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Abstract. In this paper, some sufficient conditions for the oscillation of all solutions of second
order dynamic equations with a negative sub-linear neutral term are established. The obtained
results provide a unified platform that adequately covers both discrete and continuous equations.
Furthermore, it covers a wide range of equations by utilizing different time scales. Illustrative
examples are provided.
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1. INTRODUCTION

The main focus of this paper is to provide new oscillation criteria for the second-
order half-linear dynamic equation of the form[

r(t)
(
z∆(t)

)γ
]∆

+q(t) f (x(δ(t))) = 0, (1.1)

where z(t) := x(t)− p(t)xα(τ(t)). Under the following assumptions
(H1) α,γ ∈Q+

odd ,where Q+
odd := {a/b : a,b ∈ Z+are odd } , α ∈ (0,1];

(H2) r ∈ Crd([t0,∞)T,(0,∞)), p,q ∈ Crd([t0,∞)T,R), 0 ≤ p(t) ≤ p0 < 1, q(t) ≥ 0
and q(t) is not identically zero for large t;

(H3) τ,δ∈Crd([t0,∞)T,T),δ∆ ≥ 0, τ(t)≤ t, δ(t)≤ t, limt→∞ τ(t) = limt→∞ δ(t) = ∞

and h(t) = τ−1(δ(t));
(H4) f ∈C(R,R), u f (u)> 0 for all u 6= 0, and there exists a positive constant k such

that f (u)/uβ ≥ k, β is a ratio of odd positive integers where β≤ γ.
Furthermore, for sufficiently large t1, we assume

R(v,u) =
∫ v

u

1
r1/γ(s)

∆s, v≥ u≥ t0.

and assume that
R(t0, t)→ ∞ as t→ ∞. (1.2)
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Also, we define

Q(t) =
∫

∞

t
kq(s)∆s, t ≥ t0.

By a solution of (1.1), we mean a function x ∈ Crd [Tx,∞)T, Tx ∈ [t0,∞)T which
has the property r(z∆)α ∈ C1

rd [Tx,∞)T and satisfies (1.1) on [Tx,∞)T. We consider
only those solutions x of (1.1) which satisfy sup |x(t)| : t ∈ [Tx,∞)T > 0 for all T ∈
[Tx,∞)T. A solution of (1.1) is called oscillatory if it is neither eventually positive nor
eventually negative; otherwise, it is termed nonoscillatory.

Differential, difference equations, and dynamic equations on time scales have
an enormous potential for applications in biology, engineering, economics, physics,
neural networks, social sciences, etc. In particular, half-linear equations have numer-
ous applications in the analyses of p-Laplace equations, Emden-Fowler equations,
non-Newtonian fluid theory, porous medium problems, chemotaxis models, and so
forth; see, e.g., [6, 11, 19, 25]. We also refer the reader to the papers [1, 2, 4–11, 13–
18, 20–24, 28–34] for the oscillation and asymptotic behavior of different classes of
half-linear equations.

In previous years, many papers studied the oscillatory behavior for different classes
of dynamic equations on time scale. Many studies have been devoted to the oscillat-
ory behavior of solutions to different classes of equations with nonnegative neutral
coefficients; see, e.g., [2, 4, 31, 32] and the references cited therein. However, for
equations with nonpositive neutral coefficients, there are relatively fewer results in
the literature; see [5,7,17,18,28–30,34]. for the oscillation and asymptotic behavior
of different classes of half-linear equations.

For instance, Zhang et al.[33] investigated oscillatory behavior of solutions to a
class of second-order nonlinear neutral delay dynamic equations with nonpositive
neutral coefficients of the form[

r(t)
(
z∆(t)

)γ
]∆

+q(t) f (x(δ(t))) = 0, t ∈ [t0,∞)T

where γ≥ 1 is a ratio of odd integers and z(t)= x(t)− p(t)x(τ(t)) with
∫

∞

t0 r−
1
α (s)∆s=

∞, and presented new oscillation criteria for[
r(t)

(
z′(t)

)α
]′
+q(t) f (x(δ(t))) = 0, t ≥ t0

under the assumption ∫
∞

t0
r−

1
α (s)ds < ∞.

For T = Z, in [14] Grace and Graef presented some new oscillation criteria for
second order nonlinear difference equations with a nonlinear nonpositive neutral term
of the form

∆
(
a(t)(∆(x(t)− p(t)xα(t− k)))γ

)
+q(t)xβ(t +1−m) = 0

where α,β and γ are ratios of positive odd integers with γ≥ β and 0 < α≤ 1.
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In [26], Lin studied ∆
(
xn− pnxα

n−τ

)
+qnxβ

n−σ = 0, n≥ n0 where α and β are quo-
tients of odd positive integers with 0 < α < 1

More precisely, to the best of our knowledge, no paper on the oscillation of second-
order dynamic equations on a time scale appears on (1.1). Our aim is not only present
some oscillation criteria for solutions of equation (1.1) but also present sufficient
conditions which ensure that all solutions of (1.1) are oscillatory.

2. AUXILIARY RESULTS

Lemma 1 ([9, Theorem 1.93]). Assume that v : T→ R is strictly increasing and
Ť := v(T) is a time scale. Let y : Ť→ R. If v∆(t) and y∆̌(v(t)) exist for t ∈ Tk, then

(y(v(t)))∆ = y∆̌(v(t))v∆(t).

Lemma 2. Let conditions (H1)-(H4) and (1.2) hold. Assume that x(t) is a positive
solution of (1.1). Then we have the following two cases:

(I) z(t)> 0, z∆(t)> 0, (r(t)(z∆(t))γ)∆ ≤ 0,
(II) z(t)< 0, z∆(t)> 0, (r(t)(z∆(t))γ)∆ ≤ 0,

for t ∈ [t1,∞)T, where t1 ∈ [t0,∞)T, is sufficiently large.

Proof. Suppose that there exists a t1 ≥ t0 such that x(t) > 0,x(τ(t)) > 0, and
x(σ(t))> 0 for t ≥ t1. From (1.1) it follows that

[r(t)(z∆(t))γ]∆ ≤−kq(t)xβ(δ(t))< 0.

Hence, [r(t)(z∆(t))γ] is nonincreasing and of one sign. That is, there exists t2 ≥ t1
such that z∆(t)> 0 or z∆(t)< 0 for t ≥ t2. We claim that z∆(t)> 0 for t ≥ t2. For this,
we assume that z∆(t)< 0 for t ≥ t2. Then,

r(t)(z∆(t))γ ≤−C < 0, for t ≥ t2,

where C =−r(t2)(z∆(t2))γ. Thus, we conclude that

z(t)≤ z(t2)− c1/γ

∫ t

t2
r−1/γ(s)∆s.

By virtue of condition (1.2), limt→∞ z(t) =−∞. Now, we consider two cases.
Case 1: If x is unbounded, then there exists a sequence {tk} such that limk→∞ tk = ∞

and limk→∞ x(tk) = ∞, where x(tk) = max{x(s); t0 ≤ s≤ tk}, since

lim
t→∞

τ(t) = ∞, τ(tk)> t0

for all sufficiently large k. By τ(t)≤ t

x(τ(tk)) = max{x(s); t0 ≤ s≤ τ(tk)} ≤max{x(s); t0 ≤ s≤ tk}= x(tk) .

Therefore, for all large k,

z(tk) = x(tk)− p(tk)xα (τ(tk))≥ x(tk)− p(tk)xα (tk)
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≥
(

1− p(tk)
x1−α (tk)

)
x(tk)> 0

which contradicts the fact that limt→∞ z(t) =−∞.
Case 2: If x(t) is bounded, then z(t) is also bounded, which contradicts limt→∞ z(t)=

−∞. This completes the proof.
�

3. MAIN RESULTS

For simplicity, we consider

K(t) =

{
1, γ = β;

MR
β−γ

γ (t, t2); γ > β,
for some M > 0.

Q(t) =
∫

∞

t
q(s)∆s and ψ(t) = r1/γ(t)R(T, t), for T ≥ t0.

Theorem 1. Assume that conditions (H1)-(H4) and (1.2) hold. If there exists a
positive nondecreasing continuously differentiable function ϕ(t), such that

limsup
t→∞

[ϕ(t)Q(t) (3.1)

+
∫ t

t2

(
kq(s)ϕ(s)− γγ

βγ(γ+1)γ+1
r(δ(s))(ϕ∆(s))γ+1

(δ∆(s))γϕγ(s)Kγ(δ(σ(s)))

)
∆s
]
= ∞,

limsup
t→∞

[
k
∫ t

h(t)
q(s)Rβ/α(h(s),h(t))∆s

]
> 1, for β = αγ, (3.2)

and

limsup
t→∞

∫ t

h(t)
q(s)Rβ/α(h(s),h(t))∆s = ∞, for β < αγ, (3.3)

then every solution of (1.1) is oscillatory.

Proof. Assume that x is a nonoscillatory solution of (1.1) such that x(t) > 0,
x(τ(t)) > 0 and x(δ(t)) > 0, for t ∈ [t1,∞)T. From Lemma 2, z(t) satisfies either
(I) or (II) for t ∈ [t1,∞)T.

Case 1 : Suppose that z(t) satisfies Lemma 2 (I). From the definition of z(t),

x(t) = z(t)+ p(t)xα(τ(t))≥ z(t),

in view of (1.1), we get

[r(t)(z∆(t))α]∆ ≤−kq(t)zβ(δ(t))< 0. (3.4)

Integrating (3.4) from t to u, letting u→ ∞, and using the increasing fact of
z(t), we get

r(t)(z∆(t))γ ≥ zβ(δ(t))
∫

∞

t
kq(s)∆s =: Q(t)zβ(δ(t)). (3.5)
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Define

ω(t) = ϕ(t)
r(t)(z∆(t))γ

zβ(δ(t))
.

It is clear that ω(t)> 0 and

ω
∆(t) = [r(t)(z∆(t))γ]∆

ϕ(t)
zβ(δ(t))

+ r(σ(t))(z∆(σ(t)))γ

(
ϕ(t)

zβ(δ(t))

)∆

≤−kq(t)ϕ(t)+ϕ
∆(t)

r(σ(t))(z∆(σ(t)))γ

zβ(δ(σ(t)))

−βϕ(t)
r(σ(t))(z∆(σ(t)))γz∆(δ(t))δ∆(t)

zβ+1(δ(t))
.

Since z∆(t)> 0, δ∆(t)≥ 0 and from the definition of ω(t), we obtain

ω
∆(t)≤−kq(t)ϕ(t)+

ϕ∆(t)
ϕ(σ(t))

ω(σ(t)) (3.6)

−βδ
∆(t)ϕ(t)

r(σ(t))(z∆(σ(t)))γ

zβ(δ(σ(t)))
z∆(δ(t))

z(δ(σ(t)))

≤−kq(t)ϕ(t)+
ϕ∆(t)

ϕ(σ(t))
ω(σ(t))

−βδ
∆(t)

ϕ(t)z∆(δ(t))
ϕ(σ(t))z(δ(σ(t)))

ω(σ(t)).

From the definition of ω(t) and since [r(t)(z∆)γ] is nonincreasing, then we
have

z∆(δ(t))≥ z
β

γ (δ(σ(t)))

r
1
γ (δ(t))ϕ

1
γ (σ(t))

ω
1
γ (σ(t)).

This with (3.6) leads to

ω
∆(t)≤−kq(t)ϕ(t)+

ϕ∆(t)
ϕ(σ(t))

ω(σ(t)) (3.7)

−βδ
∆(t)

ϕ(t)

ϕ
γ+1

γ (σ(t))r
1
γ (δ(t))

ω
γ+1

γ (σ(t))z
β−γ

γ (δ(σ(t))).

It is clear that z
β−γ

γ (δ(σ(t))) = 1 for β = γ and (3.7) takes the form

ω
∆(t)≤−kq(t)ϕ(t)+

ϕ∆(t)
ϕ(σ(t))

ω(σ(t)) (3.8)

−βδ
∆(t)

ϕ(t)

ϕ
γ+1

γ (σ(t))r
1
γ (δ(t))

ω
γ+1

γ (σ(t)).
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On the other hand for β < γ. Since [r(t)(z∆(t))γ]∆ ≤ 0, then there exists a
constant C > 0 such that r(t)(z∆(t))γ ≤ r(t2)(z∆(t2))γ < C for some t ≥ t2,
which leads to

z∆(t)≤C
1
γ r
−1
γ (t). (3.9)

Integrating (3.9) from t to t2, we get

z(t)≤ z(t2)+C
1
γ R(t2, t)

≤C1/γR(t2, t).

This leads to,

z
β−γ

γ (δ(σ(t)))> MR
β−γ

γ (δ(σ(t)), t2), β < γ for some M > 0. (3.10)

Combining (3.8) and (3.10), we get

ω
∆(t)≤−kq(t)ϕ(t)+

ϕ∆(t)
ϕ(σ(t))

ω(σ(t)) (3.11)

−βMδ
∆(t)ϕ(t)

R
β−γ

γ (δ(σ(t)), t2)

ϕ
γ+1

γ (σ(t))r
1
γ (δ(t))

ω
γ+1

γ (σ(t))

≤−kq(t)ϕ(t)+
ϕ∆(t)

ϕ(σ(t))
ω(σ(t))

−βδ
∆(t)ϕ(t)

K(δ(σ(t)))

ϕ
γ+1

γ (σ(t))r
1
γ (δ(t))

ω
γ+1

γ (σ(t)).

Applying the inequality

Bω−Aω
γ+1

γ ≤ γγ

(γ+1)γ+1
Bγ+1

Aγ
,

with B = ϕ∆(t)
ϕ(σ(t)) , A = βδ∆(t)ϕ(t)

K(δ(σ(t)))

ϕ
γ+1

γ (σ(t))r
1
γ (δ(t))

, we get

ω
∆(t)≤−kq(t)ϕ(t)+

γγβ−γ

(γ+1)γ+1
r(δ(t))(ϕ∆(t))γ+1

(δ∆(t))γϕγ(t)Kγ(δ(σ(t)))
. (3.12)

Integrating (3.12) from t2 to t

ω(t)≤ ω(t2)−
∫ t

t2

(
kq(t)ϕ(s) (3.13)

− γγ

βα(γ+1)γ+1
r(δ(s))(ϕ∆(s))γ+1

(δ∆(s))γϕγ(s)Kγ(δ(σ(s)))

)
∆s.
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From the definition of ω(t) and (3.5) we have

ω(t)≥ ϕ(t)
Q(t)zβ(δ(t))

zβ(δ(t))
≥ ϕ(t)Q(t). (3.14)

From (3.13) and taking (3.14) into account

ϕ(t)Q(t)+
∫ t

t2

(
kq(s)ϕ(s)− αα

βα(α+1)α+1
r(δ(s))(ϕ∆(s))α+1

(δ∆(s))αϕα(s)Kα(δ(σ(s)))

)
∆s≤ ω(t2),

which contradicts (3.1).
Case 2 : Suppose that z(t) satisfies Lemma 2 (II). Putting y =−z > 0, then y∆ < 0,

and (1.1) takes the form

[r(t)(y∆(t))γ]∆ ≥ kq(t)xβ(δ(t))≥ 0. (3.15)

Since

y(t) =−z(t) = p(t)xα(τ(t))− x(t)

≤ p(t)xα(τ(t)),

by virtue of 0≤ p(t)≤ p0 < 1, we have

y1/α(h(t))≤ x(δ(t)). (3.16)

Now, inequalities (3.15) and (3.16) lead to

[r(t)(y∆(t))γ]∆ ≥ kq(t)yβ/α(h(t)). (3.17)

Also for t2 ≤ u≤ v, we can write

y(u)− y(v) =
∫ v

u

1
r1/γ(s)

(−r(s)(y∆(s))γ)1/γ
∆s,

y(u)≥ R(v,u)(−r(v)(y∆(v))γ)1/γ.

Setting u = h(t) and v = h(s), we get

y(h(s))≥ R(h(s),h(t))(−r(h(t))(y∆(h(t)))γ)1/γ. (3.18)

Integrating (3.17) from h(t) to t, in view of (3.18), we get

−r(h(t))(y∆(h(t)))γ ≥ k[−r(h(t))(y∆(h(t)))γ]β/αγ

∫ t

h(t)
q(s)Rβ/α(h(s),h(t))∆s,

which leads to

[Y (t)]1−
β

αγ ≥ k
∫ t

h(t)
q(s)Rβ/α(h(s),h(t))∆s,

where Y (t) =−r(h(t))(y∆(h(t)))γ. Therefore, we have

1≥ k
∫ t

h(t)
q(s)Rβ/α(h(s),h(t))∆s, for β = αγ,
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which contradicts (3.2). Also, for β < γ, by (3.15) together with the fact
that Y ∆(t) ≤ 0 and Y (t) is bounded, we get a contradiction with (3.3). This
completes the proof.

�

Remark 1. Note that Theorem 1 holds when Q(t) < ∞ and the addition term
ϕ(t)Q(t) in condition (3.1) may improve some of the well-known results in the liter-
ature.

Corollary 1. Let conditions (H1)-(H4) be satisfied and (1.2) hold. If Q(t) < ∞,
then condition (3.1) replaced by

limsup
t→∞

∫ t

t2

(
kq(s)ϕ(s)− γγ

βγ(γ+1)γ+1
r(δ(s))(ϕ∆(s))γ+1

(δ∆(s))γϕγ(s)Kγ(δ(σ(s)))

)
∆s = ∞, (3.19)

and conclusion of Theorem 1 remains intact.

Corollary 2. Let conditions (H1)-(H4) be satisfied and (1.2) hold. With ϕ∆(t)≤ 0,
then condition (3.1) replaced by

limsup
t→∞

[
ϕ(t)Q(t)+

∫ t

t2
kq(s)ϕ(s)∆s

]
= ∞,

and conclusion of Theorem 1 remains intact.

To add variety, we present a different approach of the condition (3.1) in the fol-
lowing.

Theorem 2. Assume that conditions (H1)-(H4) and (1.2) hold. If

limsup
t→∞

[
ϕ(t)Q(t)+

∫ t

t2
(kq(s)ϕ(s) (3.20)

− 1
4β

r1/γ(δ(s))(ϕ∆(s))2

δ∆(s)Q
1−γ

γ (σ(s))ϕ(s)K(δ(σ(s)))

)
∆s

]
= ∞,

and (3.2) or (3.3), then every solution of (1.1) is oscillatory.

Proof. Assume that x(t) is a nonoscillatory solution of (1.1) such that x(t) > 0,
x(τ(t)) > 0 and x(δ(t)) > 0, for t ∈ [t1,∞)T. From Lemma 2, z(t) satisfies either (I)
or (II) for t ∈ [t1,∞)T.

Case 1: First, we suppose that z(t) satisfies (I). Since ω(t) = ϕ(t)
r(t)(z∆(t))γ

zβ(δ(t))
, then

by (3.14), we conclude that(
ω(σ(t))
ϕ(σ(t))

) 1−γ

γ

≥ Q
1−γ

γ (σ(t)). (3.21)
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Now, inequalities (3.11) and (3.21) imply

ω
∆(t)≤−kq(t)ϕ(t)+

ϕ∆(t)
ϕ(σ(t))

ω(σ(t))

−βδ
∆(t)Q

1−γ

γ (σ(t))
ϕ(t)K(δ(σ(t)))

ϕ2(σ(t))r
1
γ (δ(t))

ω
2(σ(t)).

Apply the inequality

Bω−Aω
γ+1

α ≤ γγ

(γ+1)γ+1
Bγ+1

Aγ
, where γ = 1,

with B = ϕ∆(t)
ϕ(σ(t)) , A = βδ∆(t)Q

1−γ

γ (σ(t))
ϕ(t)K(δ(σ(t)))

ϕ2(σ(t))r
1
γ (δ(t))

, we get

ω
∆(t)≤−kq(t)ϕ(t)+

1
4β

r1/γ(δ(t))(ϕ∆(t))2

δ∆(t)Q
1−γ

γ (σ(t))ϕ(t)K(δ(σ(t)))
. (3.22)

Integrating (3.22) from t2 to t

ω(t)≤ ω(t2)−
∫ t

t2

(
kq(s)ϕ(s)− 1

4β

r1/γ(δ(s))(ϕ∆(s))2

δ∆(s)Q
1−γ

γ (σ(s))ϕ(s)K(δ(σ(s)))

)
∆s, (3.23)

In view of (3.14), inequality (3.23) takes the form

kϕ(t)Q(t)+
∫ t

t2

(
kq(s)ϕ(s)− 1

4β

r1/γ(δ(s))(ϕ∆(s))2

δ∆(s)Q
1−γ

γ (σ(s))ϕ(s)K(δ(σ(s)))

)
∆s≤ ω(t2),

which contradicts (3.20).
Case 2: Suppose that z(t) satisfies Lemma 2 (II). The proof can be performed a

similar manner as in the proof of Theorem1. This completes the proof.
�

4. APPLICATIONS AND EXAMPLES

This section introduces some special cases for Eq. (1.1). For the non-neutral equa-
tion, i.e., Eq. (1.1) with p(t)≡ 0, and q(t) is either positive or negative for all large t,
Eq. (1.1) is reduced to the equation[

r(t)
(
(x(t))∆

)γ]∆

±q(t) f (x(δ(t))) = 0. (E±)

From Theorem1 we conclude the following results.

Corollary 3. Assume that conditions (H1)-(H4) and (1.2) hold. If there exists a
positive function φ(t) with φ∆(t)≥ 0 such that condition (3.1) holds, then Eq. (E+) is
oscillatory.
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Proof. The proof is omitted because it is included in the proof of Theorem 1-Case
(1). �

It’s noted that, results in [3] and the references cited therein are related to Corol-
lary 3 for T = R. Also the results can be extended to the difference equations when
T= Z, see [12, 27].

Corollary 4. Assume that conditions (H1)-(H4) and (1.2) hold. If there exists a
positive function φ(t) with φ∆(t) ≥ 0 such that condition (3.2) or (3.3) holds, then
Eq. (E-) is oscillatory.

Proof. The proof is omitted because it is included in the proof of Theorem 1-Case
(2). �

In the following, we investigate another special case

Theorem 3. Let α = 1, conditions (H1)-(H4), and (1.2) hold. Assume that condi-
tion (3.2) and

limsup
t→∞

Rβ(t0,δ(t))> 1, when β = γ, (4.1)

hold and condition (3.3) and

limsup
t→∞

Rβ(t0,δ(t))> 0, when β < γ, (4.2)

hold. Then (1.1) is oscillatory.

Proof. Assume that (1.1) has a nonoscillatory solution x(t). Without loss of gen-
erality, we assume that there exists a t1 ∈ [t0,∞)T such that x(t)> 0, x(τ(t))> 0, and
x(δ(t)) for t ∈∈ [t1,∞)T. According to Lemma 2, we have two possible cases for z(t).
Assume that z(t) satisfies Lemma 2 (I). It follows that

z(t) = z(t2)+
∫ t

t2

(r(s)(z∆(s))γ)1/γ

a1/γ(s)
∆s

≥ (r(t)(z∆(t))γ)1/γ

∫ t

t2
a−1/γ(s)∆s

=: ψ(t)z∆(t). (4.3)

In view of (3.5) and (4.3), and using the decreasing fact of r(t)z∆(t), we find

w(t) =: r(t)z∆(t)

≥ Q(t)ψβ(δ(t))(z∆(δ(t)))β

= Q(t)ψβ(δ(t))
(

r−β/γ(δ(t))
)(

r(δ(t))(z∆(δ(t)))γ
)β/γ

≥ Q(t)ψβ(δ(t))
(

r−β/γ(δ(t))
)(

r(t)(z∆(t))γ
)β/γ

= Q(t)ψβ(δ(t))
(

r−β/γ(δ(t))
)

wβ/γ(t),
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hence

w1−β/γ(t)≥ Q(t)ψβ(τ(t))
(

r−β/γ(δ(t))
)

= Q(t)
(∫

δ(t)

t2
r−1/γ(s)∆s

)β

= Rβ(t2,δ(t))Q(t). (4.4)

Taking limsup of both sides of (4.4) as t → ∞. For β = γ, we get a contradiction to
(4.1) and (4.2) when β < γ. If z(t) satisfies Lemma 2 (II), then the proof is similar to
that of Theorem 1. �

Remark 2. Note that the obtained results in Theorem 3 are an improvement of the
results in [18, 34] which guarantee that every solution of (1.1) is oscillatory.

Example 1. Let T= R. Consider the second order differential equation(
t2
( (

x(t)− 1
2

x(t/3)
)′ )3)

+
λ

t2 x3(t/2) = 0, t ≥ 1. (4.5)

Here α= 1, β= 3, γ= 3, λ> 0 is a constant k = λ, r(t) = t2, p(t) = 1/2, q(t) = 1/t2,
τ(t) = t/3, δ(t) = t/2 and h(t) = 3t/2. It is clear that

R(t0, t) =
∫ t

1
s−2/3ds

= 3( 3
√

t−1), R(t0, t)→ ∞ as t→ ∞.

Applying Theorem 3, we have

limsup
t→∞

[
k
∫ t

h(t)
q(s)Rβ(h(s),h(t))∆s

]
= limsup

t→∞

[
λ

∫ t

3t/2

81( 3
√

s− 3
√

t)3

2s2 ds
]
> 1

and

limsup
t→∞

Rβ(t0,δ(t)) = limsup
t→∞

(
3( 3
√

3t/2−1)
)
> 1.

For suitable λ and large t, every solution of Eq. (4.5) is oscillatory.

Remark 3. Theorem 3.1 of [18] can be applied to (4.5) which yields that every
solution of equation (4.5) is oscillatory when λ > 2

27 or limt→∞ x(t) = 0.

Example 2. Let T= R. Consider the second order differential equation( (
x(t)− 1

2
x(
√

t)
)3
)′′

+
m

t5/4 x(t/2) = 0, t ≥ 1. (4.6)
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Here α = 1, β = 1, γ = 3, k = m > 0 where m is a constant, r(t) = 1, p(t) = 1/2,
q(t) = 1/t5/4, τ(t) =

√
t, δ(t) = t5/4 and h(t) =

√
t. Taking ϕ(t) = t, by using The-

orem 1, we have

limsup
t→∞

[
4mt3/4 +

∫ t

1

(
m
4
√

s
− 9

16
(1

4 s1/4
)3
( 4
√

s−1)−2

)
ds

]

= limsup
t→∞

[
4mt3/4 +

4
3

(
m
(

t3/4−1
)
−36

(
4
√

t−1
)3
)]

.

Hence, (4.6) oscillates for m > 9.
According to (3.2), we have

limsup
t→∞

[
k
∫ t

h(t)
q(s)Rβ(h(s),h(t))ds

]
= limsup

t→∞

[
2m

∫ t

√
t

√
t−
√

s
s5/4 ds

]
→ ∞.

Therefore, every solution of (4.5) is oscillatory when m > 9.

Remark 4. It should be noted that, for T = R and α = 1, Theorem 1 improves
the conditions of Theorem 2.1 of [13] and guarantees that every solution of (1.1) is
oscillatory unlike in [13, 33, 34] .

Example 3. Let T= Z. Consider the second order difference equation

∆

(
∆

(
x(t)− 1

2
x1/3(t−3)

)3
)
+8(x−7) = 0, t ≥ 1. (4.7)

Here α = 1/3, β = 1, γ = 3, k = 1, r(t) = 1, p(t) = 1/2, q(t) = 8, τ(t) = t − 3,
δ(t) = t−7 and h(t) = t−4. Taking ϕ(t) = t, by using Corollary 1, we have

limsup
t→∞

[
t

∑
s=1

(
kq(s)ϕ(s)− γγ

βγ(γ+1)γ+1
r(δ(s))(∆ϕ(s))γ+1

(∆δ(s))γϕγ(s)Kγ(δ(σ(s)))

)]

= limsup
t→∞

[
t

∑
s=1

(
8s− 9

16s3(s−6)−2

)]
→ ∞.

Also, condition (3.2) implies that

limsup
t→∞

[
k

t

∑
s=h(t)

q(s)Rβ/α(h(t),h(s))ds

]
→ ∞,

which yields that (4.7) satisfies conditions (3.19) and (3.2). Therefore, every solution
of (4.7) is oscillatory.
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