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Abstract. A newly-disclosed non-standard finite difference method has been used to discretize a
prey-predator model to investigate the critical normal form coefficients of bifurcations for both
one-parameter and two-parameter bifurcations. The discrete-time prey-predator model exhibits
variety of local bifurcations such as period-doubling, Neimark-Sacker, and strong resonances.
Critical normal form coefficients are determined to reveal dynamical scenario corresponding to
each bifurcation point bifurcation. We also investigates the complex dynamics of the model nu-
merically using by MATLAB package MATCONTM based on numerical continuation technique.
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1. INTRODUCTION

Let us consider the following continues prey-predator model{ d xpp
d τ

= axpp−bxpp ypp,
d ypp
d τ

= ypp

(
c−d ypp

xpp

)
,

(1.1)

where prey (predator) population at time τ is denoted by xpp (ypp). Furthermore, a
represents the intrinsic growth rate of prey, b represents the functional response, c
represents the growth rate of predator and d represents the number of prey required
to support one predator at equilibrium, see [25].

In ecology, population dynamics are generally determined by both discrete-time
and continuous-time dynamics. The study of discrete-time biology systems has re-
ceived a great deal of attention in recent years, see [1, 3–8, 12, 13, 18]. Discrete
models provide more realistic representations when the generation takes place in
nonoverlapping spaces, and these models also provide more efficient computational
models for numerical simulations when compared to continuous-time models, see
[2,9,11,16,19–22,24]. In the present paper, we are interested in examining the beha-
vior of discrete-time version obtained from system (1.1). There is an expectation that
the discrete-time model will be dynamically compatible with the continuous-time
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model. Zhang et [23] also point out that if there are no overlapping generations in a
biological population, then one must obtain discrete-time systems from a dynamical
model of continuous population dynamics. As a result, using a nonstandard scheme,
the first one achieves the discrete form of (1.1). Follow these steps to discretize model
(1.1). At first the model (1.1) is considered on a finite interval [0,Θ] and discretize
this interval by a uniform mesh as follows

0 = τ0 < τ1 < · · ·< τN−1 < τN = Θ,

and let h = τ j+1− τ j for j = 1,2, · · · ,N. Our non-standard finite difference (NSFD)
schemes for model (1.1) are based on Mickens’ theory as follows:

xn+1
pp −xn

pp
ϕ(h) = axpp−bxpp ypp,

yn+1
pp −yn

pp
ϕ(h) = ypp

(
c −d ypp

xpp

)
,

(1.2)

where ϕ(h) = 1− e−h. The model{
xpp 7→ −b

(
1− e−h

)
xpp ypp +a

(
1− e−h

)
xpp + xpp,

ypp 7→ − xpp ypp

c(1−e−h)xpp−d(1−e−h)ypp−xpp
, (1.3)

is the discrete model obtained from (1.2).

2. EXISTENCE AND FEASIBILITY OF FIXED POINTS

The system (1.2) can be considered as the following map(
xpp
ypp

)
7→M pp(Ψ,Ω) =

(
−b
(
1− e−h

)
xpp ypp +a

(
1− e−h

)
xpp + xpp

− xpp ypp

c(1−e−h)xpp−d(1−e−h)ypp−xpp

)
, (2.1)

where Ψ = (xpp,ypp)
T , Ω = (a,b,c,d,h)T .

In order to find the fixed points of the map (2.1), we solve the following system{
−b
(
1− e−h

)
xpp ypp +a

(
1− e−h

)
xpp + xpp = xpp,

− xpp ypp

c(1−e−h)xpp−d(1−e−h)ypp−xpp
= ypp.

The unique positive fixed point

Ψ
pp
∗ =

(
da
cb

,
a
b

)
,

are clearly visible in the map (2.1).
Let us consider

M pp(Ψ,Ω) = J1(Ψ,Ω)Ψ+
1
2!

J2(Ψ,Ψ)+
1
3!

J3(Ψ,Ψ,Ψ)+O(‖Ψ ‖4),

in which

J1(Ψ,Ω) = M pp
Ψ

(Ψ,Ω)
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=

 byppe−h−ae−h−bypp +a+1 b
(
−1+ e−h

)
xpp

− ypp
2d(−1+e−h)

(cxppe−h−dyppe−h−cxpp+dypp+xpp)
2

xpp
2(ce−h−c+1)

(cxppe−h−dyppe−h−cxpp+dypp+xpp)
2

 ,

J2(Ψ,Ψ) =

(
J21(Ψ,Ψ)
J22(Ψ,Ψ)

)
, J3(Ψ,Ψ,Ψ) =

(
J31(Ψ,Ψ,Ψ)
J32(Ψ,Ψ,Ψ)

)
,

and

J2i(Γ,Σ) =
2

∑
j,k=1

∂2M pp
i (Ψ,Ω)

∂Ψ j∂Ψk
γ jσk,

J3i(Γ,Σ,ϒ) =
2

∑
j,k,l=1

∂3M pp
i (Ψ,Ω)

∂Ψ j∂Ψk∂Ψl
γ jσkυl,

where

Γ = (γ1,γ2)
T , Σ = (σ1,σ2)

T , ϒ = (υ1,υ2)
T .

3. BIFURCATIONS OF POSITIVE FIXED POINT Ψ
pp
∗

3.1. One parameter bifurcations

The parameter h is considered in this part to be a bifurcation parameter.

Theorem 1. The critical value

a = aPD,∗ =−2
ce−h− c+2

c
(
(e−h)

2−2e−h +1
) ,

causes a period-doubling bifurcation of Ψ
pp
∗ .

Proof. For a = aPD,∗ the matrix

J1(Ψ
pp
PD,∗,ΩPD,∗) =

 1 −2 (ce−h−c+2)d

(−1+e−h)c2

−(−1+e−h)c2

d ce−h− c+1

 ,

ΩPD,∗ = (aPD,∗,b,c,d,h)T , Ψ
pp
PD,∗ =

−2 (ce−h−c+2)d

c2(e−2h−2e−h+1)b

−2 ce−h−c+2
c(e−2h−2e−h+1)b

 ,

has the multipliers

λ
1
PD,∗ =−1, λ

2
PD,∗ = ce−h− c+3.

In the case where λ2
PD,∗ 6=±1, a period-doubling bifurcation may occur on the curve

T pp
PD,∗ = {(xpp,ypp,r,h,b,c,d); a = aPD,∗} .
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It is possible to consider map M pp(Ψpp
PD,∗,ΩPD,∗) as follows:

ηPD,∗ 7→ −ηPD,∗+
1
6

β̂
pp
PD,∗η

3
PD,∗+O(η4

PD,∗).

We can derive the normal form coefficient β̂
pp
PD,∗ as follows

β̂
pp
PD,∗ =

1
6
〈wPD,∗,J3(vPD,∗,vPD,∗,vPD,∗)

+3J2

(
vPD,∗,(I2− J1(ΨPD,∗,ΩPD,∗))

−1 J2(vPD,∗,vPD,∗)
)〉

,

where

J1(ΨPD,∗,ΩPD,∗)vPD,∗ = vPD,∗,

J T
1 (ΨPD,∗,ΩPD,∗)wPD,∗ = wPD,∗, 〈wPD,∗,vPD,∗〉= 1.

As a result, we have

vPD,∗ =

(ce−h−c+2)d

(−1+e−h)c2

1

 , wPD,∗ =

 (−1+e−h)c2

(ce−h−c+4)d

2
(
ce−h− c+4

)−1

 ,

and

β̂
pp
PD,∗ =

b2
(
e−3hc−3e−2hc+ e−2h +3ce−h−2e−h− c+1

)
ce−h− c+4

.

If β̂
pp
PD,∗ 6= 0 there is a generic period doubling bifurcation on the curve T pp

PD,∗. When

β̂
pp
PD,∗> 0 (β̂pp

PD,∗< 0) the bifurcated period-2 cycles is stable (unstable) and the period
doubling bifurcation is supercritical (subcritical). �

Theorem 2. The critical value a = aNS,∗ = −
(
−1+ e−h

)−1 causes a Neimark-
Sacker bifurcation of Ψ

pp
∗ .

Proof. For a = aNS,∗ the matrix

J1(Ψ
pp
NS,∗,ΩNS,∗) =

 1 −d
c

− c2(−1+e−h)
d ce−h− c+1

 ,

ΩNS,∗ = (aNS,∗,b,c,d,h)T , Ψ
pp
NS,∗ =

− d
c(−1+e−h)b

− 1
(−1+e−h)b

 ,

has two complex multipliers

λ
1,2
NS,∗ = e±iθ0 = 1+1/2ce−h− c/2± i/2

√
−(e−h)

2 c2 +2e−hc2−4ce−h− c2 +4c.
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On the curve,

T pp
NS,∗ = {(xpp,ypp,a,b,c,d,h) ;a = aNS,∗} .

the Neimark-Sacker bifurcation will occur.
It is possible to write M pp(ΨNS,∗,ΩNS,∗) as follows:

ηNS,∗ 7→ eiθ0ηNS,∗+ δ̂
pp
NS,∗η

2
NS,∗ηNS,∗+O(|ηNS,∗|4),

The normal form coefficient δ̂
pp
NS,∗ can be derived as

δ̂
pp
NS,∗ =

1
2
〈wNS,∗,J3 (vNS,∗,vNS,∗,vNS,∗)

+2J2

(
vNS,∗,(I2− J1(ΨNS,∗,ΩNS,∗))

−1 J2(vNS,∗,vNS,∗)
)

+ J2

(
vNS,∗,

(
e2iθ0I2− J1(ΨNS,∗,ΩNS,∗)

)−1
J2(vNS,∗,vNS,∗)

)
〉,

where

J1(ΨNS,∗,ΩNS)vNS,∗ = eiθ0vNS,∗, J1(ΨNS,∗,ΩNS,∗)vNS,∗ = e−iθ0vNS,∗,

J T
1 (ΨNS,∗,ΩNS,∗)wNS,∗ = e−iθ0wNS,∗, J T

1 (ΨNS,∗,ΩNS,∗)wNS,∗ = eiθ0wNS,∗,

〈wNS,∗,vNS,∗〉= 1,

and

vNS,∗ =

−2 d

c
(

ce−h+i
√

c(2ce−h−e−2hc−4e−h−c+4)−c
)

1

 ,

wNS,∗ =
1

wv

2
c2(−1+e−h)

d
(
−ce−h+i

√
c(2ce−h−e−2hc−4e−h−c+4)+c

)
1

 ,

where wv =

= 2
c
((

ie−h− i
)√
−((−2c+4)e−h + e−2hc+ c−4)c+(−2c+4)e−h + e−2hc+ c−4

)
(

i
√
−((−2c+4)e−h + e−2hc+ c−4)c+ c (−1+ e−h)

)2 .

If δ̂
pp
NS,∗ 6= 0 there is a generic Neimark-Sacker on the curve T pp

NS,∗. When

σ̂
pp
NS,∗ = ℜ

(
e−iθ0 δ̂

pp
NS,∗

)
6= 0,

a unique closed invariant curve for M pp(ΨNS,∗,ΩNS,∗) appears around the Ψ
pp
NS,∗,

when a crosses aNS,∗. The sign of σ̂
pp
NS,∗ indicates the stability of the closed invariant

curve. �
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3.2. Two parameters bifurcations

Each bifurcation on the bifurcation curves mentioned in Section 3.1 is examined
within a two-parameter space (a,h).

Theorem 3. The critical values a = aR2,∗ = c/4 and h = hR2,∗ = − ln
(−4+c

c

)
causes a strong resonance 1:2 bifurcation Ψ

pp
∗

Proof. For r = rR2,∗ and h = hR2,∗ the matrix

J1(Ψ
pp
R2,∗,ΩR2,∗) =

(
1 −d

c

4 c
d −3

)
,

Ψ
pp
R2,∗ =

(
1/4 d

b
1/4 c

b

)
, ΩR2,∗ = (aR2,∗,b,c,d,hR2,∗) ,

has two repeated multipliers λ
1,2
R2,∗ =−1. On the curve

T pp
R2,∗ = {(xpp,ypp,a,b,c,d,h),a = aR2,∗, h = hR2,∗} .

the resonance 1:2 bifurcation will occur.
The map M pp(ΨR2,∗,ΩR2,∗) can be written as(

ηR2,∗
ζR2,∗

)
7→

(
−ηR2,∗+ζR2,∗

ζR2,∗+ σ̂
pp
R2,∗η

3
R2,∗+ δ̂

pp
R2,∗η

2
R2,∗ζR2,∗

)
.

The normal form coefficients σ̂
pp
R2,∗ and δ̂

pp
R2,∗ can be derived as

σ̂
pp
R2,∗ =

1
6
〈w0

R2
,J3(v0

R2,∗,v
0
R2,∗,v

0
R2,∗)

+3J2

(
v0

R2,∗,
(

I2− J1(Ψ
pp
R2,∗,ΩR2,∗)

)−1
)

J2(v0
R2,∗,v

0
R2,∗)〉,

δ̂
pp
R2,∗ =

1
2
〈w0

R2,∗,J3(v0
R2,∗,v

0
R2,∗,v

1
R2,∗)+2J2(v0

R2,∗,h
11
R2,∗)+ J2(v1

R2,∗,h
20
R2,∗)〉

+
1
2
〈w1

R2,∗,J3(v0
R2,∗,v

0
R2,∗,v

0
R2,∗)+2J2(v0

R2,∗,h
20
R2,∗)〉,

h20
R2,∗ =

(
I2− J1(Ψ

pp
R2,∗,ΩR2,∗)

)−1 (
J2(v0

R2,∗,v
0
R2,∗)

)
,

h11
R2,∗ =

(
I2− J1(Ψ

pp
R2,∗,ΩR2,∗)

)−1 (
J2(v0

R2,∗,v
1
R2
)+h20

R2,∗
)
.

where

J1(Ψ
pp
R2,∗,ΩR2,∗)v

0
R2,∗ =−v0

R2,∗, J T
1 (Ψpp

R2,∗,ΩR2,∗)w
1
R2,∗ =−w1

R2,∗+w0
R2,∗,

J T
1 (Ψpp

R2,∗,ΩR2,∗)w
0
R2,∗ =−w0

R2,∗,
〈
w0

R2,∗,v
1
R2,∗
〉
=
〈
w1

R2,∗,v
0
R2,∗
〉
= 1,

J1(Ψ
pp
R2,∗,ΩR2,∗)v

1
R2,∗ =−v1

R2,∗+ v0
R2,∗,

〈
w0

R2,∗,v
0
R2,∗
〉
=
〈
w1

R2,∗,v
1
R2,∗
〉
= 0.
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As a result, we have

v0
R2,∗ =

(
1/2 d

c

1

)
, v1

R2,∗ =

1/4 d3

c(9c2+d2)

3/4 d2

9c2+d2

 ,

w0
R2,∗ =

−8
c(9c2+d2)

d3

4 9c2+d2

d2

 , w1
R2,∗ =

(
6 c

d

−2

)
.

Consequently, we get

σ̂
pp
R2,∗ =−96

(
9c2 +d2

)
b2

d2c2 , δ̂
pp
R2,∗ =−16

b2
(
360c2 +29d2

)
d2c2 .

If σ̂
pp
R2,∗ 6= 0 and −2δ̂

pp
R2,∗ 6= −6 σ̂

pp
R2,∗ there is a generic resonance 1:2 bifurcation on

the curve T pp
R2,∗. �

Theorem 4. The critical values a = aR3,∗ = c/3 and h = hR3,∗ = − ln
(−3+c

c

)
causes a strong resonance 1:3 bifurcation Ψ

pp
∗ .

Proof. For r = rR3,∗ and h = hR3,∗ the matrix

J1(Ψ
pp
R3,∗,ΩR3,∗) =

(
1 −d

c

3 c
d −2

)
,

Ψ
pp
R3,∗ =

(
1/3 d

b
1/3 c

b

)
, ΩR3,∗ = (aR3,∗,b,c,d,hR3,∗)

T ,

has multipliers λ
1,2
R3,∗ = cos(2π

3 )± i sin(2π

3 ). The resonance 1:3 bifurcation will occur
on the curve

T pp
R3,∗ = {(xpp,ypp,a,b,c,d,h),a = aR3,∗, h = hR3,∗} .

The map M pp(Ψpp
R3,∗,ΩR3,∗) can be written as

ηR3,∗ 7→
(

cos(
2π

3
)± i sin(

2π

3
)

)
ηR3,∗+ β̂

pp
R3,∗η

2
R3,∗ηR3,∗+ σ̂

pp
R3,∗ηR3,∗

3 +O(|ηR3,∗|4).

The normal form coefficients β̂
pp
R3,∗ and σ̂

pp
R3,∗ can be derived as

β̂
pp
R3,∗ =

1
2
〈wR3,∗,J2(vR3,∗,vR3,∗)〉,

σ̂
pp
R3,∗ =

1
2
〈wR3,∗,J3(vR3,∗,vR3,∗,vR3,∗)+2J2(vR3,∗,h

11
R3,∗)− J2

(
vR3,∗,h

20
R3,∗
)
〉,

h11
R3,∗ =

(
I2− J1(Ψ

pp
R3,∗,ΩR3,∗)

)−1
J2(vR3,∗,vR3,∗),

h20
R3,∗ =

(
e

4π

3 iI2− J1(Ψ
pp
R3,∗,ΩR3,∗)

)−INV
(

β̂
pp
R3,∗vR3,∗− J2(vR3,∗,vR3,∗)

)
,
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where

J1(Ψ
pp
R3,∗,ΩR3,∗)vR3,∗ = e

2π

3 ivR3,∗, J1(Ψ
pp
R3,∗,ΩR3,∗)vR3,∗ = e

−2π

3 ivR3,∗,

J T
1 (Ψpp

R3,∗,ΩR3,∗)wR3,∗ = e
−2π

3 iwR3,∗, J T
1 (Ψpp

R3,∗,ΩR3,∗)wR3,∗ = e
2π

3 iwR3,∗,

〈wR3,∗,vR3,∗〉= 1.

As a result, we have

vR3,∗ =

(
−2 d

c(i
√

3−3)

1

)
, wR3,∗ =

−12 c
(i
√

3+1)d (i
√

3+3)

2
(
i
√

3+1
)−1

 .

Consequently, we get

β̂
pp
R3,∗ = 3/2

b
(
3 i
√

3−1
)

c
, σ̂

pp
R3,∗ =−21

b2
(
2 i
√

3+3
)

c2 .

There is a generic resonance 1:3 bifurcation on the curve T pp
R3,∗, provided that β̂

pp
R3,∗ 6= 0

and σ̂
pp
R3,∗ 6= 0. �

Theorem 5. The critical values a = aR4,∗ = c/2 and h = hR4,∗ = − ln
(−2+c

c

)
causes a strong resonance 1:4 bifurcation Ψ

pp
∗

Proof. For a = aR4,∗ and h = hr4,∗ the matrix

J1(Ψ
pp
R4,∗,ΩR4,∗) =

(
1 −d

c

2 c
d −1

)
,

Ψ
pp
R4,∗ =

(
1/2 d

b
1/2 c

b

)
, ΩR4,∗ = (aR4,∗,b.c.d,hR4,∗)

T ,

has multipliers λ
1,2
R4,∗ = cos(π

2 )± i sin(π

2 ). The resonance 1:4 bifurcation will occur
on the curve

T pp
R4,∗ = {(xpp,ypp,a,b,c,d,h), a = aR4,∗, h = hR4,∗} .

The map M pp(Ψpp
R4,∗,ΩR4,∗) can be written as

ηR4,∗ 7→
(

cos(
π

2
)+ i sin(

π

2
)
)

ηR4,∗+ σ̂
pp
R4,∗η

2
R4,∗ηR4,∗+ δ̂

pp
R4,∗ηR4,∗

3 +O(|ηR4,∗|4).

The normal form coefficients σ̂
pp
R4,∗ and δ̂

pp
R4,∗ can be derived as

σ̂
pp
R4,∗ =

1
2
〈wR4,∗,J3(vR4,∗,vR4,∗,vR4,∗)+2J2

(
vR4,∗,h

11
R4,∗
)
− J2

(
vR4,∗,h

20
R4,∗
)
〉,

σ̂
pp
R4,∗ =

1
6
〈wR4,∗,J3(vR4,∗,vR4,∗,vR4,∗)−3J2

(
vR4,∗,h

02
R4,∗
)
〉,

h11
R4,∗ =

(
I2− J1(Ψ

pp
R4,∗,ΩR4,∗)

)−1
J2 (vR4,∗,vR4,∗) ,
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h20
R4,∗ =

(
I2 + J1(Ψ

pp
R4,∗,ΩR4,∗)

)−1
J2 (vR4,∗,vR4,∗) ,

h02
R4,∗ =

(
I2 + J1(Ψ

pp
R4,∗,ΩR4,∗)

)−1
J2(vR4,∗,vR4,∗).

where

J1(Ψ
pp
R4,∗,ΩR4,∗)vR4,∗ = e

π

2 ivR4,∗, J1(Ψ
pp
R4,∗,ΩR4,∗)vR4,∗ = e

−π

2 ivR4,∗,

J T
1 (Ψpp

R4,∗,ΩR4,∗)wR4,∗ = e
−π

2 iwR4,∗, J T
1 (Ψpp

R4,∗,ΩR4,∗)wR4,∗ = e
π

2 iwR4,∗,

〈wR4,∗,vR4,∗〉= 1.

As a result, we have

vR4,∗ =

(
(1/2+i/2)d

c

1

)
, wR4,∗ =

(
ic
d

1/2− i/2

)
.

Consequently, we get

σ̂
pp
R4,∗ =

(−24−14 i)b2

c2 , δ̂
pp
R4,∗ =

(6−8 i)b2

c2 .

There is a generic resonance 1:4 bifurcation on the curve T pp
R4,∗ provided that σ̂

pp
R4,∗ 6= 0

and δ̂
pp
R4,∗ 6= 0.

The bifurcation scenario in the neighbourhood of the curve T pp
R4,∗ is determined by

the coefficient Âpp
R4,∗ = −

i σ̂
pp
R4 ,∗

|δ̂pp
R4 ,∗
|
, provided that δ̂

pp
R4,∗ 6= 0. If |Âpp

R4,∗| > 1, we conclude

there are two fold curves of cycles with four times the original period, see [15, 17].
�

4. NUMERICAL BIFURCATION ANALYSIS

To confirm the obtained results in Section 3 and investigate further complex beha-
viour of M pp(Ψ,Ω), we use MATCONTM which is a MATLAB interactive toolbox
for the numerical study of iterated discrete dynamical systems, [10, 14, 17].

In this case we consider fixed parameters b = 0.3, c = 8, d = 5 and h = 0.3 as a
free parameter. By varying the free parameter a, the continuation method produces
the following one parameter bifurcations:

i) A Neimark-Sacker bifurcation (NS) occurs at the point
Ψ

pp
NS,∗ = (8.038116,12.860986) for a = aNS,∗ = 3.858296 with

σ̂
pp
NS,∗ =−2.225899×10−2.

ii) A period-doubling bifurcation (PD) occurs at the point
Ψ

pp
PD,∗ = (0.569517,0.911227) for a = aPD,∗ = 0.273368 with

β̂
pp
PD,∗ =−3.366997×10−3.
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Since σ̂
pp
NS,∗ < 0 the bifurcation is supercritical and the bifurcated closed invariant

is stable, see Fig. 6. The numerical simulation shown in these graphs indicates the
dynamical behavior of the map M pp(Ψ,Ω) near Ψ

pp
NS,∗.

7.5 7.6 7.7 7.8 7.9 8 8.1 8.2 8.3 8.4

x
pp

11.6

11.8

12

12.2

12.4

12.6

12.8

13

13.2

13.4

13.6

y
p
p

(A) A stable fixed point for
a = aNS,∗ = 0.3.80.

(B) A stable closed invariant for
a = aNS,∗ = 3.8583.

(C) The broken invariant closed curve after
Ψ

pp
NS,∗ for a = aNS,∗ = 4.2.

(D) The chaotic attractor for a = aNS,∗ = 4.5.

FIGURE 1. Behavior of the map M pp(Ψ,Ω) near the NS point.

Remark 1. Fig. 2 illustrates the maximum Lyapunov exponent for a � 4.45, in-
dicating that chaos exists. Positive Lyapunov exponents are generally considered to
be a sign of chaos.

Since β̂
pp
PD,∗ < 0 the bifurcation is sub-critical and the bifurcated period-2 cycles is

unstable.
In Fig. 3, we can see the stability region for the positive fixed point Ψ

pp
∗ .
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FIGURE 2. The maximum Lyapunov exponent corresponding to
Fig. 6.

FIGURE 3. The stability region for the positive fixed point Ψ
pp
∗ in

space (a,h).

The following two-parameter bifurcations can be obtained with the selected Ψ
pp
NS,∗

and continuation with two free parameters, r, and h:
i) A resonance 1:3 bifurcation (R3) occurs at the point

Ψ
pp
R3,∗ = (5.555624,8.888998) for a = aR3,∗ = 2.666699 and h = hR3,∗

= 0.0.470006 with ℜ

(
1
3

(
e

4π

3 i
σ̂

pp
R3,∗/|β̂

pp
R3,∗|

2−1
))

=−4.999943×10−1.
ii) A resonance 1:4 bifurcation (R4) occurs at the point

Ψ
pp
R4,∗ = (8.333333,13.333333) for a = aR4,∗ = 4.000000 and h = hR4,∗

= 0.287682 with Âpp
R4,∗ =−1.600000+6.000000×10−1 i.
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iii) A resonance 1:2 bifurcation (R2) occurs at the point
Ψ

pp
R2,∗ = (4.166667,6.666667) for a = aR2,∗ = 2.000000 and h = hR2,∗

= 0.0.693147 with σ̂
pp
R2,∗ = 2.459786×101 and δ̂

pp
R2,∗ =−1.639858.

The following two-parameter bifurcation can be obtained with the selected PD point
and continuation with two free parameters, r and h:

i) A resonance 1:2 bifurcation (R2) occurs at the point
Ψ

pp
R2,∗ = (4.166667,6.666667) for a = aR2,∗ = 2.000000 and h = hR2,∗

= 0.0.693147 with σ̂
pp
R2,∗ = 2.459786×101 and δ̂

pp
R2,∗ =−1.639858.

Fig. 4 illustrates these results.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

a

0.2

0.3

0.4

0.5

0.6

0.7

0.8

h

R2  

R3  

R4  

NS curvePD curve

FIGURE 4. The Neimark-Sacker and period doubling bifurcations
curves of M pp(Ψ,Ω) in the (r,h) space.

According to Theorem 5, since |Âpp
R4,∗|> 1, there are two fold curves of cycles with

period 4, see Fig. 5.
For a = 5.51841 and h = 0.240474, Cpp

4 = {Cpp
1,4,C

pp
2,4,C

pp
3,4,C

pp
4,4} gives a stable

four-cycle where Cpp
1,4 = (8.846315,22.650752), see Fig. 6a. In Fig. 6b we can see

the stability region for Cpp
4 .

5. DISCUSSION AND ECOLOGICAL IMPLICATIONS

A discrete-time prey-predator model using non-standard finite difference discret-
ization method is examined in terms of its complex dynamics. We demonstrate that
model (1.3) has unique interior fixed point (positive) Ψ

pp
∗ . Ψ

pp
∗ may bifurcate in

many ways, as shown in Section (3). In Section (4), the curves of fixed points and
one-parameter bifurcations of cycles up to the fourth order are computed. The ana-
lytical predictions and numerical observations obtained in Sections (3) and (4) are
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FIGURE 5. Two fold (LP) curves of the fourth iterate emanate from
Ψ

pp
R4,∗ of M pp(Ψ,Ω) and the Period doubling and Neimark-Sacker

bifurcations curves of the fourth iterate of M pp(Ψ,Ω) in the (r,h)
space.

(A) Stable four-cycle Cpp
4 . (B) Stability region for Cpp

4 .

FIGURE 6. The four-cycle with its stability region.

in excellent agreement. The complicated dynamics of model (1.3) are depicted via
MatcontM and continuation technique. Period-doubling, Neimark-Sacker, and strong
resonance bifurcation of Ψ

pp
∗ have been demonstrated.

A Neimark-Sacker bifurcation, implies that both prey and predator populations
can oscillate around some mean values of intrinsic growth rate a and that these os-
cillations will continue as long as σ̂

pp
NS,∗ < 0 is constant. In ecology, an invariant

closed curve is bifurcated, which means both predator and prey can live together and
produce their own densities. A periodic or quasi-periodic dynamics may be present
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on the invariant curve. A period-doubling bifurcation is shown in the model, indic-
ating that the prey and predator populations change over time. In this model, there
are strong resonances bifurcating around some mean values of intrinsic growth rate
and step size h when predator and prey coexist. If certain conditions are met, this
coexistence is definitely possible.
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