Miskolc Mathematical Notes

ON TRACES OF PERMUTING n-DERIVATIONS ON PRIME IDEALS

HAJAR EL MIR, BADR NEJJAR, AND LAHCEN OUKHTITE
Received 09 March, 2022

Abstract

In this article we investigate some properties of permuting n-derivations acting on a prime ideal. More precisely, let $n \geq 2$ be a fixed positive integer, P be a prime ideal of a ring R such that R / P is $(n+1)$!-torsion free. If there exists a permuting n-derivation $\Delta: R^{n} \longrightarrow R$ such that the trace δ of Δ satisfies $\overline{[[\delta(x), x], x]} \in Z(R / P)$ for all $x \in R$, then $\Delta\left(R^{n}\right) \subseteq P$ or R/P is commutative.

2010 Mathematics Subject Classification: 16U80; 16W25; 16N60
Keywords: permuting n-derivation, prime ring, commutativity

1. Introduction

Throughout this article, R will represent an associative ring with center $Z(R)$. Recall that an ideal P of R is said to be prime if $P \neq R$ and for all $x, y \in R, x R y \subseteq P$ implies that $x \in P$ or $y \in P$. Therefore, R is called a prime ring if and only if (0) is the only minimal prime ideal of $R . R$ is n-torsion free if whenever $n x=0$, with $x \in R$ implies $x=0$. For any $x, y \in R$, the symbol $[x, y]$ will denote the commutator $x y-y x$; while the symbol $x \circ y$ will stand for the anti-commutator $x y+y x$. A mapping $f: R \longrightarrow R$ is said to be centralizing on a subset S of R if $[f(s), s] \in Z(R)$ for all $s \in S$. In particular, if $[f(s), s]=0$ for all $s \in S$, then f is commuting on S. A map $d: R \longrightarrow R$ is a derivation of a ring R if d is additive and satisfies $d(x y)=d(x) y+x d(y)$ for all $x, y \in R$.

Suppose n is a fixed positive integer and $R^{n}=R \times R \times \cdots \times R$, a map $\Delta: R^{n} \longrightarrow R$ is n-additive if it satisfies

$$
\Delta\left(x_{1}, x_{2}, \ldots, x_{i}+x_{i}^{\prime}, \ldots, x_{n}\right)=\Delta\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right)+\Delta\left(x_{1}, x_{2}, \ldots, x_{i}^{\prime}, \ldots, x_{n}\right)
$$

for all $x_{i}, x_{i}^{\prime} \in R, i=1,2, \ldots, n$. A map $\Delta: R^{n} \longrightarrow R$ is said to be permuting if $\Delta\left(x_{1}, x_{2}, x_{3}, \ldots, x_{n}\right)=\Delta\left(x_{\pi(1)}, x_{\pi(2)}, x_{\pi(3)}, \ldots, x_{\pi(n)}\right)$ for all $x_{i} \in R$ and for every permutation $\pi \in S_{n}$; where S_{n} is the symmetric group on n symbols $\{1,2,3, \ldots, n\}$. A map $\delta: R \longrightarrow R$ is called the trace of Δ if $\delta(x)=\Delta(x, x, x, \ldots, x)$ for all $x \in R$. It is obvious to verify that if $\Delta: R^{n} \longrightarrow R$ is a permuting and n-additive map, then the
trace δ of Δ satisfies the relation

$$
\delta(x+y)=\delta(x)+\delta(y)+\sum_{i=1}^{n-1}\binom{n}{i} \Delta(x, x, \ldots, x, y, y, \ldots, y)
$$

where x appears $(n-i)$-times and y appears i-times.
Park [4] introduced the notion of permuting n-derivation as follows: a permuting map $\Delta: R^{n} \longrightarrow R$ is said to be a permuting n-derivation if Δ is n-additive and

$$
\Delta\left(x_{1}, x_{2}, \ldots, x_{i} x_{i}^{\prime}, \ldots, x_{n}\right)=x_{i} \Delta\left(x_{1}, x_{2}, \ldots, x_{i}^{\prime}, \ldots, x_{n}\right)+\Delta\left(x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{n}\right) x_{i}^{\prime}
$$

for all $x_{1}, x_{2}, \ldots, x_{i}, x_{i}^{\prime}, \ldots, x_{n} \in R$. Clearly, a 1 -derivation is a usual derivation and a 2-derivation is a symmetric bi-derivation. However, in the case of $n=3$ we get the concept of symmetric tri-derivation.

Many results in the literature indicate how the global structure of a ring R is often tightly connected to the behavior of additive maps defined on R. A well known result due to Posner [1] states that a prime ring R which admits a nonzero centralizing derivation is commutative. Since then, several authors have done a great deal of work concerning commutativity of prime and semi-prime rings admitting different kinds of maps which are centralizing on some appropriate subsets of R ([6, 7] and [5] for a further references). More recently several authors have studied various identities involving trace of permuting n-derivations and have obtained interesting theorems. Indeed, motivated by the results due to Posner [1], Vukman obtained some results concerning the trace of symmetric bi-derivation in prime ring (see [2] and [3]). Ashraf [8] proved similar results for semi-prime ring. In [11], Jung and Park obtained the similar results to Posner's and Vukman's ones for permuting 3derivations on prime and semiprime rings. In the year 2009, Park [4] introduced the concept of symmetric permuting n -derivation and obtained some results related to the commuting traces of permuting n-derivations in rings. Further, Ashraf and Jamal [10] obtained commutativity of rings admitting n-derivations whose traces satisfy certain polynomial conditions. In 2018, the authors in [9] generalize the result of Park by considering more general identities rather than centralizing mappings. More precisely, they proved that if R is $(n+1)$!-torsion free semi-prime ring admitting a permuting n-derivation Δ such that the trace δ of Δ satisfies $[[\delta(x), x], x] \in Z(R)$ for all $x \in R$. Then δ is commuting on R.

The present paper is motivated by the previous results and we here continue this line of investigation by considering a more general concept rather than commuting and centralizing traces of permuting n-derivations. In fact, we define the concepts of S-commuting maps and S-centralizing maps as follows:

Definition 1. Let R be a ring, S a subset of R and $f: R \longrightarrow R$ a map. Then

1. f is called S-commuting if $[f(x), x] \in S$ for all $x \in R$;
2. f is called S-centralizing if $[[f(x), x], y] \in S$ for all $x, y \in R$.

1.1. Preliminary results

The following fact is essential for the proofs of our results.
Lemma 1 ([4], Lemma 2.4). Let n be a fixed positive integer and let R be a $n!-$ torsion free ring. Suppose that $y_{1}, y_{2}, \ldots, y_{n} \in R$ satisfy $\lambda y_{1}+\lambda^{2} y_{2}+\cdots+\lambda^{n} y_{n}=0$ (or $\in Z(R))$ for $\lambda=1,2, \ldots, n$. Then $y_{i}=0\left(\right.$ or $\left.y_{i} \in Z(R)\right)$ for all i.

In ([4], Theorem 2.3) the author proved that if $n \geq 2$ is a fixed positive integer and R is a non-commutative $n!$-torsion free prime ring provided with a permuting n-derivation $\Delta: R^{n} \longrightarrow R$ such that the trace δ of Δ is commuting on R, then $\Delta=0$. In the following lemma we prove the same result by considering a more general situation.

Lemma 2. Let $n \geq 2$ be a fixed positive integer, P be a prime ideal of a ring R such that R / P is noncommutative $n!-$ torsion free. If there exists a permuting n-derivation $\Delta: R^{n} \longrightarrow R$ such that the trace δ of Δ is P-commuting, then we have $\Delta\left(R^{n}\right) \subseteq P$.

Proof. We are given that

$$
\begin{equation*}
\overline{[\delta(x), x]}=\overline{0} \quad \text { for all } x \in R \tag{1.1}
\end{equation*}
$$

An easier computation shows that the trace δ of Δ satisfies the relation

$$
\begin{equation*}
\delta(x+y)=\delta(x)+\delta(y)+\sum_{k=1}^{n-1}\binom{n}{k} h_{k}(x, y) \text { for all } x, y \in R \tag{1.2}
\end{equation*}
$$

where $h_{k}(x, y)=\Delta(x, x, x, \ldots, x, y, y, \ldots, y) ; y$ appears k times and x appears $n-k$ times. Let $\lambda(1 \leq \lambda \leq n)$ be any integer. By replacing x by $x+\lambda y$ in (1.1) and using (1.1), we obtain

$$
\begin{align*}
& \lambda\left(\overline{[\delta(x), y]}+{ }^{n} C_{1} \overline{\left[h_{1}(x, y), x\right]}\right)+\lambda^{2}\left({ }^{n} C_{1} \overline{\left[h_{1}(x, y), y\right]}+{ }^{n} C_{2} \overline{\left[h_{2}(x, y), x\right]}\right)+\ldots \\
& \left.\quad+\lambda^{n}(\overline{[\delta(y), x}]+{ }^{n} C_{n-1} \overline{\left[h_{n-1}(x, y), y\right]}\right)=\overline{0} \tag{1.3}
\end{align*}
$$

for all $x, y \in R$. From Lemma 1 and equation (1.3) we conclude that

$$
\begin{equation*}
\overline{[\delta(x), y]}+n \overline{\left[h_{1}(x, y), x\right]}=\overline{0} \quad \text { for all } x, y \in R . \tag{1.4}
\end{equation*}
$$

Writing $x y$ instead of y in (1.4), one can see that

$$
\begin{equation*}
\bar{x}\left(\overline{[\delta(x), y]}+n \overline{\left[h_{1}(x, y), x\right]}\right)+n \overline{\delta(x)[y, x]}=\overline{0} \quad \text { for all } x, y \in R \tag{1.5}
\end{equation*}
$$

Invoking (1.4), equation (1.5) implies that

$$
n \overline{\delta(x)[y, x]}=\overline{0} \quad \text { for all } x, y \in R
$$

Since n divides n !, we find that R / P is n-torsion free and thus

$$
\begin{equation*}
\overline{\delta(x)[y, x]}=\overline{0} \quad \text { for all } x, y \in R \tag{1.6}
\end{equation*}
$$

Substituting $r y$ for y in (1.6), we get

$$
\begin{equation*}
\overline{\delta(x)}(R / P) \overline{[y, x]}=\overline{0} \quad \text { for all } x, y \in R \tag{1.7}
\end{equation*}
$$

Since P is a prime ideal, then (1.7) implies $[y, x] \in P$ or $\delta(x) \in P$ for all $x, y \in R$. It follows that $\delta(x) \in P$ for all $x \in R$ such that $\bar{x} \notin Z(R / P)$.

Now, let $x \in R$ such that $\bar{x} \in Z(R / P)$ and let $y \in R$ with $\bar{y} \notin Z(R / P)(\overline{\delta(y)}=0)$. Then $\bar{y}+\lambda \bar{x} \notin Z(R / P)$. Thus we obtain

$$
\overline{\delta(y+\lambda x)}=\overline{\delta(y)}+\overline{\delta(x)} \lambda^{n}+\sum_{k=1}^{n-1}{ }^{n} C_{k} \overline{h_{k}(y, x)} \lambda^{k}=\overline{0}
$$

Therefore

$$
\begin{equation*}
\sum_{k=1}^{n-1}{ }^{n} C_{k} \overline{h_{k}(y, x)} \lambda^{k}+\overline{\delta(x)} \lambda^{n}=\overline{0} \tag{1.8}
\end{equation*}
$$

Applying Lemma 1, equation (1.8) yields $\delta(x) \in P$ for all $x \in R(\bar{x} \in Z(R / P))$. Hence, we conclude that

$$
\begin{equation*}
\delta(x) \in P \quad \text { for all } x \in R \tag{1.9}
\end{equation*}
$$

Let $\mu(1 \leq \mu \leq n-1)$ be any integer. By (1.9) we have

$$
\begin{equation*}
\overline{\delta\left(\mu x+x_{n}\right)}=\overline{0} \quad \text { for all } x, x_{n} \in R \tag{1.10}
\end{equation*}
$$

For each $k=1,2, \ldots, n$, let

$$
P_{k}(x)=\Delta\left(x, x, \ldots, x, x_{k+1}, x_{k+2}, \ldots, x_{n}\right)
$$

where $x, x_{i} \in R, i=k+1, k+2, \ldots, n$.
By viewing of (1.9), equation (1.10) yields

$$
\begin{equation*}
\sum_{k=1}^{n-1}{ }^{n} C_{k} \overline{P_{k}(x)} \mu^{k}=\overline{0} \quad \text { for all } x \in R \tag{1.11}
\end{equation*}
$$

Thus Lemma 1 and (1.11) imply

$$
\begin{equation*}
n \overline{P_{n-1}(x)}=\overline{0} \quad \text { for all } x \in R \tag{1.12}
\end{equation*}
$$

Since R / P is n-torsion free ring, then equation (1.12) forces

$$
\begin{equation*}
\overline{P_{n-1}(x)}=\overline{0} \quad \text { for all } x \in R \tag{1.13}
\end{equation*}
$$

Let $v(1 \leq v \leq n-2)$ be any integer. By (1.13) the relation

$$
\overline{P_{n-1}\left(v x+x_{n-1}\right)}=v^{n-1} \overline{P_{n-1}(x)}+\overline{P_{n-1}\left(x_{n-1}\right)}+\sum_{k=1}^{n-2}{ }^{n} C_{k} \overline{P_{k}(x)} v^{k}=\overline{0}
$$

holds for all $x, x_{n-1} \in R$, and hence one can see that

$$
\begin{equation*}
\sum_{k=1}^{n-2}{ }^{n} C_{k} \overline{P_{k}(x)} v^{k}=\overline{0} \quad \text { for all } x \in R \tag{1.14}
\end{equation*}
$$

Using Lemma 1 and (1.14), we get

$$
{ }^{n} C_{n-2} \overline{P_{n-2}(x)}=\overline{0} \quad \text { for all } x \in R,
$$

in such a way that

$$
\overline{P_{n-2}(x)}=\overline{0} \quad \text { for all } x \in R .
$$

Now if we continue with the same method as above, we finally obtain

$$
{ }^{n} C_{1} \overline{P_{1}(x)}=\overline{0} \quad \text { for all } x \in R,
$$

which leads to

$$
\overline{P_{1}(x)}=\overline{0} \quad \text { for all } x \in R
$$

Thus we obtain

$$
\Delta\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in P
$$

for all $x_{i} \in R$. This completes the proof of the lemma.

2. MAIN RESULTS

In [[9], Theorem 1] it is proved that if $n \geq 2$ is a fixed positive integer and R is a $(n+1)$!-torsion free semiprime ring provided with a permuting n-derivation $\Delta: R^{n} \longrightarrow R$ such that the trace δ of Δ satisfies $[[\delta(x), x], x]=0$ for all $x \in R$, then δ is commuting. Motivated by this result we continue our investigation of permuting n-derivations with the next theorem which extends the result of [[9], Theorem 1], ([4], Theorem 2.5) to the case of any semiprime ideals rather than the zero ideal. The following result shows that if the trace δ of a permuting n-derivation Δ is P-centralizing then it is P-commuting. In fact, we prove rather a more general result:

Theorem 1. Let $n \geq 2$ be a fixed positive integer, P be a semiprime ideal of a ring R such that R / P is $(n+1)$!-torsion free. If R admits a permuting n-derivation Δ such that the trace δ of Δ satisfies $[[\delta(x), x], x] \in P$ for all $x \in R$, then δ is P-commuting.

Proof. We are given that

$$
\begin{equation*}
[[\delta(x), x], x] \in P \text { for all } x \in R \tag{2.1}
\end{equation*}
$$

Consider a positive integer $k, 1 \leq k \leq n+1$. Replacing x by $x+k y$ in (2.1), we obtain

$$
\begin{equation*}
k Q_{1}(x, y)+k^{2} Q_{2}(x, y)+\cdots+k^{n+1} Q_{n+1}(x, y) \in P \quad \text { for all } x, y \in R \tag{2.2}
\end{equation*}
$$

where $Q_{i}(x, y)$ denotes the sum of the terms in which y appears i times. Using (2.2) together with Lemma 1 we find that

$$
\begin{equation*}
[[\boldsymbol{\delta}(x), x], y]+[[\boldsymbol{\delta}(x), y], x]+n[[\Delta(x, x, x, \ldots, y), x], x] \in P \tag{2.3}
\end{equation*}
$$

for all $x, y \in R$. Replacing y by $x y$ in (2.3), we get

$$
\begin{gather*}
x[[\delta(x), x], y]+[[\delta(x), x], x] y+x[[\delta(x), y], x]+[[\delta(x), x], x] y+[\delta(x), x][y, x] \\
+n x[[\Delta(x, x, x, \ldots, y), x], x]+n[[\delta(x), x], x] y+n[\boldsymbol{\delta}(x), x][y, x] \\
n[\delta(x), x][y, x]+n \boldsymbol{\delta}(x)[[y, x], x] \in P . \tag{2.4}
\end{gather*}
$$

Using (2.4) and (2.3) we find that

$$
\begin{equation*}
(2 n+1)[\boldsymbol{\delta}(x), x][y, x]+n \boldsymbol{\delta}(x)[[y, x], x] \in P . \tag{2.5}
\end{equation*}
$$

Similarly, replacing y by $y x$ in (2.3), one can get

$$
\begin{equation*}
(2 n+1)[y, x][\delta(x), x]+n[[y, x], x] \delta(x) \in P . \tag{2.6}
\end{equation*}
$$

Substituting $y z$ for y in (2.5), we have

$$
\begin{gathered}
(2 n+1)([\delta(x), x] y[z, x]+[\delta(x), x][y, x] z)+n \delta(x) y[[z, x], x]+ \\
n \boldsymbol{\delta}(x)[y, x][z, x]+n \boldsymbol{\delta}(x)[y, x][z, x]+n \boldsymbol{\delta}(x)[[y, x], x] z \in P .
\end{gathered}
$$

Using equation 2.5 , we obtain

$$
(2 n+1)[\boldsymbol{\delta}(x), x] y[z, x]+n \delta(x) y[[z, x], x]+2 n \delta(x)[y, x][z, x] \in P
$$

Replacing y by $\delta(x)$ in the above relation we find that

$$
\begin{equation*}
(2 n+1)[\delta(x), x] \delta(x)[z, x]+n \delta(x)^{2}[[z, x], x]+2 n \delta(x)[\delta(x), x][z, x] \in P \tag{2.7}
\end{equation*}
$$

From (2.5) we have

$$
(2 n+1) \boldsymbol{\delta}(x)[\delta(x), x][y, x]+n \delta(x)^{2}[[y, x], x] \in P
$$

Now using this relation in (2.7) we get

$$
(2 n+1)[\boldsymbol{\delta}(x), x] \boldsymbol{\delta}(x)[z, x]-(2 n+1) \boldsymbol{\delta}(x)[\boldsymbol{\delta}(x), x][z, x]+2 n \boldsymbol{\delta}(x)[\boldsymbol{\delta}(x), x][z, x] \in P .
$$

Therefore

$$
\begin{equation*}
((2 n+1)[\boldsymbol{\delta}(x), x] \boldsymbol{\delta}(x)-\boldsymbol{\delta}(x)[\delta(x), x])[z, x] \in P \tag{2.8}
\end{equation*}
$$

Puting $A=(2 n+1)[\boldsymbol{\delta}(x), x] \boldsymbol{\delta}(x)-\boldsymbol{\delta}(x)[\boldsymbol{\delta}(x), x]$ and replacing z by $y z$ in (2.8) we get

$$
\begin{equation*}
A y[z, x] \in P \text { for all } x, y, z \in R . \tag{2.9}
\end{equation*}
$$

Taking $z=\boldsymbol{\delta}(x)$ in (2.9) and multiplying by $(2 n+1) \delta(x)$ we obtain

$$
\begin{equation*}
A y(2 n+1)[\delta(x), x] \delta(x) \in P \text { for all } x, y \in R \tag{2.10}
\end{equation*}
$$

Substituting $y \delta(x)$ for y and $\delta(x)$ for z in (2.9) we find that

$$
\begin{equation*}
\operatorname{Ay\delta }(x)[\delta(x), x] \in P \text { for all } x, y \in R \tag{2.11}
\end{equation*}
$$

Substracting (2.11) from (2.10) one can see that

$$
\begin{equation*}
(2 n+1)[\boldsymbol{\delta}(x), x] \delta(x)-\delta(x)[\delta(x), x] \in P \text { for all } x \in R \tag{2.12}
\end{equation*}
$$

Similarly, (2.6) gives

$$
\begin{equation*}
(2 n+1) \delta(x)[\delta(x), x]-[\delta(x), x] \delta(x) \in P \text { for all } x \in R \tag{2.13}
\end{equation*}
$$

Combining (2.12) and (2.13), we obtain

$$
2 n(\delta(x)[\delta(x), x]+[\delta(x), x] \delta(x)) \in P \text { for all } x \in R
$$

Since $2 n$ divides $(n+1)$!, then R is $2 n$-torsion free and hence for all $x \in R$,

$$
\begin{equation*}
\delta(x)[\delta(x), x]+[\delta(x), x] \delta(x) \in P \text { for all } x \in R \tag{2.14}
\end{equation*}
$$

Using (2.14) together with (2.13) one can see that $(2 n+2)[\delta(x), x] \delta(x) \in P$ for all $x \in R$. Since $2(n+1)$ divides $(n+1)$!, then R is $2(n+1)$-torsion free and hence

$$
\begin{equation*}
[\delta(x), x] \delta(x) \in P \quad \text { for all } x \in R \tag{2.15}
\end{equation*}
$$

Similarly, from (2.13) and (2.14) we get

$$
\begin{equation*}
\delta(x)[\delta(x), x] \in P \quad \text { for all } x \in R \tag{2.16}
\end{equation*}
$$

Substituting $x+k y$ for x in equation (2.16), where $1 \leq k \leq 2 n$, and implementing Lemma 1 we arrive at

$$
\begin{equation*}
\delta(x)[\delta(x), y]+n \delta(x)[\Delta(x, x, \ldots, y), x]+n \Delta(x, x, \ldots, y)[\delta(x), x] \in P . \tag{2.17}
\end{equation*}
$$

Replacing y by $y x$ in the last equation, one can see that

$$
\begin{aligned}
& \delta(x)[\delta(x), y x]+n \delta(x)[y \delta(x)+\Delta(x, x, \ldots, y) x, x]+ \\
& n(y \delta(x)+\Delta(x, x, \ldots, y) x)[\delta(x), x] \in P,
\end{aligned}
$$

and thus

$$
\begin{align*}
& \delta(x) y[\delta(x), x]+\delta(x)[\delta(x), y] x+n \delta(x) y[\delta(x), x]+n \delta(x)[y, x] \delta(x)+ \\
& \quad n \delta(x)[\Delta(x, x, \ldots, y), x] x+n y \delta(x)[\delta(x), x]+n \Delta(x, x, \ldots, y) x[\delta(x), x] \in P . \tag{2.18}
\end{align*}
$$

Using (2.17) together with (2.18), we get

$$
\begin{aligned}
(n+1) \delta(x) y[\delta(x), x]+n \delta(x)[y, x] \delta(x)-n \Delta(x, x, \ldots, y)[\delta(x), x] x+ \\
n \Delta(x, x, \ldots, y) x[\delta(x), x] \in P
\end{aligned}
$$

hence

$$
(n+1) \boldsymbol{\delta}(x) y[\boldsymbol{\delta}(x), x]+n \boldsymbol{\delta}(x)[y, x] \boldsymbol{\delta}(x)-n \Delta(x, x, \ldots, y)[[\boldsymbol{\delta}(x), x], x] \in P .
$$

Accordingly,

$$
\begin{equation*}
(n+1) \delta(x) y[\delta(x), x]+n \delta(x)[y, x] \delta(x) \in P \quad \text { for all } x, y \in R . \tag{2.19}
\end{equation*}
$$

Substituting $x y$ for y in (2.19)

$$
\begin{equation*}
(n+1) \boldsymbol{\delta}(x) x y[\delta(x), x]+n \delta(x) x[y, x] \delta(x) \in P \quad \text { for all } x, y \in R . \tag{2.20}
\end{equation*}
$$

Left multiplying (2.19) by x, we obtain

$$
\begin{equation*}
(n+1) x \delta(x) y[\delta(x), x]+n x \delta(x)[y, x] \delta(x) \in P \quad \text { for all } x, y \in R . \tag{2.21}
\end{equation*}
$$

Combining (2.20) and (2.21), we get

$$
\begin{equation*}
(n+1)[\delta(x), x] y[\delta(x), x]+n[\delta(x), x][y, x] \delta(x) \in P \quad \text { for all } x, y \in R . \tag{2.22}
\end{equation*}
$$

Substituting $y z$ for y in (2.6), we have

$$
(2 n+1)[y z, x][\boldsymbol{\delta}(x), x]+n[[y z, x], x] \boldsymbol{\delta}(x) \in P
$$

and thus

$$
\begin{gathered}
(2 n+1) y[z, x][\boldsymbol{\delta}(x), x]+(2 n+1)[y, x] z[\boldsymbol{\delta}(x), x]+n y[[z, x], x] \delta(x)+ \\
n[y, x][z, x] \boldsymbol{\delta}(x)+n[y, x][z, x] \boldsymbol{\delta}(x)+n[[y, x], x] z \boldsymbol{\delta}(x) \in P .
\end{gathered}
$$

Using (2.6) one can see that

$$
(2 n+1)[y, x] z[\boldsymbol{\delta}(x), x]+2 n[y, x][z, x] \boldsymbol{\delta}(x)+n[[y, x], x] z \boldsymbol{\delta}(x) \in P
$$

Replacing y by $\delta(x)$ in the above relation we get

$$
\begin{equation*}
(2 n+1)[\delta(x), x] z[\delta(x), x]+2 n[\boldsymbol{\delta}(x), x][z, x] \delta(x) \in P \quad \text { for all } x, z \in R \tag{2.23}
\end{equation*}
$$

Combining (2.22) and (2.23) we obtain

$$
[\boldsymbol{\delta}(x), x] z[\boldsymbol{\delta}(x), x] \in P \quad \text { for all } x, z \in R
$$

Since P is a semi-prime ideal, we get $[\delta(x), x] \in P$ for all $x \in R$.
In ([4], Theorem 2.5) it is proved that if $n \geq 2$ is a fixed positive integer and R is a $n!$-torsion free semiprime ring provided with a permuting n-derivation $\Delta: R^{n} \longrightarrow R$ such that the trace δ of Δ is centralizing on R, then δ is commuting on R. In the following corollary which is an immediate result from Theorem 1 we extends the result of Park to the case of any semiprime ideals rather than the zero ideal.

Corollary 1. Let $n \geq 2$ be a fixed positive integer, P be a semiprime ideal of a ring R such that R / P is $(n+1)$!-torsion free. If there exists a permuting n-derivation $\Delta: R^{n} \longrightarrow R$ such that the trace δ of Δ is P-centralizing then δ is P-commuting.

The following corollary extends the main result in ([4], Theorem 2.6), which is an analogue of Posner's Theorem for permuting n-derivations.

Corollary 2. Let $n \geq 2$ be a fixed positive integer, P be a prime ideal of a ring R such that R / P is n!-torsion free. If there exists a permuting n-derivation $\Delta: R^{n} \longrightarrow R$ such that the trace δ of Δ is P-centralizing, then $\Delta\left(R^{n}\right) \subseteq P$ or R / P is commutative.

Proof. Suppose that R / P is noncommutative, then it follows from Corollary 1 that δ is P-commuting. Hence Lemma 2 gives $\Delta\left(R^{n}\right) \subseteq P$. This guarantees the conclusion of the corollary.

The fundamental result of [4] is immediate from Corollary 2 as follows
Corollary 3. Let $n \geq 2$ be a fixed positive integer, R be a $n!-$ torsion free prime ring. If there exists a permuting n-derivation $\Delta: R^{n} \longrightarrow R$ such that the trace δ of Δ is centralizing on R, then $\Delta=0$ or R is commutative.

We continue with the next theorem for symmetric n-derivations which present a more general situation than P-centralizing and the identity $[[\delta(x), x], x] \in P$ for all $x \in R$. In fact we suggest to extend the result of [[9], Theorem 2] proving that if $n \geq 2$ is a fixed positive integer and R is a $(n+1)$!-torsion free semiprime ring
admitting a permuting n-derivation $\Delta: R^{n} \longrightarrow R$ such that the trace δ of Δ satisfies $[[\delta(x), x], x] \in Z(R)$ for all $x \in R$, then δ is commuting on R.

Theorem 2. Let $n \geq 2$ be a fixed positive integer, P be a semiprime ideal of a ring R such that R / P is $(n+1)$!-torsion free. If R admits a permuting n-derivation Δ such that the trace δ of Δ satisfies $\overline{[[\delta(x), x], x]} \in Z(R / P)$ for all $x \in R$, then δ is P-commuting.

Proof. Assume that

$$
\begin{equation*}
[[[\delta(x), x], x], r] \in P \text { for all } r, x \in R \tag{2.24}
\end{equation*}
$$

Consider a positive integer $k, 1 \leq k \leq n+1$. Replacing x by $x+k y$ in (2.24), we obtain

$$
\begin{equation*}
k Q_{1}(x, y)+k^{2} Q_{2}(x, y)+\cdots+k^{n+1} Q_{n+1}(x, y) \in P \text { for all } x, y \in R \tag{2.25}
\end{equation*}
$$

where $Q_{i}(x, y)$ denotes the sum of the terms in which y appears i times. Using (2.25) together with Lemma 1 we have

$$
\begin{equation*}
[[[\delta(x), x], y], r]+[[[\delta(x), y], x], r]+n[[[\Delta(x, x, \ldots, y), x], x], r] \in P \tag{2.26}
\end{equation*}
$$

Replacing y by $x y$ in (2.26), we get

$$
\begin{align*}
& {[(n+2)[[\delta(x), x], x] y+x([[\delta(x), x], y]+[[\delta(x), y], x]+} \\
& \quad n[[\Delta(x, x, \ldots, y), x], x])+n \delta(x)[[y, x], x]+(2 n+1)[\delta(x), x][y, x], r] \in P \tag{2.27}
\end{align*}
$$

Combining (2.26) with (2.27), we find that

$$
\begin{align*}
& (3 n+3)[[\boldsymbol{\delta}(x), x], x][y, x]+(3 n+1)[\boldsymbol{\delta}(x), x][[y, x], x]+ \\
& n \boldsymbol{\delta}(x)[[[y, x], x], x] \in P . \tag{2.28}
\end{align*}
$$

Substituting $\delta(x)$ for y in (2.28) to get

$$
(6 n+4)[[\delta(x), x], x][\delta(x), x] \in P .
$$

Commuting with x gives

$$
\begin{equation*}
(6 n+4)[[\delta(x), x], x]^{2} \in P . \tag{2.29}
\end{equation*}
$$

Replacing y by $[\boldsymbol{\delta}(x), x]$ in (2.28), we arrive at

$$
\begin{equation*}
(3 n+3)[[\delta(x), x], x]^{2} \in P . \tag{2.30}
\end{equation*}
$$

Now combining (2.29) and (2.30) to get

$$
2[[\delta(x), x], x] R[[\delta(x), x], x] \in P
$$

Since R is $(n+1)$!-torsion free and also the center of a semi-prime ring is free from nilpotent elements, we have $[[\delta(x), x], x] \in P$. Using the result of Theorem 1 we conclude that δ is P-commuting.

Combining Theorem 2 with Lemma 2, we can prove the following corollary which generalize the main result of ([9], Corollary 1).

Corollary 4. Let $n \geq 2$ be a fixed positive integer, P be a prime ideal of a ring R such that R / P is $(n+1)$!-torsion free. If R admits a permuting n-derivation Δ such that the trace δ of Δ satisfies $\overline{[[\delta(x), x], x]} \in Z(R / P)$ for all $x \in R$, then $\Delta\left(R^{n}\right) \subseteq P$ or R / P is commutative.

The following example proves that the semiprimeness hypothesis in Theorems 1 and 2 is necessary.

Example 1. Let us consider $R=\left\{\left.\left(\begin{array}{cccc}0 & x_{1} & x_{2} & x_{3} \\ 0 & 0 & y_{1} & y_{2} \\ 0 & 0 & 0 & z_{1} \\ 0 & 0 & 0 & 0\end{array}\right) \right\rvert\, x_{1}, x_{2}, x_{3}, y_{1}, y_{2}, z_{1} \in \mathbb{Z}\right\}$ provided with the derivation defined by $d_{A}(X)=[A, X]$ with $A=\left(\begin{array}{cccc}0 & 1 & 1 & 1 \\ 0 & 0 & 2 & 1 \\ 0 & 0 & 0 & 5 \\ 0 & 0 & 0 & 0\end{array}\right)$. It is straightforward to check that for $X=\left(\begin{array}{cccc}0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right)$ we have $\left[d_{A}(X), X\right]=$ $\left(\begin{array}{llll}0 & 0 & 0 & 2 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right) \neq 0_{R}$ proving that d_{A} is not commuting. Moreover, $\left[\left[d_{A}(X), X\right], Y\right]=$ 0 for all $X, Y \in R$ and thus d_{A} is centralizing on R. Hence d_{A} satisfies the condition of Theorem 1 and 2 but d_{A} in not commuting.

REFERENCES

[1] P. Edward Charles, "Derivations in prime rings." Proc. Amer. Math. Soc., vol. 8, pp. 1093-1100, 1957.
[2] V. Joso, "Symmetric bi-derivations on prime and semiprime rings." Aequationes Math., vol. 38, no. 2-3, pp. 245-254, 1989, doi: 10.1007/BF01840009.
[3] V. Joso, "Two results concerning symmetric bi-derivations on prime rings." Aequationes Math., vol. 40, no. 2-3, pp. 181-189, 1990, doi: 10.1007/BF02112294.
[4] P. Kyoo-Hong, "On prime and semiprime rings with symmetric n-derivations." Journal of Chungcheong Mathematical Society., vol. 22, pp. 451-458, 2009.
[5] O. Lahcen and M. Abdellah, "Generalized derivations centralizing on jordan ideals of rings with involution." Turkish J. Math., vol. 38, no. 2, pp. 225-232, 2014, doi: h10.3906/mat-1203-14.
[6] O. Lahcen, M. Abdellah, and A. Mohammad, "Commutativity theorems for rings with differential identities on jordan ideals." Comment. Math. Univ. Carol., vol. 54, no. 4, pp. 447-457, 2013.
[7] B. Matej, "Commuting maps: a survey," Taiwainese J. Math., vol. 8, no. 3, pp. 361-397, 2004, doi: 10.1007/978-3-030-51945-2 28.
[8] A. Mohammad, "On symmetric bi-derivations in rings," Rend. Ist. Mat. Univ. Trieste, vol. 31, no. 1-2, pp. 25-36, 1999, doi: 10.1007/s13226-022-00279-w.
[9] A. Mohammad, K. Almas, and R. J. Malik, "Traces of permuting generalized n-derivations of rings," Miskolc Math. Notes., vol. 19, no. 2, pp. 731-740, 2018, doi: 10.18514/MMN.2018.1851.
[10] A. Mohammad and M. R. Jamal, "Traces of permuting n-additive maps and permuting n derivations of rings." Mediterr. J. Math., vol. 11, no. 2, pp. 287-297, 2014, doi: 10.1007/s00009-013-0298-5.
[11] J. Yong-Soo and P. Kyoo-Hong, "On prime and semiprime rings with permuting 3-derivations." Bull. Korean Math. Soc., vol. 44, no. 4, pp. 789-794, 2007, doi: 10.4134/BKMS.2007.44.4.789.

Authors' addresses

Hajar EL Mir

University S. M. Ben Abdellah, Faculty of Science and Technology of Fez, Department of Mathematics, Box 2202, Fez, Morocco

E-mail address: hajar.elmir@usmba. ac.ma

Badr Nejjar

University S. M. Ben Abdellah, Higher School of Technology, Fez, Morocco
E-mail address: bader.nejjar@gmail.com

Lahcen Oukhtite

(Corresponding author) University S. M. Ben Abdellah, Faculty of Science and Technology of Fez, Department of Mathematics, Box 2202, Fez, Morocco

E-mail address: oukhtitel@hotmail.com

