condition ζ(0) = ζ0 ≥ 0, ζ̃(t) is a solution of Cauchy problem
for system

dζ̃

dt
= Γ̃(t)ζ̃, t 6= kθ, ζ̃(0) = ζ0,

ζ̃(t +0) = ∆
1/2

ζ̃(t), t = kθ,

(6.2)

where Γ̃(t) = Γm for t ∈ (mh,(m+ 1)h]. From the inequality (6.1) it follows that
the asymptotic stability of the linear comparison system (6.2) implies the asymptotic
stability of the linear comparison system (4.3) and the equilibrium state x = 0 of
the nonlinear nonautonomous system (3.1). Thus, we obtain the following sufficient
conditions for the asymptotic stability of the equilibrium state x = 0 of the nonlinear
nonautonomous system (3.1).

Proposition 1. Assume that the positive integer N is chosen large enough so that
rσ(Φi)< 1 and the following inequality hold

rσ(
N−1

∏
k=0

eΓkh
∆

1/2)< 1.

Then the equilibrium state x = 0 of the nonlinear nonautonomous system (3.1) is
asymptotically stable.

For the proof it is necessary to use the main result of the Floquet-Lyapunov theory.

7. NUMERICAL EXAMPLE

Consider a nonlinear coupled system
ẋ1(t) = (−0.8+ cos(20πt))x1(t)− sin(20πt)x2 + f1(t,x2(t)),

ẋ2(t) =−sin(20πt)x1 +(−0.8− cos(20πt))x2(t)+ f2(t,x2(t)),

ẋ3(t) = (−0.8+ cos(20πt))x3(t)− sin(20πt)x4 + f3(t,x1(t)),

ẋ4(t) =−sin(20πt)x3 +(−0.8− cos(20πt))x4(t)+ f4(t,x1(t)),

(7.1)

where xi ∈ R, x = (x1,x2,x3,x4)
T , x1 = (x1,x2)

T , x2 = (x3,x4)
T and the functions

f1 = ( f1, f2)
T , f2 = ( f3, f4)

T satisfy the estimates

‖f1(t,x2)‖ ≤ f̂12‖x2‖, ‖f2(t,x1)‖ ≤ f̂21‖x1‖.
If N = 1, P0i = I, i = 1,2, then the matrices Γ0 and ∆ have the form

Γ =

(
0.6432 1.5834 f̂12

1.5834 f̂21 0.64312

)
,

∆ = 0.9231I.

The sufficient conditions for the asymptotic stability of the equilibrium state x = 0 of
the nonlinear system (7.1) are of the form f̂12 f̂21 < 0.00981.



CONSTRUCTION OF VECTOR LYAPUNOV FUNCTION 623

Let f̂12 = f̂21 = 0.6, N = 10, P10 = P20 = I2, ami = 2.2978, bmi = 6.9282,

ηmi = 3.5178, δi = 0.8578, m = 0, . . . ,9, i = 1,2, rσ(
9
∏

k=0
eΓkh∆1/2) = 0.99276 < 1.

Therefore, the equilibrium state x = 0 of the nonlinear system (7.1) is asymptotically
stable.

It should be noted that matrices

A11(t) = A22(t) =
(
−0.8+ cos(20πt) −sin(20πt)
−sin(20πt) −0.8− cos(20πt)

)
have a spectrum σ(Aii(t)) = {−1.8,0.2}. Therefore, for each independent subsystem
there is no Lyapunov function of quadratic form with a constant (independent of t)
matrix.

8. CONCLUSION

The example given in Section 7 shows that the choice of the Lyapunov function
for independent subsystems of a large-scale system is far from obvious. However,
the proposed algorithm allows one to construct Lyapunov functions for independent
subsystems and obtain sufficient stability conditions for large-scale system. These
conditions are analogous to the well-known small-gain conditions in the theory of
stability of coupled systems. Algorithm for constructing the Lyapunov function can
be easily implemented using modern computing tools such as Maple or Matlab. It
is important to note that the implementation of this algorithm requires calculating of
a finite number of matrices and checking a finite number of inequalities. For high
frequency systems, it requires little computation. In what follows, it is of interest
to generalize the results obtained for some classes of infinite-dimensional systems
and to study the possibility of abandoning the requirement for asymptotic stability of
independent subsystems.
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