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Abstract. In this paper, we establish Lp-Brunn-Minkowski inequality for dual Quermassintegral
of Lp-mixed intersection bodies. As application, we give the well-known Brunn-Minkowski
inequality for mixed intersection bodies.
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1. INTRODUCTION

The intersection operator and the class of intersection bodies were defined by Lut-
wak [9]. The closure of the class of intersection bodies was studied by Goody, Lut-
wak, and Weil [5]. The intersection operator and the class of intersection bodies
played a critical role in Zhang [12] and Gardner [2] on the solution of the famous
Busemann-Petty problem (See also Gardner, Koldobsky, Schlumprecht [4]).

As Lutwak [9] shows (and as is further elaborated in Gardner’s book [3]), there is a
kind of duality between projection and intersection bodies. Consider the following il-
lustrative example: It is well known that the projections (onto lower dimensional sub-
spaces) of projection bodies are themselves projection bodies. Lutwak conjectured
the “dualiy”: When intersection bodies are intersected with lower dimensional sub-
spaces, the results are intersection bodies (within the lower dimensional subspaces).
This was proven by Fallert, Goodey and Weil [1].

In [7] (see also [10] and [8]), Lutwak introduced mixed projection bodies and
proved the following Brunn-Minkowski inequality for mixed projection bodies:

Theorem 1. If K;L 2Kn and 0� i < n, then

Wi .P.KCL//1=.n�i/.n�1/
�Wi .PK/1=.n�i/.n�1/

CWi .PL/1=.n�i/.n�1/; (1.1)

with equality if and only if K and L are homothetic.
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Where, Kn denotes the set of convex bodies in Rn.

Wi .K/D V.K; : : : ;K„ ƒ‚ …
n�i

;B; : : : ;B„ ƒ‚ …
i

/

denotes the classical Quermassintegral of convex bodyK. PK denotes the projection
body of convex body K.

In 2008, the Brunn-Minkowski inequality for mixed intersection bodies was estab-
lished as follows [13].

Theorem 2. If K;L 2 'n, 0� i < n, then
QWi .I.K QCL//1=.n�i/.n�1/

� QWi .IK/1=.n�i/.n�1/
C QWi .IL/1=.n�i/.n�1/; (1.2)

with equality if and only if K and L are dilates.

Where, 'n denotes the set of star bodies in Rn. Associated with a compact subset
K of Rn, which is star-shaped with respect to the origin, is its radial function �.K; �/ W
Sn�1! R; defined for u 2 Sn�1, by

�.K;u/DMaxf�� 0 W �u 2Kg:

If �.K; �/ is positive and continuous, K will be called a star body. Moreover,
IK denotes the intersection body of star body K and the sum QC denotes the ra-
dial Minkowski sum and QWi .K/D QV .K; : : : ;K„ ƒ‚ …

n�i

;B; : : : ;B„ ƒ‚ …
i

/ denotes the classical dual

Quermassintegral of star body K.
In 2006, Haberl and Ludwig [6] introduced Lp-intersection bodies(p < 1). For

K 2P n
0 , where P n

0 denotes the set of convex polytopes in Rn that contain the origin
in their interiors. The star body ICp K is defined for u 2 Sn�1 by

�.ICp K;u/
p
D

Z
K\uC

ju �xj�pdx; (1.3)

where uCD fx 2Rn W u �x � 0g; and define I�pK D ICp .�K/: For p < 1, the centrally
symmetric star body IpK D IpCKC Ip�K is called as the Lp intersection body of
K. So for u 2 Sn�1,

�p.IpK;u/D
Z

K

ju �xj�pdx: (1.4)

The purpose of this paper is to establish Brunn-Minkowski inequality for Lp-
mixed intersection bodies as follows

Theorem 3. If K;L 2 'n, and 0� i < n; then for p < 1
QWi .Ip.K QCL//1=.n�i/.n�1/

� QWi .IpK/1=.n�i/.n�1/
C QWi .IpL/1=.n�i/.n�1/; (1.5)

with equality if and only if K and L are dilates.

Where, IpK denotes the above Lp-intersection body of star body K which was
defined by Haberl and Ludwig [6].
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Remark 1. Let p! 1� in (1.5), (1.5) changes to (1.2).

To prove Theorem 3, the paper first introduce a new notionLp-dual mixed volumes,
then generalize Haberl and Ludwig’s Lp-intersection bodies to Lp-mixed intersec-
tion bodies (p < 1). Moreover, we use a new way which is different from the way of
[13].

2. PRELIMINARIES

The setting for this paper is n-dimensional Euclidean space Rn.n > 2/. Let Cn

denote the set of non-empty convex figures(compact, convex subsets) and Kn denote
the subset of Cn consisting of all convex bodies (compact, convex subsets with non-
empty interiors) in Rn. We reserve the letter u for unit vectors, and the letter B
is reserved for the unit ball centered at the origin. The surface of B is Sn�1. For
u 2 Sn�1, let Eu denote the hyperplane, through the origin, that is orthogonal to
u. We will use Ku to denote the image of K under an orthogonal projection onto
the hyperplane Eu. We use V.K/ for the n-dimensional volume of convex body K.
The support function of K 2Kn, h.K; �/, defined on Rn by h.K; �/ DMaxfx �y W
y 2 Kg: Let ı denote the Hausdorff metric on Kn; i.e., for K;L 2Kn; ı.K;L/ D

jhK �hLj1; where j � j1 denotes the sup-norm on the space of continuous functions,
C.Sn�1/: Let Qı denote the radial Hausdorff metric, as follows, if K;L 2 'n, then
Qı.K;L/D j�K ��Lj1:

2.1. Lp-dual mixed volumes

We define vector addition QC on Rn, which we shall call the radial addition, as
follows. For any x1; : : : ;xr 2 Rn, x1 QC� � � QCxr is defined to be the usual vector sum
of x1; : : : ;xr if they all lie in a 1-dimensional subspace of Rn, and as the zero vector
otherwise.

If K1; : : : ;Kr 2 '
n and �1; : : : ;�r 2 R, then the radial Minkowski linear combin-

ation, �1K1 QC� � � QC�rKr ; is defined by

�1K1 QC� � � QC�rKr D f�1x1 QC� � � QC�rxr W xi 2Kig:

The following property will be used later. If K;L 2 'n and �;�� 0

�.�K QC�L; �/D ��.K; �/C��.L; �/: (2.1)

ForK1; : : : ;Kr 2 '
n and �1; : : : ;�r � 0, the volume of the radial Minkowski liner

combination �1K1 QC� � � QC�rKr is a homogeneous nth-degree polynomial in the �i

[11],
V.�1K1 QC� � � QC�rKr/D

X
QVi1;:::;in

�i1
� � ��in

(2.2)

where the sum is taken over all n-tuples .i1; : : : ; in/whose entries are positive integers
not exceeding r . If we require the coefficients of the polynomial in (2.1.2) to be
symmetric in their arguments, then they are uniquely determined. The coefficient
QVi1;:::;in

is nonnegative and depends only on the bodies Ki1
; : : : ;Kin

. It is written as
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QV .Ki1
; : : : ;Kin

/ and is called the dual mixed volume of Ki1
; : : : ;Kin

: If K1 D �� � D

Kn�i DK; Kn�iC1D �� � DKnDL, the dual mixed volumes is written as QVi .K;L/.
The dual mixed volumes QVi .K;B/ is written as QWi .K/.

If Ki 2 '
n.i D 1;2; : : : ;n� 1/, then the dual mixed volume of Ki \Eu.i D

1;2; : : : ;n�1/will be denoted by Qv.K1\Eu; : : : ;Kn�1\Eu/. IfK1D : : :DKn�1�i

D K and Kn�i D : : : D Kn�1 D L; then Qv.K1 \Eu; : : : ;Kn�1 \Eu/ is written
Qvi .K\Eu;L\Eu/: If LD B , then Qvi .K\Eu;B \Eu/ is written Qwi .K\Eu/:

Lp-dual mixed volumes was defined as follows [14].

QVp.K1; : : : ;Kn/D !n

�
1

n!n

Z
Sn�1

�p.K1;u/ � � ��
p.Kn;u/dS.u/

�1=p

; p ¤ 0;

(2.3)
where K1; : : : ;Kn 2 '

n:

If K1 D : : : D Kn�1�i D K and Kn�i D : : : D Kn�1 D L; will write
QVp.K; : : : ;K„ ƒ‚ …

n�1�i

;L; : : : ;L„ ƒ‚ …
i

/ as QVp;i .K;L). IfK1D : : :DKnDK, will write QVp.K; : : : ;K„ ƒ‚ …
n

/

as QVp.K/. If LD B , then write QVp.K; : : : ;K„ ƒ‚ …
n�i

;B; : : : ;B„ ƒ‚ …
i

/ as QVp;i .K/ and is called Lp-

dual Quermassintegral as follows.

QVp;i .K/D !n

�
1

n!n

Z
Sn�1

�p.n�i/.K;u/dS.u/

�1=p

; p ¤ 0: (2.4)

Remark 2. Apparently, let p D 1, then Lp-dual mixed volumes QVp and Lp-dual
Quermassintegral QVp;i change to the classical dual mixed volumes QV and dual Quer-
massintegral QWi , respectively.

2.2. Lp-mixed intersection bodies

Since [6]

v.K\uC/D lim
"!0

"

2

Z
K

ju �xj�1C"dx: (2.5)

and

�.IK;u/D lim
p!1�

1�p

2
�p.IpK;u/; (2.6)

that is, the intersection body of K is obtained as a limit of Lp intersection bodies of
K. Also note that a change to polar coordinates in (2.6) shows that up to a normaliz-
ation factor �p.IpK;u/ equals the Cosine transform of �.K;u/n�p.

Here, we introduce theLp-mixed intersection bodies ofK1; : : : ;Kn�1. It is written
as Ip.K1; : : : ;Kn�1/.p < 1/, whose radial function is defined by

�p.Ip.K1; : : : ;Kn�1/;u/D
2

1�p
Qv�p .K1\Eu; : : : ;Kn�1\Eu/; (2.7)
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where, Qv�p .K1 \Eu; : : : ;Kn�1 \Eu/ denotes the p-dual mixed volumes of K1 \

Eu; : : : ;Kn�1\Eu in .n�1/-dimensional space. IfK1D �� �DKn�i�1DK;Kn�i D

�� � D Kn�1 D L, then Qv�p .K1\Eu; : : : ;Kn�1\Eu/ is written as Qv�p;i .K \Eu;L\

Eu/. If LD B , then Qv�p;i .K\Eu;L\Eu/ is written as Qv�p;i .K\Eu/.

Remark 3. From the definition, which introduces a new star body, namely the
Lp-mixed intersection body of n�1 given bodies.

From the definition, Vp.K1; : : : ;Kn/ is continuous function for any Ki 2 '
n; i D

1;2; : : : ;n; then

lim
p!1�

1�p

2
�p.Ip.K1; : : : ;Kn�1/;u/

D lim
p!1�

!n

�
1

n!n

Z
Sn�1

�p.K1;u/ � � ��
p.Kn�1;u/dS.u/

�1=p

D
1

n

Z
Sn�1

�.K1;u/ � � ��.Kn�1;u/dS.u/:

On the other hand, by using definition of mixed intersection bodies(see [3] and [14]),
we have

�.I.K1; : : : ;Kn�1/;u/D Qv.K1\Eu; : : : ;Kn�1\Eu/

D
1

n

Z
Sn�1

�.K1;u/ � � ��.Kn�1;u/dS.u/:

Hence

lim
p!1�

1�p

2
�p.Ip.K1; : : : ;Kn�1/;u/D �.I.K1; : : : ;Kn�1/;u/:

For the Lp-mixed intersection bodies, Ip.K1; : : : ;Kn�1/, ifK1D �� � DKn�i�1D

K;Kn�i D �� � DKn�1 D L, then Ip.K1; : : : ;Kn�1/ is written as Ip.K;L/i . If LD
B , then Ip.K;L/i is written as IpKi is called the i th Lp-intersection body of K. For
IpK0 simply write IpK, this is just the Lp-intersection bodies of star body K.

The following properties will be used later: If K;L, M;K1; : : : ;Kn�1 2 '
n, and

�;�;�1; : : : ;�n�1 > 0, then

Ip.�K QC�L;M/D �Ip.K;M/ QC�Ip.L;M/; (2.8)

where M D .K1; : : : ;Kn�2/.

3. MAIN RESULTS

3.1. Some Lemmas

The following results will be required to prove our main Theorems.
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Lemma 1. If K;L 2 'n, 0� i < n;0� j < n�1; i;j 2N and p < 1, then

QWi .Ip.K;L/j /D
1

n

�
2

1�p

�n�i
p
Z

Sn�1

Qv�p;j .K\Eu;L\Eu/
.n�i/

p dS.u/: (3.1)

From (2.4) and (2.7), identity (3.1) in Lemma 1 easy follows.

Lemma 2. If K1; : : : ;Kn 2 '
n, 1 < r � n, 0� j < n�1;j 2N and p ¤ 0; then

QVp.K1; : : : ;Kn/
r
�

rY
jD1

QVp.Kj ; : : : ;Kj„ ƒ‚ …
r

;KrC1; : : : ;Kn/; (3.2)

with equality if and only if K1; : : : ;Kn are all dilations [14].

From (3.1), (3.2) and in view of Hölder inequality for integral, we obtain

Lemma 3. If K;L 2 'n, 0� i < n, 0 < j < n�1; and p < 1; then
QWi .Ip.K;L//n�1

� QWi .IpK/n�j�1
� QWi .IpL/j ; (3.3)

with equality if and only if K and K are dilations.

3.2. Brunn-Minkowski inequality for Lp-mixed intersection bodies

The Brunn-Minkowski inequality for Lp-intersection bodies, which will be estab-
lished is: If K;L 2 'n, p < 1 then

V.Ip.K QCL//1=n.n�1/
� V.IpK/1=n.n�1/

CV.IpL/1=n.n�1/; (3.4)

with equality if and only if K and L are dilates.
This is just the special case i D 0 of:

Theorem 4. If K;L 2 'n, and 0� i < n; then
QWi .Ip.K QCL//1=.n�i/.n�1/

� QWi .IpK/1=.n�i/.n�1/
C QWi .IpL/1=.n�i/.n�1/; (3.5)

with equality if and only if K and L are dilates.

Proof. LetM D .L1; : : : ;Ln�2/, from (2.1), (2.4), (2.8) and in view of Minkowski
inequality for integral, we obtain that

QWi .Ip.K QCL;M//1=.n�i/
D n�1=.n�i/

k�.Ip.K QCL;M/;u/kn�i

D n�1=.n�i/
k�.Ip.K;M/ QCIp.L;M/;u/kn�i

D n�1=.n�i/
k�.Ip.K;M/;u/C�.Ip.L;M/;u/kn�i

� n�1=.n�i/
�
k�.Ip.K;M/;u/kn�i Ck�.Ip.L;M/;u/kn�i

�
D QWi .Ip.K;M//1=.n�i/

C QWi .Ip.L;M//1=.n�i/: (3.6)

On the other hand, taking L1D �� � DLn�2DK QCL to (3.6) and apply Lemma 2 and
Lemma 3, and get
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QWi .Ip.K QCL//1=.n�i/
�

QWi Ip.K;K QCL/n�2/
1=.n�i/

C QWi .Ip.L;K QCL/n�2/
1=.n�i/

� QWi .IpK/1=.n�1/.n�i/ QWi .Ip.K QCL//.n�2/=.n�1/.n�i/

C QWi .IpL/1=.n�1/.n�i/ QWi .Ip.K QCL//.n�2/=.n�1/.n�i/; (3.7)

with equality if and only if K, L and M DK QCL are dilates, combine this with the
equality condition of (3.6), it follows that the condition holds if and only if K and L
are dilates.

Dividing both sides of (3.7) by QWi .Ip.K QCL//.n�2/=.n�1/.n�i/, we get the inequal-
ity (3.5).

The proof is complete. �

Remark 4. Let i D 0 and p! 1� in (2.6), we get the well-known Brunn-Minkowski
inequality for mixed intersection bodies as follows:

QV .I.K QCL//1=n.n�1/
� QV .IK/1=n.n�1/

C QV .IL/1=n.n�1/

with equality if and only if K and L are dilates.
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