

Miskolc Mathematical Notes HU e-ISSN 1787-2413 Vol. 18 (2017), No. 1, pp. 507-514 DOI: 10.18514/MMN.2017.416

BRUNN-MINKOWSKI INEQUALITY FOR L_p -MIXED INTERSECTION BODIES

CHANG-JIAN ZHAO AND MIHALY BENCZE ´

Received 02 October, 2013

Abstract. In this paper, we establish L_p -Brunn-Minkowski inequality for dual Quermassintegral of L_p -mixed intersection bodies. As application, we give the well-known Brunn-Minkowski inequality for mixed intersection bodies.

2010 *Mathematics Subject Classification:* 52A40

Keywords: the Brunn-Minkowski inequality, L_p -dual mixed volumes, L_p -mixed intersection bodies

1. INTRODUCTION

The intersection operator and the class of intersection bodies were defined by Lut-wak [\[9\]](#page-6-0). The closure of the class of intersection bodies was studied by Goody, Lutwak, and Weil $[5]$. The intersection operator and the class of intersection bodies played a critical role in Zhang [\[12\]](#page-6-2) and Gardner [\[2\]](#page-6-3) on the solution of the famous Busemann-Petty problem (See also Gardner, Koldobsky, Schlumprecht [\[4\]](#page-6-4)).

As Lutwak [\[9\]](#page-6-0) shows (and as is further elaborated in Gardner's book [\[3\]](#page-6-5)), there is a kind of duality between projection and intersection bodies. Consider the following illustrative example: It is well known that the projections (onto lower dimensional subspaces) of projection bodies are themselves projection bodies. Lutwak conjectured the "dualiy": When intersection bodies are intersected with lower dimensional subspaces, the results are intersection bodies (within the lower dimensional subspaces). This was proven by Fallert, Goodey and Weil [\[1\]](#page-6-6).

In [\[7\]](#page-6-7) (see also [\[10\]](#page-6-8) and [\[8\]](#page-6-9)), Lutwak introduced mixed projection bodies and proved the following Brunn-Minkowski inequality for mixed projection bodies:

Theorem 1. *If* $K, L \in \mathcal{K}^n$ *and* $0 \le i \le n$ *, then*

$$
W_i(\mathbf{P}(K+L))^{1/(n-i)(n-1)} \ge W_i(\mathbf{P}K)^{1/(n-i)(n-1)} + W_i(\mathbf{P}L)^{1/(n-i)(n-1)}, \quad (1.1)
$$

with equality if and only if K *and* L *are homothetic.*

c 2017 Miskolc University Press

The first author was supported in part by the National Natural Sciences Foundation of China, Grant No. 11371334.

Where, \mathcal{K}^n denotes the set of convex bodies in \mathbb{R}^n .

$$
W_i(K) = V(\underbrace{K, \ldots, K}_{n-i}, \underbrace{B, \ldots, B}_{i})
$$

denotes the classical Quermassintegral of convex body K . $\mathbf{P}K$ denotes the projection body of convex body K .

In 2008, the Brunn-Minkowski inequality for mixed intersection bodies was established as follows [\[13\]](#page-6-10).

Theorem 2. If
$$
K, L \in \varphi^n, 0 \leq i < n
$$
, then

$$
\tilde{W}_i(\mathbf{I}(K+L))^{1/(n-i)(n-1)} \le \tilde{W}_i(\mathbf{I}K)^{1/(n-i)(n-1)} + \tilde{W}_i(\mathbf{I}L)^{1/(n-i)(n-1)},\tag{1.2}
$$

with equality if and only if K *and* L *are dilates.*

Where, φ^n denotes the set of star bodies in \mathbb{R}^n . Associated with a compact subset K of \mathbb{R}^n , which is star-shaped with respect to the origin, is its radial function $\rho(K, \cdot)$: $S^{n-1} \to \mathbb{R}$, defined for $u \in S^{n-1}$, by

$$
\rho(K, u) = Max\{\lambda \ge 0 : \lambda u \in K\}.
$$

If $\rho(K, \cdot)$ is positive and continuous, K will be called a star body. Moreover, IK denotes the intersection body of star body K and the sum $\tilde{+}$ denotes the radial Minkowski sum and $\tilde{W}_i(K) = \tilde{V}(K,\ldots,K)$ \sum_{n-i} $, B, \ldots, B$ \overline{i}) denotes the classical dual

Quermassintegral of star body K .

In 2006, Haberl and Ludwig [\[6\]](#page-6-11) introduced L_p -intersection bodies($p < 1$). For $K \in \mathcal{P}_0^n$, where \mathcal{P}_0^n denotes the set of convex polytopes in \mathbb{R}^n that contain the origin in their interiors. The star body $I_p^+ K$ is defined for $u \in S^{n-1}$ by

$$
\rho(\mathbf{I}_p^+ K, u)^p = \int_{K \cap u^+} |u \cdot x|^{-p} dx, \tag{1.3}
$$

where $u^+ = \{x \in \mathbb{R}^n : u \cdot x \ge 0\}$, and define $I_p^- K = I_p^+$ $\prod_{p}^{+}(-K)$. For $p < 1$, the centrally symmetric star body $I_p K = I_p^+ K + I_p^- K$ is called as the L_p *intersection body* of K. So for $u \in S^{n-1}$,

$$
\rho^p(\mathbf{I}_p K, u) = \int_K |u \cdot x|^{-p} dx.
$$
\n(1.4)

The purpose of this paper is to establish Brunn-Minkowski inequality for L_p mixed intersection bodies as follows

Theorem 3. If
$$
K, L \in \varphi^n
$$
, and $0 \le i < n$, then for $p < 1$
\n
$$
\tilde{W}_i (\mathbf{I}_p(K \tilde{+} L))^{1/(n-i)(n-1)} \le \tilde{W}_i (\mathbf{I}_p K)^{1/(n-i)(n-1)} + \tilde{W}_i (\mathbf{I}_p L)^{1/(n-i)(n-1)}, \tag{1.5}
$$

with equality if and only if K *and* L *are dilates.*

Where, $I_p K$ denotes the above L_p -intersection body of star body K which was defined by Haberl and Ludwig [\[6\]](#page-6-11).

Remark 1. Let $p \to 1^-$ in [\(1.5\)](#page-1-0), (1.5) changes to [\(1.2\)](#page-1-1).

To prove Theorem [3,](#page-1-2) the paper first introduce a new notion L_p -dual mixed volumes, then generalize Haberl and Ludwig's L_p -intersection bodies to L_p -mixed intersection bodies ($p < 1$). Moreover, we use a new way which is different from the way of [\[13\]](#page-6-10).

2. PRELIMINARIES

The setting for this paper is *n*-dimensional Euclidean space \mathbb{R}^n ($n > 2$). Let \mathbb{C}^n denote the set of non-empty convex figures(compact, convex subsets) and \mathcal{K}^n denote the subset of \mathbb{C}^n consisting of all convex bodies (compact, convex subsets with nonempty interiors) in \mathbb{R}^n . We reserve the letter u for unit vectors, and the letter B is reserved for the unit ball centered at the origin. The surface of B is S^{n-1} . For $u \in S^{n-1}$, let E_u denote the hyperplane, through the origin, that is orthogonal to u. We will use K^u to denote the image of K under an orthogonal projection onto the hyperplane E_u . We use $V(K)$ for the *n*-dimensional volume of convex body K. The support function of $K \in \mathcal{K}^n$, $h(K, \cdot)$, defined on \mathbb{R}^n by $h(K, \cdot) = Max\{x \cdot y$: $y \in K$. Let δ denote the Hausdorff metric on \mathcal{K}^n ; i.e., for $K, L \in \mathcal{K}^n$, $\delta(K, L)$ $|h_K - h_L|_{\infty}$, where $|\cdot|_{\infty}$ denotes the sup-norm on the space of continuous functions, $C(S^{n-1})$. Let δ denote the radial Hausdorff metric, as follows, if $K, L \in \varphi^n$, then $\delta(K,L) = |\rho_K - \rho_L|_\infty.$

2.1. Lp*-dual mixed volumes*

We define vector addition $\tilde{+}$ on \mathbb{R}^n , which we shall call the radial addition, as follows. For any $x_1, \ldots, x_r \in \mathbb{R}^n$, $x_1 \tilde{+} \cdots \tilde{+} x_r$ is defined to be the usual vector sum of x_1, \ldots, x_r if they all lie in a 1-dimensional subspace of \mathbb{R}^n , and as the zero vector otherwise.

If $K_1, \ldots, K_r \in \varphi^n$ and $\lambda_1, \ldots, \lambda_r \in \mathbb{R}$, then the radial Minkowski linear combination, $\lambda_1 K_1 \tilde{+} \cdots \tilde{+} \lambda_r K_r$, is defined by

$$
\lambda_1 K_1 \tilde{+} \cdots \tilde{+} \lambda_r K_r = \{ \lambda_1 x_1 \tilde{+} \cdots \tilde{+} \lambda_r x_r : x_i \in K_i \}.
$$

The following property will be used later. If $K, L \in \varphi^n$ and $\lambda, \mu \ge 0$

$$
\rho(\lambda K \tilde{+} \mu L, \cdot) = \lambda \rho(K, \cdot) + \mu \rho(L, \cdot). \tag{2.1}
$$

For $K_1, \ldots, K_r \in \varphi^n$ and $\lambda_1, \ldots, \lambda_r \geq 0$, the volume of the radial Minkowski liner combination $\lambda_1 K_1 \tilde{+} \cdots \tilde{+} \lambda_r K_r$ is a homogeneous *n*th-degree polynomial in the λ_i [\[11\]](#page-6-12),

$$
V(\lambda_1 K_1 \tilde{+} \cdots \tilde{+} \lambda_r K_r) = \sum \tilde{V}_{i_1, \dots, i_n} \lambda_{i_1} \cdots \lambda_{i_n}
$$
 (2.2)

where the sum is taken over all *n*-tuples $(i_1,...,i_n)$ whose entries are positive integers not exceeding r . If we require the coefficients of the polynomial in $(2.1.2)$ to be symmetric in their arguments, then they are uniquely determined. The coefficient $\tilde{V}_{i_1,...,i_n}$ is nonnegative and depends only on the bodies $K_{i_1},...,K_{i_n}$. It is written as

 $\tilde{V}(K_{i_1},...,K_{i_n})$ and is called the *dual mixed volume* of $K_{i_1},...,K_{i_n}$. If $K_1 = \cdots =$ $K_{n-i} = K$, $K_{n-i+1} = \cdots = K_n = L$, the dual mixed volumes is written as $V_i(K, L)$. The dual mixed volumes $\tilde{V}_i(K, B)$ is written as $\tilde{W}_i(K)$.

If $K_i \in \varphi^n (i = 1, 2, ..., n-1)$, then the dual mixed volume of $K_i \cap E_u(i =$ 1, 2, ..., $n-1$) will be denoted by $\tilde{v}(K_1\cap E_u,\ldots,K_{n-1}\cap E_u)$. If $K_1 = \ldots = K_{n-1-i}$ $K = K$ and $K_{n-i} = \ldots = K_{n-1} = L$, then $\tilde{v}(K_1 \cap E_u, \ldots, K_{n-1} \cap E_u)$ is written $\tilde{v}_i(K \cap E_u, L \cap E_u)$. If $L = B$, then $\tilde{v}_i(K \cap E_u, B \cap E_u)$ is written $\tilde{w}_i(K \cap E_u)$.

 L_p -dual mixed volumes was defined as follows [\[14\]](#page-7-0).

$$
\tilde{V}_p(K_1, ..., K_n) = \omega_n \left(\frac{1}{n \omega_n} \int_{S^{n-1}} \rho^p(K_1, u) \cdots \rho^p(K_n, u) dS(u) \right)^{1/p}, \ p \neq 0,
$$
\n(2.3)

where $K_1, \ldots, K_n \in \varphi^n$.

If $K_1 = ... = K_{n-1-i} = K$ and $K_{n-i} = ... = K_{n-1} = L$, will write $\tilde{V}_p(K,\ldots,K)$ $\overline{n-1-i}$ $,L,\ldots,L$ \overline{i} $\sum_{n=1}^{n}$ is $\sum_{i=1}^{n}$ in the $\sum_{i=1}^{n}$ in K_{n} in N_{n} is $\sum_{i=1}^{n}$ in K_{n} $\overline{}_n$ / as $\tilde{V}_p(K)$. If $L = B$, then write $\tilde{V}_p(K,...,K)$ \sum_{n-i} $, B, \ldots, B$ \overline{i}) as $\tilde{V}_{p,i}(K)$ and is called L_p -

dual Quermassintegral as follows.

$$
\tilde{V}_{p,i}(K) = \omega_n \left(\frac{1}{n \omega_n} \int_{S^{n-1}} \rho^{p(n-i)}(K, u) dS(u) \right)^{1/p}, \ \ p \neq 0. \tag{2.4}
$$

Remark 2. Apparently, let $p = 1$, then L_p -dual mixed volumes \tilde{V}_p and L_p -dual Quermassintegral $V_{p,i}$ change to the classical dual mixed volumes \tilde{V} and dual Quermassintegral \tilde{W}_i , respectively.

2.2. Lp*-mixed intersection bodies*

Since [\[6\]](#page-6-11)

$$
v(K \cap u^{+}) = \lim_{\varepsilon \to 0} \frac{\varepsilon}{2} \int_{K} |u \cdot x|^{-1 + \varepsilon} dx.
$$
 (2.5)

and

$$
\rho(\mathbf{I}K, u) = \lim_{p \to 1^{-}} \frac{1 - p}{2} \rho^{p} (\mathbf{I}_{p}K, u), \qquad (2.6)
$$

that is, the intersection body of K is obtained as a limit of L_p intersection bodies of K. Also note that a change to polar coordinates in (2.6) shows that up to a normalization factor $\rho^p(I_pK, u)$ equals the Cosine transform of $\rho(K, u)^{n-p}$.

Here, we introduce the L_p -mixed intersection bodies of K_1,\ldots,K_{n-1} . It is written as $I_p(K_1,...,K_{n-1})(p < 1)$, whose radial function is defined by

$$
\rho^p(\mathbf{I}_p(K_1,\ldots,K_{n-1}),u) = \frac{2}{1-p} \tilde{v}_p^*(K_1 \cap E_u,\ldots,K_{n-1} \cap E_u),\tag{2.7}
$$

where, \tilde{v}_p^* $p_p^*(K_1 \cap E_u, \ldots, K_{n-1} \cap E_u)$ denotes the p-dual mixed volumes of $K_1 \cap E_u$ $E_u,\ldots,\bar{K}_{n-1}\cap E_u$ in $(n-1)$ -dimensional space. If $K_1 = \cdots = K_{n-i-1} = K, K_{n-i} =$ $\cdots = K_{n-1} = L$, then \tilde{v}_p^* $p_p^*(K_1 \cap E_u, \ldots, K_{n-1} \cap E_u)$ is written as $\tilde{v}_{p,i}^*(K \cap E_u, L)$ E_u). If $L = B$, then $\tilde{v}_{p,i}^{*}(K \cap E_u, L \cap E_u)$ is written as $\tilde{v}_{p,i}^{*}(K \cap E_u^{F,u})$.

Remark 3*.* From the definition, which introduces a new star body, namely the L_p -mixed intersection body of $n-1$ given bodies.

From the definition, $V_p(K_1,..., K_n)$ is continuous function for any $K_i \in \varphi^n$, $i =$ $1, 2, \ldots, n$, then

$$
\lim_{p \to 1^{-}} \frac{1-p}{2} \rho^{p} (\mathbf{I}_{p}(K_{1},...,K_{n-1}), u)
$$
\n
$$
= \lim_{p \to 1^{-}} \omega_{n} \left(\frac{1}{n \omega_{n}} \int_{S^{n-1}} \rho^{p}(K_{1}, u) \cdots \rho^{p}(K_{n-1}, u) dS(u) \right)^{1/p}
$$
\n
$$
= \frac{1}{n} \int_{S^{n-1}} \rho(K_{1}, u) \cdots \rho(K_{n-1}, u) dS(u).
$$

On the other hand, by using definition of mixed intersection bodies(see [\[3\]](#page-6-5) and [\[14\]](#page-7-0)), we have

$$
\rho(\mathbf{I}(K_1, ..., K_{n-1}), u) = \tilde{v}(K_1 \cap E_u, ..., K_{n-1} \cap E_u)
$$

=
$$
\frac{1}{n} \int_{S^{n-1}} \rho(K_1, u) \cdots \rho(K_{n-1}, u) dS(u).
$$

Hence

$$
\lim_{p \to 1^{-}} \frac{1-p}{2} \rho^{p} (\mathbf{I}_{p}(K_{1}, \ldots, K_{n-1}), u) = \rho(\mathbf{I}(K_{1}, \ldots, K_{n-1}), u).
$$

For the L_p -mixed intersection bodies, $I_p(K_1,..., K_{n-1})$, if $K_1 = \cdots = K_{n-i-1} =$ $K, K_{n-i} = \cdots = K_{n-1} = L$, then $I_p(K_1, \ldots, K_{n-1})$ is written as $I_p(K, L)_i$. If $L =$ B, then $I_p(K, L)_i$ is written as $I_p K_i$ is called the *i*th L_p -intersection body of K. For I_pK_0 simply write I_pK , this is just the L_p -intersection bodies of star body K.

The following properties will be used later: If K, L, M, $K_1, \ldots, K_{n-1} \in \varphi^n$, and λ , μ , λ_1 , ..., $\lambda_{n-1} > 0$, then

$$
\mathbf{I}_p(\lambda K \tilde{+} \mu L, M) = \lambda \mathbf{I}_p(K, M) \tilde{+} \mu \mathbf{I}_p(L, M), \tag{2.8}
$$

where $M = (K_1, ..., K_{n-2}).$

3. MAIN RESULTS

3.1. *Some Lemmas*

The following results will be required to prove our main Theorems.

Lemma 1. *If* $K, L \in \varphi^n, 0 \le i < n, 0 \le j < n-1, i, j \in \mathbb{N}$ and $p < 1$, then $n-i$

$$
\tilde{W}_i(\mathbf{I}_p(K,L)_j) = \frac{1}{n} \left(\frac{2}{1-p} \right)^{-p} \int_{S^{n-1}} \tilde{v}_{p,j}^*(K \cap E_u, L \cap E_u)^{\frac{(n-i)}{p}} dS(u). \quad (3.1)
$$

From (2.4) and (2.7) , identity (3.1) in Lemma [1](#page-5-1) easy follows.

Lemma 2. *If* $K_1, ..., K_n \in \varphi^n$, $1 < r \le n$, $0 \le j < n-1$, $j \in \mathbb{N}$ *and* $p \ne 0$, *then* \mathbf{r}

$$
\tilde{V}_p(K_1, ..., K_n)^r \le \prod_{j=1} \tilde{V}_p(\underbrace{K_j, ..., K_j}_{r}, K_{r+1}, ..., K_n),
$$
\n(3.2)

with equality if and only if K_1 ,..., K_n *are all dilations [\[14\]](#page-7-0).*

From (3.1) , (3.2) and in view of Hölder inequality for integral, we obtain

Lemma 3. If
$$
K, L \in \varphi^n
$$
, $0 \le i < n$, $0 < j < n - 1$, and $p < 1$, then
\n
$$
\tilde{W}_i(\mathbf{I}_p(K, L))^{n-1} \le \tilde{W}_i(\mathbf{I}_p K)^{n-j-1} \cdot \tilde{W}_i(\mathbf{I}_p L)^j,
$$
\n(3.3)

with equality if and only if K *and* K *are dilations.*

3.2. *Brunn-Minkowski inequality for* Lp*-mixed intersection bodies*

The Brunn-Minkowski inequality for L_p -intersection bodies, which will be established is: If $K, L \in \varphi^n$, $p < 1$ then

$$
V(\mathbf{I}_p(K\tilde{+}L))^{1/n(n-1)} \le V(\mathbf{I}_p K)^{1/n(n-1)} + V(\mathbf{I}_p L)^{1/n(n-1)},\tag{3.4}
$$

with equality if and only if K and L are dilates.

This is just the special case $i = 0$ of:

Theorem 4. If
$$
K, L \in \varphi^n
$$
, and $0 \le i < n$, then
\n
$$
\tilde{W}_i (\mathbf{I}_p(K \tilde{+} L))^{1/(n-i)(n-1)} \le \tilde{W}_i (\mathbf{I}_p K)^{1/(n-i)(n-1)} + \tilde{W}_i (\mathbf{I}_p L)^{1/(n-i)(n-1)}, \tag{3.5}
$$

with equality if and only if K *and* L *are dilates.*

Proof. Let $M = (L_1, \ldots, L_{n-2})$, from [\(2.1\)](#page-2-0), [\(2.4\)](#page-3-1), [\(2.8\)](#page-4-0) and in view of Minkowski inequality for integral, we obtain that

$$
\tilde{W}_i(\mathbf{I}_p(K\tilde{+}L,M))^{1/(n-i)} = n^{-1/(n-i)} \|\rho(\mathbf{I}_p(K\tilde{+}L,M),u)\|_{n-i}
$$
\n
$$
= n^{-1/(n-i)} \|\rho(\mathbf{I}_p(K,M)\tilde{+}\mathbf{I}_p(L,M),u)\|_{n-i}
$$
\n
$$
= n^{-1/(n-i)} \|\rho(\mathbf{I}_p(K,M),u) + \rho(\mathbf{I}_p(L,M),u)\|_{n-i}
$$
\n
$$
\le n^{-1/(n-i)} \left(\|\rho(\mathbf{I}_p(K,M),u)\|_{n-i} + \|\rho(\mathbf{I}_p(L,M),u)\|_{n-i} \right)
$$
\n
$$
= \tilde{W}_i(\mathbf{I}_p(K,M))^{1/(n-i)} + \tilde{W}_i(\mathbf{I}_p(L,M))^{1/(n-i)}.\tag{3.6}
$$

On the other hand, taking $L_1 = \cdots = L_{n-2} = K \tilde{+} L$ $L_1 = \cdots = L_{n-2} = K \tilde{+} L$ $L_1 = \cdots = L_{n-2} = K \tilde{+} L$ to [\(3.6\)](#page-5-3) and apply Lemma 2 and Lemma [3,](#page-5-5) and get

$$
\tilde{W}_i (\mathbf{I}_p (K \tilde{+} L))^{1/(n-i)} \le
$$
\n
$$
\tilde{W}_i \mathbf{I}_p (K, K \tilde{+} L)_{n-2})^{1/(n-i)} + \tilde{W}_i (\mathbf{I}_p (L, K \tilde{+} L)_{n-2})^{1/(n-i)}
$$
\n
$$
\leq \tilde{W}_i (\mathbf{I}_p K)^{1/(n-1)(n-i)} \tilde{W}_i (\mathbf{I}_p (K \tilde{+} L))^{(n-2)/(n-1)(n-i)} + \tilde{W}_i (\mathbf{I}_p L)^{1/(n-1)(n-i)} \tilde{W}_i (\mathbf{I}_p (K \tilde{+} L))^{(n-2)/(n-1)(n-i)}, \quad (3.7)
$$

with equality if and only if K, L and $M = K + L$ are dilates, combine this with the equality condition of (3.6) , it follows that the condition holds if and only if K and L are dilates.

Dividing both sides of [\(3.7\)](#page-6-13) by $\tilde{W}_i(I_p(K\tilde{+}L))^{(n-2)/(n-1)(n-i)}$, we get the inequality [\(3.5\)](#page-5-6).

The proof is complete. \Box

Remark 4. Let $i = 0$ and $p \rightarrow 1^-$ in [\(2.6\)](#page-3-0), we get the well-known Brunn-Minkowski inequality for mixed intersection bodies as follows:

$$
\tilde{V}(\mathbf{I}(K\tilde{+}L))^{1/n(n-1)} \le \tilde{V}(\mathbf{I}K)^{1/n(n-1)} + \tilde{V}(\mathbf{I}L)^{1/n(n-1)}
$$

with equality if and only if K and L are dilates.

REFERENCES

- [1] H. Fallert, P. Goodey, and W. Weil, "Spherical projections and centrally symmetric sets," *Advances in Mathematics*, vol. 129, no. 2, pp. 301–322, 1997.
- [2] R. J. Gardner, "A positive answer to the busemann-petty problem in three dimensions," *Annals of Mathematics*, pp. 435–447, 1994.
- [3] R. J. Gardner, *Geometric tomography*. Cambridge University Press Cambridge, 1995, vol. 6.
- [4] R. J. Gardner, A. Koldobsky, and T. Schlumprecht, "An analytic solution to the busemann-petty problem on sections of convex bodies," *Annals of Mathematics*, vol. 149, pp. 691–703, 1999.
- [5] P. Goodey, E. Lutwak, and W. Weil, "Functional analytic characterizations of classes of convex bodies," *Mathematische Zeitschrift*, vol. 222, no. 3, pp. 363–381, 1996.
- [6] C. Haberl and M. Ludwig, "A characterization of lp intersection bodies," *International Mathematics Research Notices*, vol. 2006, p. 10548, 2006.
- [7] E. Lutwak, "Mixed projection inequalities," *Transactions of the American Mathematical Society*, vol. 287, no. 1, pp. 91–105, 1985.
- [8] E. Lutwak, "Volume of mixed bodies," *Transactions of the American Mathematical Society*, vol. 294, no. 2, pp. 487–500, 1986.
- [9] E. Lutwak, "Intersection bodies and dual mixed volumes," *Advances in Mathematics*, vol. 71, no. 2, pp. 232–261, 1988.
- [10] E. Lutwak, "Inequalities for mixed projection bodies," *Transactions of the American Mathematical Society*, vol. 339, no. 2, pp. 901–916, 1993.
- [11] R. Schneider, *Convex bodies: the Brunn–Minkowski theory*. Cambridge University Press, 2013, no. 151.
- [12] G. Zhang, "A positive solution to the busemann-petty problem in rˆ 4," *Annals of Mathematics*, vol. 149, pp. 535–543, 1999.
- [13] C. Zhao and G. Leng, "Brunn–minkowski inequality for mixed intersection bodies," *Journal of mathematical analysis and applications*, vol. 301, no. 1, pp. 115–123, 2005.

[14] C. Zhao, "L p-mixed intersection bodies," *Science in China Series A: Mathematics*, vol. 51, no. 12, pp. 2172–2188, 2008.

Authors' addresses

Chang-Jian Zhao

Department of Mathematics, China Jiliang University, Hangzhou 310018, P.R.China *E-mail address:* chjzhao@163.com.com chjzhao@aliyun.com

Mihály Bencze

Str. Hărmanului 6, 505600 Săcele-Něgyfalu, Jud, Brașov, Romania, Romania *E-mail address:* benczemihaly@yahoo.com benczemihaly@gmail.com