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Abstract. A newly-disclosed non-standard finite difference method has been used to discretize a
prey-predator model to investigate the critical normal form coefficients of bifurcations for both
one-parameter and two-parameter bifurcations. The discrete-time prey-predator model exhibits
variety of local bifurcations such as period-doubling, Neimark-Sacker, and strong resonances.
Critical normal form coefficients are determined to reveal dynamical scenario corresponding to
each bifurcation point bifurcation. We also investigates the complex dynamics of the model nu-
merically using by MATLAB package MATCONTM based on numerical continuation technique.
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1. INTRODUCTION

Let us consider the following continues prey-predator model

dxpp _

i =axpp —bxppypp,
Ypp _ g
dt Ve \€ dx,,p g

(1.1)

where prey (predator) population at time T is denoted by x,, (y,p). Furthermore, a
represents the intrinsic growth rate of prey, b represents the functional response, ¢
represents the growth rate of predator and d represents the number of prey required
to support one predator at equilibrium, see [25].

In ecology, population dynamics are generally determined by both discrete-time
and continuous-time dynamics. The study of discrete-time biology systems has re-
ceived a great deal of attention in recent years, see [1, 3-8, 12, 13, 18]. Discrete
models provide more realistic representations when the generation takes place in
nonoverlapping spaces, and these models also provide more efficient computational
models for numerical simulations when compared to continuous-time models, see
[2,9,11,16,19-22,24]. In the present paper, we are interested in examining the beha-
vior of discrete-time version obtained from system (1.1). There is an expectation that
the discrete-time model will be dynamically compatible with the continuous-time
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model. Zhang et [23] also point out that if there are no overlapping generations in a
biological population, then one must obtain discrete-time systems from a dynamical
model of continuous population dynamics. As a result, using a nonstandard scheme,
the first one achieves the discrete form of (1.1). Follow these steps to discretize model
(1.1). At first the model (1.1) is considered on a finite interval [0, ®] and discretize
this interval by a uniform mesh as follows

0=T <t < - <TN_1 <Ty=0,

and let h =1 — 1, for j =1,2,--- ,N. Our non-standard finite difference (NSFD)
schemes for model (1.1) are based on Mickens’ theory as follows:

xﬁl*"gp _ —b
o) Xpp = OXppYpps (1.2)
Yop ~Vop —y (c—dm> :
o(h) pp Ypp )

where @(h) = 1 —e~". The model

Xpp = —b (1 — e_h) XppYpp +a (1 — e_h) Xpp +Xpp,
Vpp > — XppYpp (1.3)
pp c(1=e)xpp—d(1—e")y,p—xpp’

is the discrete model obtained from (1.2).

2. EXISTENCE AND FEASIBILITY OF FIXED POINTS
The system (1.2) can be considered as the following map
—b(1—eM)x +a(l—e M x,,+x
<xpp> s MPP(W,Q) — ( N ) Ppyppxppypp( ) Xpp +Xpp L@
Ypp c(l7e‘h)xpp7d(l76‘”)yppfxm,

where ¥ = (xpp,ypp)T, Q= (a,b,c,d,h)T.
In order to find the fixed points of the map (2.1), we solve the following system
—b(1- eih)xxl’[’yﬂp ta(l—e ") xpp+xp =xp,
B c(l —e*h)x,,p—d(l—e*h)y,,,,—x,,,, = Ypp:

da a
prr — (22 2
* (Cb’b)’

are clearly visible in the map (2.1).
Let us consider

The unique positive fixed point

1 1
MPP(\P’_Q) =7 (lP7 Q)‘P—F 5]2(1117111) + 5-73(?711!’111) + O(H ¥ ||4)7
in which

1(¥,Q) = MEP(P,Q)
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by,pe " —ae™ —by,, +a+1 b(—1+e")xp,
- o yppzd<—l+e’h) xppz(ce”'—c-i-l) 5
(cx,,,,e*h—dy,,pe*h—cx,,p-i-a'yp,,-&-x,,,,)2 (cxp,,e*h—dy,,,,e*”—cx,;,,+dy,,,,+x,,,,)2
j21(lP7\P) ,731(‘}17?7?)
¥ ¥) = , Y. V¥ = ,
2(¥,¥) <J22(‘P,‘P) BT = (5w v w)
and
2 82 MPP( )
(0D =Y —SE==—Yi0,
’ =N
2 3MPP( )
5i(TEY) = TR TR LR
3 Zl: OV 0%, ¥,
where

I'= (Yl’yz)Ta Y= (61762)Ta 1= (DhUZ)T-

3. BIFURCATIONS OF POSITIVE FIXED POINT P17
3.1. One parameter bifurcations
The parameter / is considered in this part to be a bifurcation parameter.

Theorem 1. The critical value
ceh—c+2

¢ ((e%)2 —2ehy 1) ’

causes a period-doubling bifurcation of PL”.

a=appx=—2

Proof. For a = app . the matrix

1 ) (ce’hfc+2)d
9 (1};]’1’ QPD *) _ (71+e*")c2
PD x> » (—1+e*h)c2 ’
-V Ce_h —c+ 1
(ce"’—c—}—Z)d
T & 2(a2h_nah
Qpp« = (aPD7*7bvc>d7h)T’ lp;;g* - zc (ece*’zi+2+l)b ’
C T (e 2e 410
has the multipliers
7‘}3[),* =—1, 7»1%07* =ce " —c+3.

In the case where 7‘%1),* # =41, a period-doubling bifurcation may occur on the curve

q;?]g’* - {(-xppvyppur7h7bucvd); a= aPD,*} .
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It is possible to consider map MPP (W3}, ., Qpp ) as follows:

1 —
Npps = —Mppx + EB%,N%D,* + O(Mpp..)-

/\

We can derive the normal form coefficient 75 pp « as follows

g _ 1
PO g (WeD x5 J3(VPD 5 VPD %, VPD 5 )

+3% (VPD,*, (b -7 (‘PPD7*,QPD7*))_1 H(vPD s, VPD7*)> > 7
where
J(¥pep,«, 2Pp+)VPDx = VPD
I (Ppp oy Qpp s« )WpDw =Wpp sy (WD, VPDA) = 1.

As a result, we have

(ce”’—c-&-Z)d (71+e’h)c2
VPDa = (71+e*”)02 WpD« = (ce”’fc+4)d ’
1 2(ce_h—c—i-4)_1

and

I b? (e_3hc— 3e 2hete 2y 3ceh—2eh—c+ 1)

FDx = ceh—c+4

If B pp.« 7 0 there is a generic period doubling bifurcation on the curve Q}’K .- When

/\

PD >0 ([3 pp.« < 0) the bifurcated period-2 cycles is stable (unstable) and the period

doubling bifurcation is supercritical (subcritical).

Theorem 2. The critical value a = ansy = — (—1 —I—e_h)_] causes a Neimark-

Sacker bifurcation of PL’.

Proof. For a = ays . the matrix

1 _d
C
T (PNs . Onsx) = 2 ech ;
¥ _C ( ldJrC ) c67h _c+1

___d
—1 —h b
Q'NS,* = (aNS,*abacad>h)T7 T]{I@* = _C( Jlre )
(—1+e )b

has two complex multipliers

7»11\,_%* et =1 41/2¢ce" —c/2:t1/2\/ e ")’ 42eh2 —dceh— 2 +4c.
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767
On the curve,

PP _ cq =
TNS’*— (Xpp,Yppsa;b,c,d, h);a = ans .}

the Neimark-Sacker bifurcation will occur.
It is possible to write MPP(Wys ., Qs «) as follows:

—_—
i0 pp 2 4
Nws« — € Nws« + 5Ns7*T]N5,*T]NS,* + O(Inws.«| "),
—_—
The normal form coefficient 8} , can be derived as
g1
5NS,* =5 (WS, J3 (VNS 5 VNS 4, VNS %)

+2% (VNS,*7 (b — 5 (Prs, Us)) " (s, st,*)>

. -1
+ % (VNS.,»M (62'6012 — 51 (Pns.+, QNS,*)) Jo (VNS VNS,*)) )

where

o e

T (Pns, Qns)VNs,« = € 0Vns ., J1(Pns,c Qs )VNs+ =€ VNS,

T —i T N N

.71 (lPNS,*agNS,*)WN&* =e OWNS7*7 .71 (\PNS.,*7QNS,*)WNS,* = OWNS,*v
<WNS,*7VNS,*> - 17

and
-2 d
VNS« = C(ce*h—i-i\/c(2ce*h_372hc_4efh_c+4)_C) 7
1
A (—14e™)
1 2d< —hy; Yol —o2he—doth 4
WNS« = == mee +l\/c( ce t—e e—4eT " —c+ )+C)
wy
1
where wv =

2c((ie_h i) v/—((—2c+4)e " +e2c+c—4)c+ (—2c+4)e " +e et 4)

(i\/— ((—2c+4)e " +e2c+c—4)c+c(—1 +e—’1))2

If 835 , # O there is a generic Neimark-Sacker on the curve 7¢.. When
ol =R (e &% ) #0,

a unique closed invariant curve for MP?(Wys ., Qus) appears around the WY .,

—_— ’
when a crosses ays . The sign of Gﬁ,ﬁl* indicates the stability of the closed invariant
curve.

O
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3.2. Two parameters bifurcations
Each bifurcation on the bifurcation curves mentioned in Section 3.1 is examined

within a two-parameter space (a,h).
Theorem 3. The critical values a = ag, . = c/4 and h = hg,, = —In (=)
causes a strong resonance 1:2 bifurcation PL?

Proof. For r = rg, , and h = hg,  the matrix

d
L=

124 _
]I(WRz,*7QR27*)_ 45 _3 )

1/44
( / b>7 Qr, « = (aRy 1, b,¢,d hRy 1) 5

Vi = 1/4¢

has two repeated multipliers ?ullezz* = —1. On the curve
{Z;?z x {(xppvyppva’b7c7d’h)aa = ARy x5 h= th,*} .

the resonance 1:2 bifurcation will occur.
The map MPP (W, ., Qr, ) can be written as

<nR2,*> 7nR27* + CR27
CRz,*

2
CRL + GRZ *nRz * + SRZ,*nRQ,*CRzy*
The normal form coefficients GR and 8 , can be derived as

o 1,9 0 0 0
sz* = 6<WR27]3<VR27*7VR2,*?VRZ,*)
~1
+3% <V9e2,*, (12 - (‘Pﬁi*aﬁm)) > B(VRy s Vitys))

S 1
<WR2 *7]3(VR2 *7"%2 *7VR2 *) +2]2(VR2 *7hR2 *) +-72(VR2 *7hR2 *)>

8, =3
1 0
+ §<WR2 *7]3(VR2 *’VRZ *7VR2 *) +2]2(VR2 *’hRQ *)>
-1
hlze(;* = (IZ ! (‘sz,*a'QRz,*)) (]2(\/'(1)327*,\/%27*)) s
-1
11
h’Rz,* ( jl( Rz,*’QRZ,*)> (-72(sz *’sz) +hR2 *) .
where
0 0 0
W) (W£§*7QR27*)VR2 x = TVRy % le (\ng,*ngL*)wllez,* = _Wllez,* +WR2,*7
T 0 0 0 1 1 0
I ( Ry, *7QR2 *)WRQ « = T WRy 5 <WR2,*7VR2,*> = <WR2,*7VR2,*> =1,
0 0
<WR2,*’VR27*> = <W1132,*’V11?27*> =0.

1 0
_VRZ,* + ng,*u

-71( 2*7QR27 )V11€2*
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As a result, we have

769
d3
0 _ <1/2‘5> L (Ve
vRZ:* - 1 ) -

. B (9c2+d?)
Ry % &2
3/4 92 +d?
0 -8 M 6%
Ry % 4 924 g2 ) Ry % )
d2
Consequently, we get
— 9¢?+d*) b? b* (360c* +294°
o’ P e L T PLA L )
» d2c? 2% d2c?
If szr* # 0 and —25%1;* —
the curve 7"

# —60%" , there is a generic resonance 1:2 bifurcation on

O
Theorem 4. The critical values a = ag, . = ¢/3 and h = hg, , = —ln( ngC)
causes a strong resonance 1:3 bifurcation PL?

¥ -
Proof. For r = rg, » and h = hg, , the matrix

d
jl(lP[];p*7QR3*): 1 o )
A - T
3,%

on the curve

has multipliers Ag”, = cos(%) £i sin(%‘) The resonance 1:3 bifurcation will occur

(2-1;23*_{(xpp7ypp7aab>c7d7h)aa:aR3 *7h hR3, }
The map MPP(Py! ., Qk, .) can be written as

The normal form coefficients

. T oD . o
e+ (c0sC3) 500 ) e B i+ O T+ O )

R, and o’ . can be derived as
BR%, <WR37*’j2(VRz,*,VR3 <))

GR; % <WR3,*aj3(VR% %5 VR3,%; VR3, *) +2j2(VR% *’h’Rg *) ) (VRL*’hRq *))
71 L
L= 51(YE ., Qks, *)> J2(VRy 5, VRy %)

an; —INV pT
< 3 ]2_]1 RE’*7QR3,*))

BRS,*VR3-*

- jZ(VR3,*7 vR37*)) )
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where
wprr o _ & g o — i
Ji( R3 % Ry ) VR, = €3 VR Ji( R3 % Ry )VRsx =€ 3 VR,

T PP "7 T pp ooy
I (lPR3,*vQR37*)WR37* =€ WRyx, I (‘PR3,*7'QR37*)WR37* =€ WRyx;

<WR3¢*7VR37*> =1

As a result, we have

_p__d —_
c(iv3— iv/3+1)d (iv/3+3
:< (\/53)>, S e 0% ><_1 )
1 2 (iV3+1)
Consequently, we get

b(3ivV3—1) b* (2iV3+3)

BR; x = 3&#7 Opy = —21 2
There is a generic resonance 1:3 bifurcation on the curve 7 ' PP . provided that B Ry
and cg'g* #0. O
Theorem 5. The critical values a = ag, « = c/2 and h = hR, s = —ln(#)

causes a strong resonance 1:4 bifurcation PL”

Proof. For a = ag, +» and h = h,, , the matrix

| —
144 —
]1 (lPR4’*7QR4,*) — (2(‘ _i) )

1/23
Win = <1§2 > Qp, .« = (g, b.c.d, )"

(). The resonance 1:4 bifurcation will occur

NS} \

T 1,2 o T
has multipliers Az, = cos(3) =1 sin(
on the curve

Q;QIZ)* = {(xppﬂyppva7bﬂcvd7h)7 A = ARy x5 h= hR47*}'

The map M7 (¥y” ., Qp, +) can be written as

T T
Mey.- = (€08(5) +i5in(3) ) Mg+ R Mk, Mt + 8, Mes ™ + Ol ).

The normal form coefficients Gllz,f . and Sﬁf . can be derived as

— 1 L -
G%i* = 5 <WR4,*7J3 (VR4,*7VR4,*7VR4,*) + 2j2 (VR4,*7 h}?}h*) - jz (VR4,*7h12€(4),*)>’

—

1 S .
sz,* = 8<WR4,*’j3 (VR4,*7VR47*7VR4,*) —3% (VR4,*’h9?§,*)>’

—1
hR4* = (IZ—jl( Ry, *>Q‘R4, )) D (VR4,*7VR47*)7
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-1
hi, . = (12 + (‘Pﬁf.,*yﬂm,*)) J2 (VR VR#) »
—1
he . = (12 + (PR *79R4,*)) J2 (VR VRy ) -
where
pp _ 50 pp Y i
Ji (TR4 *7QR4 *)VR4 * eleR4 *3 Ji (lPR4 *¢QR4,*)VR4,* =e:? ZVR47*’
x;
-71 (lPR4 *’QM7 )WR4 * e WR4 * jl (‘PR4 *7QR4-,*)WR4,* = eleRm*v

<WR4,*, VR4’*> =1.

As a result, we have

(1/2+i/2)d i
VR4’*:< 1 ) WR4’*:<1/2—1'/2>'

Consequently, we get

<5 (—24—14i)b? 8@,\ _(6-8i)p?
Ryx — c2 ) Ry * c2 :

There is a generic resonance 1:4 bifurcation on the curve 7y, PP  provided that GR +70

and 8§f L #0.
The bifurcation scenario in the neighbourhood of the curve ‘I PP is determined by

— PP
the coefficient AR’ =
45

\5”” |, provided that 8 L7 0 IF |A Ry, P | > 1, we conclude
Ry
there are two fold curves of cycles with four times the original period, see [15, 17].
0

4. NUMERICAL BIFURCATION ANALYSIS

To confirm the obtained results in Section 3 and investigate further complex beha-
viour of MPP(¥,Q), we use MATCONTM which is a MATLAB interactive toolbox
for the numerical study of iterated discrete dynamical systems, [10, 14, 17].

In this case we consider fixed parameters b =0.3,c=8,d=5and h=0.3 as a
free parameter. By varying the free parameter a, the continuation method produces
the following one parameter bifurcations:

i) A Neimark-Sacker bifurcation (NS) occurs at the point
‘P]'Z,’; . = (8.038116,12.860986) for a = ays . = 3.858296 with

chﬁ* = —2.225899 x 102.
ii) A period-doubling bifurcation (PD) occurs at the point
WD, = (0.569517,0.911227) for a = app . = 0.273368 with

—L

b = —3.366997 x 107,
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Since %%, < 0 the bifurcation is supercritical and the bifurcated closed invariant
is stable, see Fig. 6. The numerical simulation shown in these graphs indicates the
dynamical behavior of the map M 77 (¥, Q) near W% ..

26 > 128
124 126
12.2 12.4
12 122
11.8 12
11.6 1.8 .
75 76 77 78 79 8 81 82 83 84 76 77 78 79 8 &1 82 83 B84 85
PP xpn
(A) A stable fixed point for (B) A stable closed invariant for
a = ans x =0.3.80. a = ans x = 3.8583.
18
17 / 20
16 PP - Ve 18 "
PP Pl e s
15 - s —_—T
16 -
14 M y
e ) . : &4 /
13 7 Py .
J 12 / ) ’
12 S .
" ",' ~.__~..--"" e 10 / e
10 / 8 ’
ot .
65 7 75 8 85 9 95 10 5 6 7 8 9 10 11

(€) The broken invariant closed curve after (D) The chaotic attractor for a = ays « =4.5.
lelzz[é* fOI‘ a = aNS’* = 4.2.

FIGURE 1. Behavior of the map MP? (¥, Q) near the NS point.

Remark 1. Fig. 2 illustrates the maximum Lyapunov exponent for a >~ 4.45, in-
dicating that chaos exists. Positive Lyapunov exponents are generally considered to
be a sign of chaos.

—

Since By, < O the bifurcation is sub-critical and the bifurcated period-2 cycles is
unstable.
In Fig. 3, we can see the stability region for the positive fixed point W’ .
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Largest Lyapunov Exponent
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FIGURE 2. The maximum Lyapunov exponent corresponding to

Fig. 6.
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FIGURE 3. The stability region for the positive fixed point ¥£” in

space (a,h).

The following two-parameter bifurcations can be obtained with the selected ‘PZ’; N
and continuation with two free parameters, r, and h:

1) A resonance 1:3 bifurcation (R3) occurs at the point

PP _
lPR3 »¥

(5.555624,8.888998) for a = ag,. = 2.666699 and h = hg, .
— 0.0.470006 with R (% <e%"ic§§’7* /B2 - 1))
A resonance 1:4 bifurcation (R4) occurs at the point

= —-4.999943 x 10~ L.

‘Pzi* = (8.333333,13.333333) for a = ag, = 4.000000 and h = hg, .

— 0287682 with A}’

—1.600000 + 6.000000 x 10~"i.
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iii) A resonance 1:2 bifurcation (R2) occurs at the point
‘Pﬁf_* = (4.166667,6.666667) for a = ag,. = 2.000000 and h = hg, .

— 0.0.693147 with o}’ , = 2.459786 x 10" and 8", = —1.639858.

The following two-parameter bifurcation can be obtained with the selected PD point
and continuation with two free parameters, r and A:

1) A resonance 1:2 bifurcation (R2) occurs at the point
‘Pﬁ’z’* = (4.166667,6.666667) for a = ag,. = 2.000000 and h = hg, .

— 0.0.693147 with o}’ , =2.459786 x 10! and 8, = —1.639858.

Fig. 4 illustrates these results.

0.8
0.7 2

06 PD curve NS curve

0.2

FIGURE 4. The Neimark-Sacker and period doubling bifurcations
curves of MPP (W, Q) in the (r,h) space.

—

According to Theorem 5, since ]A,’;f | > 1, there are two fold curves of cycles with
period 4, see Fig. 5.

For a = 5.51841 and h = 0.240474, C}? = {CV},,Ch8,CLR.CY} gives a stable
four-cycle where C{/, = (8.846315,22.650752), see Fig. 6a. In Fig. 6b we can see
the stability region for cir.

5. DISCUSSION AND ECOLOGICAL IMPLICATIONS

A discrete-time prey-predator model using non-standard finite difference discret-
ization method is examined in terms of its complex dynamics. We demonstrate that
model (1.3) has unique interior fixed point (positive) WL”. W4” may bifurcate in
many ways, as shown in Section (3). In Section (4), the curves of fixed points and
one-parameter bifurcations of cycles up to the fourth order are computed. The ana-
lytical predictions and numerical observations obtained in Sections (3) and (4) are
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032

03\

o20f N\ R4
Lp*
028} \

027 -

026

025} NS curve

024 S LPPD

FIGURE 5. Two fold (LP) curves of the fourth iterate emanate from
v L of MPP(W,Q) and the Period doubling and Neimark-Sacker

bifurcations curves of the fourth iterate of M 7?7 (¥, Q) in the (r,h)
space.

24
22

20

7 8 9 ’ 10 " 12 13 14 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6
(A) Stable four-cycle C;”. (B) Stability region for C}”.

FIGURE 6. The four-cycle with its stability region.

in excellent agreement. The complicated dynamics of model (1.3) are depicted via
MatcontM and continuation technique. Period-doubling, Neimark-Sacker, and strong
resonance bifurcation of W,” have been demonstrated.

A Neimark-Sacker bifurcation, implies that both prey and predator populations
can oscillate around some mean VaIES\ of intrinsic growth rate a and that these os-

cillations will continue as long as GZ’;* < 0 is constant. In ecology, an invariant
closed curve is bifurcated, which means both predator and prey can live together and
produce their own densities. A periodic or quasi-periodic dynamics may be present



776 Z. ESKANDARI R. K. GHAZIANI, AND Z. AVAZZADEH

on the invariant curve. A period-doubling bifurcation is shown in the model, indic-
ating that the prey and predator populations change over time. In this model, there
are strong resonances bifurcating around some mean values of intrinsic growth rate
and step size 7 when predator and prey coexist. If certain conditions are met, this
coexistence is definitely possible.
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