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Abstract. There are certain contractive conditions (and contractions) available in the literature
that ensure the existence of common fixed points of a couple and a family of mappings. How-
ever, to verify the validity of these conditions, each result must be checked separately. Thus,
it becomes legitimate to obtain some contraction or contractive conditions that can bypass the
computational difficulties of checking contraction and contractive conditions via individual res-
ults and ensure the existence of common fixed points simultaneously. In this article, by the
virtue of implicit relations, we acquire some contraction and contractive conditions, christened
A-contraction and A-contractive conditions, which serve the desired purpose. The utility of the
established conditions is exhibited through some typical fixed point results and concrete ex-
amples.
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1. INTRODUCTION

Throughout the last century, metric fixed point theory plays an important role in
nonlinear analysis due to its simplicity and applicability in different fields. The main
aim of this theory is to derive some adequate conditions on a mapping so that we
can get the guaranty of existence of a (sometimes unique) fixed point of the mapping.
The first one among these adequate conditions is the contraction condition which was
taken into consideration by Banach [2] in 1922. After this, the contraction condition
of Banach have been extended in a variety of ways and as a consequence, a lot of
adequate conditions for existence of fixed points of a mapping have been established.
Among these adequate conditions, the contraction conditions of Kannan [8], Chatter-
jea [4], Reich [12], Ćirić [5] are remarkable. In order to verify the validity of these
contraction conditions, we need to prove and remember separate results for each con-
traction conditions. So one may naturally ask whether any contraction condition can
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be derived which can accommodate all of the above mentioned contractions. Fortu-
nately, the answer is positive due to the introduction of A-contraction condition by
Akram et al. [1]. The main result is given below:

Theorem 1 ( cf. [1, p. 29, Theorem 5]). Let a self map T on a complete metric
space (X ,d) satisfies the condition:

d(T x,Ty)≤ g(d(x,y),d(x,T x),d(y,Ty))

for all x,y∈ X and some g∈ A, where A is the collection of all functions g : R3
+→R+

(R+ is the set of all non-negative real numbers) satisfying
(i) g is continuous on the set R3

+ (with respect to the Euclidean metric on R3);
(ii) u ≤ kv for some k ∈ [0,1) whenever u ≤ g(u,v,v) or u ≤ g(v,u,v) or u ≤

g(v,v,u) for all u,v ∈ R+.
Then, T has a unique fixed point.

The mapping satisfying the contraction condition of this result is called an A-
contraction mapping. It is to be noted that the contraction conditions of Banach,
Kannan, Ćirić are particular cases of A-contraction for different g (see [1] for more
details).

On the other hand, in metric fixed point theory, among the other type of adequate
conditions for giving guaranty of existence of fixed point of a mapping, contractive
condition is a remarkable one. This notion was initiated by Edelstein in 1962, see [6].
Afterwards, this contractive condition have been extended in many ways. Among all
such extensions, A-contractive and A ′-contractive conditions due to Garai et al. [7]
are one of the most generalized ones, since these two contain a handful number of
contractive conditions as particular cases.

Apart from all these, we know that in order to solve different kind of problems, the
notion of fixed point has given arise some other notions. Such as in order to solve a
pair or a family of equations, the notion of common fixed point arise; in order to find
the approximate solution of an equation, the notion of best proximity point arise etc.
In the literature, there are many contraction as well as contractive conditions which
deal with the existence of common fixed points of a couple of mappings. But in or-
der to verify the validity of these conditions, we need to prove separate results for
each separate conditions. So it is now very natural to think about some contraction
and contractive conditions which can accommodate a large number of contraction
and contractive conditions. With the aim of thinking in this way, we find that if the
notion of A-contraction and A-contractive conditions can be established in case of
two or more mappings, then our aim will be fulfilled. As a result, in this article, we
first formulate the notions of A-contraction and A-contractive conditions in case of a
couple of mappings and also for a family of mappings. After this, we examine the
validity of existence of common fixed points of mappings satisfying such contraction
and contractive conditions. During this verification process, we show that complete-
ness of the underlying metric space can give the guaranty of existence of common
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fixed point in case of A-contraction condition but can’t give in case of A-contractive
condition and also we show that compactness of the underlying metric space can give
such guaranty in case of A-contractive condition.

Before going to our main findings, we now recall the definition of orbit of two
mappings and the corresponding definition of orbital continuity.

If X is a non-empty set; T,S : X → X are two mappings and x0 ∈ X , then the orbit
of (T,S), OT,S(x0) is the set

OT,S(x0) = {x0,T x0,ST x0,T ST x0,ST ST x0, . . .}.

Moreover if X is a metric space, then the pair (T,S) of mappings is said to be orbitally
continuous in pair if for any x0 ∈ X and for any sequence {xn} ∈OT,S(x0), xn→ y∈ X
implies T xn→ Ty and Sxn→ Sy as n→ ∞.

2. A-CONTRACTION AND A -CONTRACTIVE MAPPINGS

In this section, we give the formal definitions of A-contraction and A-contractive
conditions in case of a couple and a family of mappings. Before this, we consider
two collection of mappings.

Let A be the collection of all functions g : R3
+ → R that satisfies the following

conditions:

(A1) g is continuous on R3
+;

(A2) there exists γ∈ [0,1) such that if u≤ g(u,v,v) or u≤ g(v,u,v) or u≤ g(v,v,u),
then u≤ γv;

(A3) g(u,v,w)≤ u+ v+w for all u,v,w ∈ R+.

Let A be the collection of all functions g : R3
+→ R that satisfies the following con-

ditions:

(A1) g is continuous on R3
+;

(A2) if v > 0 and u < g(u,v,v) or u < g(v,u,v) or u < g(v,v,u), then u < v;
(A3) g(u,v,w)≤ u+ v+w for all u,v,w ∈ R+.

For examples of particular mappings ‘g’ belonging to the above two collections, the
readers are referred to see [1, 7, 10, 11].

Now, we introduce the notion of A-contraction in case of a couple and a family of
mappings.

Definition 1. Let (X ,d) be a metric space and let T,S : X → X be two mappings.
Then, the pair of mappings (T,S) is said to be A-contraction in pair if there exists
g ∈ A such that

d(T x,Sy)≤ g(d(x,y),d(x,T x),d(y,Sy)) for all x,y ∈ X .

Definition 2. Let (X ,d) be a metric space and let Si : X → X , i = 1,2, . . . ,m, be m
number of mappings. Then, such collection of mappings is said to be A-contraction
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in pair if there exists gi ∈ A, i = 1,2, . . . ,m, such that

d(Six,Si+1y)≤ gi(d(x,y),d(x,Six),d(y,Si+1y)) for all x,y ∈ X ,

where we assume that Sm+1 = S1.

Next, we introduce the notion of A-contractive condition in case of a couple and a
family of mappings.

Definition 3. Let (X ,d) be a metric space and let T,S : X → X be two mappings.
Then, the pair of mappings (T,S) is said to be A-contractive in pair if there exists
g ∈ A such that

d(T x,Sy)< g(d(x,y),d(x,T x),d(y,Sy)) for all x,y ∈ X with x 6= y.

Definition 4. Let (X ,d) be a metric space and let Si : X → X , i = 1,2, . . . ,m, be m
number of mappings. Then, such collection of mappings is said to be A-contractive
in pair if there exists gi ∈ A , i = 1,2, . . . ,m, such that

d(Six,Si+1y)< gi(d(x,y),d(x,Six),d(y,Si+1y)) for all x,y ∈ X with x 6= y,

where we assume that Sm+1 = S1.

3. MAIN RESULTS

In the beginning of this section, we prove the following two common fixed point
results involving the A-contraction condition.

Theorem 2. Let (X ,d) be a complete metric space and T,S : X → X be two map-
pings such that (T,S) is A-contraction in pair. If (T,S) is orbitally continuous in pair,
then T and S have a unique common fixed point.

Proof. Let x0 ∈ X be arbitrary. We consider the sequence {xn} in X by setting
xn = T xn−1 if n is odd and xn = Sxn−1 if n is even. We show that {xn} is Cauchy. If n
is even, then we have

d(T xn,Sxn−1)≤ g(d(xn,xn−1),d(xn,T xn),d(xn−1,Sxn−1))

=⇒ d(xn+1,xn)≤ g(d(xn,xn−1),d(xn,xn+1),d(xn−1,xn))

=⇒ d(xn+1,xn)≤ γd(xn,xn−1) where γ ∈ [0,1).

Again if n is odd, then we can similarly show that

d(xn+1,xn)≤ γd(xn,xn−1).

Thus the infinite series
∞

∑
n=0

d(xn,xn+1) is convergent and hence the sequence {xn}

is Cauchy. Since (X ,d) is complete, there exists α ∈ X such that limn→∞ xn = α.
Consequently the two subsequences {x2n} and {x2n−1} converge to α also. By the
orbital continuity of (T,S), it follows that {x2n+1} converge to T α and {x2n} converge
to Sα. So we have α = T α = Sα, i.e., α is a common fixed point of T and S.
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Next, we show the uniqueness of the common fixed point. Let α and α1 be two
common fixed points T and S. Then, we have

d(T α,Sα1)≤ g(d(α,α1),d(α,T α),d(α1,Sα1))

=⇒ d(α,α1)≤ g(d(α,α1),0,0)

=⇒ d(α,α1)≤ 0,

which implies that α = α1. So α is the unique common fixed point of T and S. �

Theorem 3. Let (X ,d) be a complete metric space and Si : X→ X, i = 1,2, . . . ,m,
be m number of mappings such that the collection of mappings is A-contraction in
pair. If the collection of mappings is orbitally continuous in pair, then the collection
has a unique common fixed point.

Proof. From Theorem 2, it follows that the the pair of mappings Si,Si+1 have a
unique common fixed point. We denote this common fixed point of Si and Si+1 by αi.
Then, from the definition of A-contraction condition, we have

d(S1α1,S2α2)≤ g(d(α1,α2),d(α1,S1α1),d(α2,S2α2))

=⇒ d(α1,α2)≤ g(d(α1,α2),0,0) =⇒ d(α1,α2)≤ 0 =⇒ α1 = α2.

Similarly we can show that α2 = α3, α3 = α4, . . . , αm−1 = αm. So α1 is the unique
common fixed point of the collection of mappings Si, i = 1,2, . . . ,m. �

By choosing a particular g in Theorem 2, we have the following remark:

Remark 1. If we choose g(u,v,w) = αu, where 0 ≤ α < 1; g(u,v,w) = α(v +
w), where 0 ≤ α < 1

2 ; g(u,v,w) = α1u+α2v+α3w, where 0 ≤ α1,α2,α3 < 1 and
α1 +α2 +α3 < 1; g(u,v,w) = αmax{v,w}, where 0 ≤ α < 1; g(u,v,w) = α

√
vw,

where 0 ≤ α < 1 in Theorem 2, then we can obtain the the common fixed point
results of corresponding contraction conditions of Banach [2], Kannan [8], Reich
[12], Bianchini [3] and Khan [9] respectively as consequences.

Next, we show by an example that unlikely A-contraction mappings, A-contractive
mappings don’t posses common fixed points if the underlying metric space is com-
plete.

Example 1. Let us take X = {(x,y) : x> 0,y> 0} and define a function d : X×X→
R by

d((x1,y1),(x2,y2)) =

{
0, if (x1,y1) = (x2,y2)

1+
∣∣∣ 1

x1
− 1

x2

∣∣∣+ ∣∣∣ 1
y1
− 1

y2

∣∣∣ , if (x1,y1) 6= (x2,y2).

Then, (X ,d) is a complete metric space but (X ,d) is not compact. Next, we define
two mappings T,S : X→ X by T (x,y) = (2x,4y) and S(x,y) = (4x,2y) for all (x,y) ∈
X . Let us choose g ∈ A defined by g(u,v,w) = 1

3 u+ 1
3 v+ 1

3 w.
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Let (x1,y1),(x2,y2) ∈ X be arbitrary with (x1,y1) 6= (x2,y2). Then,

d(T (x1,y1),S(x2,y2)) = d((2x1,4y1),(4x2,2y2)) = 1+
∣∣∣∣ 1
2x1
− 1

4x2

∣∣∣∣+ ∣∣∣∣ 1
4y1
− 1

2y2

∣∣∣∣
and

g(d((x1,y1),(x2,y2)),d((x1,y1),T (x1,y1)),d((x2,y2),S(x2,y2)))

= g(d((x1,y1),(x2,y2)),d((x1,y1),(2x1,4y1)),d((x2,y2),(4x2,2y2)))

=
1
3

{
1+
∣∣∣∣ 1
x1
− 1

x2

∣∣∣∣+ ∣∣∣∣ 1
y1
− 1

y2

∣∣∣∣+1+
∣∣∣∣ 1
x1
− 1

2x1

∣∣∣∣+ ∣∣∣∣ 1
y1
− 1

4y1

∣∣∣∣
+1+

∣∣∣∣ 1
x2
− 1

4x2

∣∣∣∣+ ∣∣∣∣ 1
y2
− 1

2y2

∣∣∣∣
}

= 1+
1
3

∣∣∣∣ 1
x1
− 1

x2

∣∣∣∣+ 1
3

∣∣∣∣ 1
y1
− 1

y2

∣∣∣∣+ 1
6x1

+
1

4y1
+

1
4x2

+
1

6y2
.

Therefore,

d(T (x1,y1),S(x2,y2))< g(d((x1,y1),(x2,y2)),d((x1,y1),T (x1,y1)),d((x2,y2),

S(x2,y2))).

Thus (T,S) is A-contractive in pair, but T and S have no common fixed point.

Next, we show that instead of completeness if the underlying space is compact,
then A-contractive mappings do posses common fixed points.

Theorem 4. Let (X ,d) be a compact metric space. Let T,S : X → X be two map-
pings such that (T,S) is A-contractive in pair, commutative and also orbitally con-
tinuous in pair. Further assume that card (Fix(T )), card (Fix(S)) ≤ 1. Then, T and
S have a unique common fixed point.

Proof. Let x0 ∈ X be arbitrary. We consider the sequence {xn} in X by setting
xn = T xn−1 if n is odd and xn = Sxn−1 if n is even. Since (X ,d) is compact, {xn} has
a convergent subsequence, say, {xnk}. Let limk→∞ xnk = α.

Next, we consider a sequence of real numbers {sn}, defined by sn = d(xn,xn+1)
for all n ∈ N. We prove that sn → 0 as n→ ∞. First we suppose that xn = xn+1
for some n. Without loss of generality, we assume that n is even. Then, by using the
commutativity of T and S, we can show that xn,xn+1,xn+2, . . . all are fixed points of T .
This together with the fact that card (Fix(T ))≤ 1 proves that xn = xn+1 = xn+2 = . . . .
Then, clearly sn→ 0. So we now assume that xn 6= xn+1 for all n. If n is odd, then we
have

d(T xn−1,Sxn)< g(d(xn−1,xn),d(xn−1,T xn−1),d(xn,Sxn))

=⇒ d(xn,xn+1)< g(d(xn−1,xn),d(xn−1,xn),d(xn,xn+1))
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=⇒ sn < g(sn−1,sn−1,sn) =⇒ sn < sn−1.

Again if n is even, then we can similarly show that sn < sn−1. Thus {sn} is a strictly
decreasing sequence of non-negative real numbers. Hence sn→ b for some b ∈ R+.
Therefore,

b = lim
n→∞

d(xn,xn+1) = lim
k→∞

d(xnk ,xnk+1).

Now, we have three cases to consider.
Case I: Let all but finitely many nk in the subsequence {xnk} be even. Then,

we have

b = lim
k→∞

d(xnk ,xnk+1) = lim
k→∞

d(xnk ,T xnk) = d(α,T α).

Again

b = lim
k→∞

d(xnk+1,xnk+2) = lim
k→∞

d(T xnk ,ST xnk) = d(T α,ST α).

If b 6= 0, then α 6= T α. Therefore,

d(T α,ST α)< g(d(α,T α),d(α,T α),d(T α,ST α))

=⇒ d(T α,ST α)< d(α,T α) =⇒ b < b,

which is a contradiction. So b = 0. Then, α = T α and T α = ST α =⇒
α = Sα. Therefore, α is a common fixed point of T and S.

Case II: Let all but finitely many nk in the subsequence {xnk} be odd. In this
case, we can show that b = d(α,Sα) = (Sα,T Sα). Then, as in Case I, we can
show that α is a common fixed point of T and S.

Case III: Let infinitely many nk in the subsequence {xnk} be even and infinitely
many nk be odd. Then, we can extract a subsequence {xnkr

} from {xnk} such
that all nkr are even. Then we can show, as in Case I, that α is a common
fixed point of T and S.

Next, we show the uniqueness of the common fixed point. Let α1(6= α) be another
common fixed point T and S. Then, we have

d(T α,Sα1)< g(d(α,α1),d(α,T α),d(α1,Sα1))

=⇒ d(α,α1)< g(d(α,α1),0,0)≤ d(α,α1),

which is a contradiction. So α is the unique common fixed point of T and S. �

Theorem 5. Let (X ,d) be a compact metric space. Let Si : X → X, i = 1,2, . . . ,m,
be m number of mappings such that the collection of mappings is A-contractive in
pair, orbitally continuous in pair and Si,Si+1 are commutative for i = 1,2, . . . ,m.
Further assume that card (Fix(Si)) ≤ 1 for i = 1,2, . . . ,m. Then, the collection of
mappings has a unique common fixed point.
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Proof. From Theorem 4, it follows that the the pair of mappings Si,Si+1 have a
unique common fixed point. We denote this common fixed point of Si and Si+1 by αi.
If α1 6= α2, then from the definition of A-contractiveness, we have

d(S1α1,S2α2)< g(d(α1,α2),d(α1,S1α1),d(α2,S2α2))

=⇒ d(α1,α2)< g(d(α1,α2),0,0)≤ d(α1,α2)

=⇒ d(α1,α2)< d(α1,α2),

which is a contradiction. So we must have α1 = α2. Similarly we can show that
α2 = α3, α3 = α4, . . . , αm−1 = αm. So α1 is the unique common fixed point of the
collection of mappings Si, i = 1,2, . . . ,m. �

Finally, we show that if we add some mild additional condition on A-contractive
mappings, then such mappings also do posses common fixed points in complete met-
ric spaces.

Theorem 6. Let (X ,d) be a complete metric space. Let T,S : X → X be two
mappings such that (T,S) is A-contractive in pair, commutative and also orbitally
continuous in pair. Further assume that card (Fix(T )), card (Fix(S)) ≤ 1. If for any
ε > 0 and for any x0 ∈ X, there exists a positive δ = δ(ε,x0) such that

g(d(x,y),d(x,T x),d(y,Sy))< ε+δ =⇒ d(T x,Sy)≤ ε

4
for all x,y ∈ OT,S(x0),

then T and S have a unique common fixed point.

Proof. Let x0 ∈ X be arbitrary. We consider the sequences {xn} in X and {sn} in
R+ which we have considered in Theorem 4. Then, {sn} is strictly decreasing and
hence {sn} is convergent to some b ∈ R+. We now show that b = 0. If possible let
b > 0. Then, there exists δ > 0 such that

g(d(x,y),d(x,T x),d(y,Sy))< 4b+δ =⇒ d(T x,Sy)≤ b for all x,y ∈ OT,S(x0).

Since {sn} converges to b, for the above δ > 0, there exists n ∈ N such that

sn < b+
δ

4
.

Without loss of generality, we assume that n is odd. Therefore,

g(d(xn+1,xn),d(xn+1,xn+2),d(xn,xn+1))≤ d(xn+1,xn)+d(xn+1,xn+2)+d(xn,xn+1)

= sn + sn+1 + sn < 3sn < 3
(

b+
δ

4

)
< 4b+δ.

This implies that

d(T xn+1,Sxn)≤ b =⇒ d(xn+2,xn+1)≤ b =⇒ sn+1 ≤ b, a contradiction.
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Therefore b = 0, i.e., d(xn,xn+1)→ 0 as n→ ∞. Next, we show that {xn} is Cauchy.
For this, let ε > 0 be arbitrary. Then, there exists δ > 0 such that

g(d(x,y),d(x,T x),d(y,Sy))< ε+δ =⇒ d(T x,Sy)≤ ε

4
for all x,y ∈ OT,S(x0).

Without loss of generality, we show that δ≤ ε. Since d(xn,xn+1)→ 0 as n→ ∞, we
get N1 ∈ N such that

d(xn,xn+1)≤
δ

16
for all n≥ N1. (3.1)

Let n≥ N1 +1 be arbitrary. Then, we show by induction that

d(xn,xn+k)≤ ε for all k ∈ N. (3.2)

The statement for k = 1, follows from (3.1). Let (3.2) be true for k = 1,2, . . . ,m. Our
next aim is to show that d(xn,xn+m+1) ≤ ε. To show this, we first assume that n and
n+m+1 both are even. Then, we have

d(xn−2,xn+m)≤ d(xn−2,xn−1)+d(xn−1,xn)+d(xn,xn+m)≤
δ

8
+ ε.

Therefore,

g(d(xn−2,xn+m),d(xn−2,T xn−2),d(xn+m,Sxn+m))

≤ d(xn−2,xn+m)+d(xn−2,xn−1)+d(xn+m,xn+m+1)

≤ δ

8
+ ε+

δ

16
+

δ

16
< ε+δ.

Therefore,

d(xn−1,xn+m+1)≤
ε

4
and so

d(xn,xn+m+1)≤ d(xn,xn−1)+d(xn−1,xn+m+1)≤
δ

16
+

ε

4
≤ ε.

When both n and n+m+ 1 are odd or only one of n and n+m+ 1 is even, then
by proceeding as in the above way, we can show that d(xn,xn+m+1) ≤ ε. Thus by
Principle of Mathematical induction, it follows that

d(xn,xn+k)≤ ε for all n≥ N1 +1 and k = 1,2, . . . .

Thus {xn} is a Cauchy sequence in X and hence there exists α ∈ X such that xn→ α

as n→∞. Then, by proceeding to the similar way of Theorem 4, we can show that α

is the unique common fixed point of T and S. �

Theorem 7. Let (X ,d) be a complete metric space. Let Si : X→ X, i = 1,2, . . . ,m,
be m number of mappings such that the collection of mapping is A-contractive in
pair, orbitally continuous in pair and Si,Si+1 are commutative for i = 1,2, . . . ,m.
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Further assume that card (Fix(Si)) ≤ 1 for i = 1,2, . . . ,m. If for any ε > 0 and for
any x0 ∈ X, there exists a positive δ = δ(ε,x0) such that

g(d(x,y),d(x,Six),d(y,Si+1y))< ε+δ =⇒ d(Six,Si+1y)≤ ε

4
for all x,y ∈ OT,S(x0), then the collection of mappings has a unique common fixed
point.

Proof. Follows from the proofs of Theorem 6 and Theorem 5. �

Again by picking out particular g in Theorem 4, we have the following remark.

Remark 2. If we choose g(u,v,w) = u; g(u,v,w) = 1
2(v+w); g(u,v,w) = α1u+

α2v+α3w, where 0 ≤ α1,α2,α3 < 1 and α1 +α2 +α3 = 1; g(u,v,w) = max{v,w};
g(u,v,w) =

√
vw in Theorem 4, then we can obtain the the common fixed point res-

ults of corresponding contractive conditions of Banach [2], Kannan [8], Reich [12],
Bianchini [3] and Khan [9] respectively as consequences.

We finish this section by demonstrating three supporting examples.

Example 2. Let us consider the set R2 equipped with the metric

d((x1,y1),(x2,y2)) = |x1− y1|+ |x2− y2| for all (x1,y1),(x2,y2) ∈ R2.

Let X = {(x,y) ∈ R2 : 3 ≤ x ≤ y}. Then, (X ,d) is a complete metric space. Let us
define T,S : X→X by T (x,y) = (3,3) and S(x,y) =

(3+x
2 ,3

)
. Then, (T,S) is orbitally

continuous in pair. We choose g ∈ A defined by g(u,v,w) = 1
3 v+ 1

3 w.
Let (x1,y1),(x2,y2) ∈ X be arbitrary. Then,

d(T (x1,y1),S(x2,y2)) = d
(
(3,3) ,

(
3+ x2

2
,3
))

=
1
2
(x2−3)

and
1
3

d((x1,y1),T (x1,y1))+
1
3

d((x2,y2),S(x2,y2))

=
1
3

d((x1,y1),(3,3))+
1
3

d
(
(x2,y2),

(
3+ x2

2
,3
))

=
1
3

{
x1−3+ y1−3+

1
2
(x2−3)+ y2−3

}
.

Now
1
2
(x2−3)− 1

3

{
x1−3+ y1−3+

1
2
(x2−3)+ y2−3

}
=

1
6

{
3(x2−3)−2

(
x1 + y1−6+

x2

2
− 9

2
+ y2

)}
=

1
6
{3x2−9−2x1−2y1 +12− x2 +9−2y2}
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=
1
6
{2x2−2y2−2x1−2y1 +12}

≤ 1
6
(2x2−2y2), since x1,y1 ≥ 3

≤ 0, since x2 ≤ y2.

Therefore,

1
2
(x2−3)≤ 1

3

{
x1−3+ y1−3+

1
2
(x2−3)+ y2−3

}
=⇒ d(T (x1,y1),S(x2,y2))≤

1
3

d((x1,y1),T (x1,y1))+
1
3

d((x2,y2),S(x2,y2))

=⇒ d(T (x1,y1),S(x2,y2))≤ g(d((x1,y1),(x2,y2)),d((x1,y1),T (x1,y1)),

d((x2,y2),S(x2,y2))).

Thus (T,S) is A-contraction in pair and so by Theorem 2, T and S have a unique
common fixed point in X and (3,3) is the unique common fixed point of T and S.

Example 3. Let us take X = {(x,y) : 0 ≤ x ≤ 2,0 ≤ y ≤ 1} and define a function
d : X ×X → R by d((x1,y1),(x2,y2)) = |x1− y1|+ |x2− y2| for all (x1,y1),(x2,y2) ∈
X . Then, (X ,d) is a compact metric space. Next, we define two mappings T,S : X →
X by

T (x,y) =
( x

3
,0
)

and S(x,y) =
(

0,
y
4

)
for all (x,y) ∈ X . Also we choose g ∈ A defined by g(u,v,w) = 1

2 v+ 1
2 w.

Let (x1,y1),(x2,y2) ∈ X be arbitrary with (x1,y1) 6= (x2,y2). Then,

d(T (x1,y1),S(x2,y2)) = d
((x1

3
,0
)
,
(

0,
y2

4

))
=

x1

3
+

y2

4
and

g(d((x1,y1),(x2,y2)),d((x1,y1),T (x1,y1)),d((x2,y2),S(x2,y2)))

=
1
2

d
(
(x1,y1),

(x1

3
,0
))

+
1
2

d
(
(x2,y2),

(
0,

y2

4

))
=

1
2

{∣∣∣x1−
x1

3

∣∣∣+ y1 + x2 +
∣∣∣y2−

y2

4

∣∣∣}=
x1

3
+

3y2

8
+

1
2
(x2 + y1).

Therefore,

d(T (x1,y1),S(x2,y2))< g(d((x1,y1),(x2,y2)),d((x1,y1),T (x1,y1)),d((x2,y2),

S(x2,y2))).

Hence (T,S) is A-contractive in pair and so by Theorem 4, T and S have a unique
common fixed point in X . Indeed (0,0) is the unique common fixed point of T and S.
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Example 4. Let us consider the set C
[
0, 1

12

]
of all real valued continuous functions

of real numbers defined on
[
0, 1

12

]
and consider the sup metric d on C

[
0, 1

12

]
. Then,(

C
[
0, 1

12

]
,d
)

is a complete metric space. Also we take g ∈ A defined by g(u,v,w) =
1
2 u+ 1

2 max{v,w}. After this, we consider two self-mappings T and S on X defined
by

T (x(t)) =
t
2

x(t) and S(x(t)) = tx(t)

for all x ∈C
[
0, 1

12

]
. Then, for x,y ∈C

[
0, 1

12

]
and t ∈

[
0, 1

12

]
, we have

|T (x(t))−S(y(t))|=
∣∣∣ t
2

x(t)− ty(t)
∣∣∣≤ ∣∣∣ t

2
x(t)− t

2
y(t)
∣∣∣+ ∣∣∣ t

2
y(t)
∣∣∣

=
t
2
|x(t)− y(t)|+ t

2
|y(t)| ≤ t

2
|x(t)− y(t)|+ 1

2
(1− t) |y(t)|

=
t
2
|x(t)− y(t)|+ 1

2
|y(t)− ty(t)|

=
t
2
|x(t)− y(t)|+ 1

2
|y(t)−Sy(t)|

≤ t
2

d(x,y)+
1
2

d(y,Sy)

≤ 1
4

d(x,y)+
1
2

max{d(x,T x),d(y,Sy)}

=⇒ d(T x,Sy)≤ 1
4

d(x,y)+
1
2

max{d(x,T x),d(y,Sy)}

<
1
2

d(x,y)+
1
2

max{d(x,T x),d(y,Sy)}

=⇒ d(T x,Sy)< g(d(x,y),d(x,T x),d(y,Sy)).

Thus (T,S) is A-contractive in pair.
Now, let x ∈C

[
0, 1

12

]
and ε > 0 be arbitrary. Then, for any y ∈OT,S(x), y will look

like y(t) = tα(t)x(t) for some α, where α is a function of t. We choose δ = ε

2 . Then,
for y ∈ OT,S(x), we have

g(d(x,y),d(x,T x),d(y,Sy))< ε+
ε

2

=⇒ 1
2

d(x,y)≤ g(d(x,y),d(x,T x),d(y,Sy))<
3ε

2
=⇒ (1− tα(t)) |x(t)|< 3ε.

Therefore,

d(T x,Sy) = d
( t

2
x(t), t2

α(t)x(t)
)
= sup

t∈[0, 1
12 ]

( t
2
− t2

α(t)
)
|x(t)|
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≤ 1
12

sup
t∈[0, 1

12 ]

(
1
2
− tα(t)

)
|x(t)| ≤ 1

12
sup

t∈[0, 1
12 ]

(1− tα(t)) |x(t)|

≤ 3ε

12
=

ε

4
.

Thus all the conditions of Theorem 6 hold good. So by the same theorem, T and S
have a unique common fixed point in X . Indeed x ∈C

[
0, 1

12

]
defined by x(t) = 0 for

all t, is the unique common fixed point of T and S.
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