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Abstract. Enriched contraction, a class that contains the Picard -Banach contractions and some
nonexpansive mappings, are generalized from Banach space framework into a nonlinear context,
namely, geodesic metric spaces of nonpositive curvature. We establish general implications that
extend the well-known results for enriched mappings formed on Banach spaces. We also look
at the results for fixed points involving the contractions i.e., the limit shadowing property and
well-posedness as well as some instances to back up our findings.
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1. INTRODUCTION

In the analysis of the solutions to nonlinear functional systems, fixed point theory
provides useful tools. The desired solution of a functional equation is written as the
fixed point of an appropriate operator i.e.,

a = Sa,

where S is a self map defined on a nonempty set E.
A variety of contractions have been proposed by a number of mathematicians and

employed them in a variety of frameworks to produce fixed points, common fixed
points, and coincidence points for a map. Enriched contraction is one such contrac-
tion, which was very recently introduced by Berinde and Pacurar [2]. First, let’s
review the notion of enriched contraction.

“Let S be a self map on a normed linear space E. S is said to be an enriched
contraction if there exist b∗ ∈ [0,∞) and θ ∈ [0,b∗+1) such that

‖b∗(a−b)+Sa−Sb‖ ≤ θ‖a−b‖
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for all a,b ∈ E. In this situation the map S is also known as a (b∗,θ)-enriched con-
traction.” Picard-Banach contractions along with several nonexpansive maps, are in-
cluded in the enriched contractions category.

Many of the contractions used to solve fixed point problems have gradually been
generalized from linear spaces to differentiable manifolds. We continue along these
lines by introducing symmetric contractions in the context of CAT(0) spaces. In ad-
dition, Mondal et al. [9] published a work presenting two different kinds of enriched
contractions in Banach spaces.

The goal of this paper is to introduce enriched contractions into nonpositive curvature
metric spaces. Fixed point results of enriched contractions are next investigated, and
strong convergence theorems for the Kransnoselskii iteration which is adapted to ap-
proximate fixed points, are established. Examples are also given to demonstrate the
generality of our new findings.

2. PRELIMINARIES

Considering a self map S on a convex subset C of a linear space E, then for any
λ ∈ (0,1), the so-called averaged mapping (a term coined in [1]) Sλ given by

Sλa = λa+(1−λ)Sa, ∀a ∈C.

Lemma 1. [4] Let (E, d) be a CAT(0) space. Then

d((1−λ)a⊕λb,c)≤ (1−λ)d(a,c)+λd(b,c)

for all a,b,c ∈ E and λ ∈ [0,1].

Proposition 1. [4] Let (E, d) be a CAT(0) space. For each λ ∈ [0,1] there is a
unique point c ∈ [a,b] such that

d(a,c) = λd(a,b), d(b,c) = (1−λ)d(a,b),

for all a,b ∈ E.

The following lemma is a partial extension from Banach space to CAT(0) space
setting of a conclusion presented in Corollary to Theorem 5 in [5] (it can be also
found in [10]).

Lemma 2. Assume that S is a self map on CAT(0) space E. Define the map Sλa :
E→ E by

Sλa = λa⊕ (1−λ)Sa, a ∈ E
Then, for any λ ∈ [0,1),

Fix(S) = Fix(Sλ).

Proof. Sλ = S when λ = 0, and the claim is simple. Consider that λ ∈ (0,1) and
that a ∈ Fix(S). This suggests a = Sa and as a result

d(a,Sλa) = d(a,λa⊕ (1−λ)Sa)≤ λd(a,a)+(1−λ)d(a,Sa) = 0.
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i.e., d(a,Sλa) = 0⇒ a ∈ Fix(Sλ).
Conversely, assume a ∈ Fix(Sλ). This implies that d(a,Sλa) = 0, so,

d(a,λa⊕ (1−λ)Sa) = 0.

By Proposition 1,

d(a,Sa) = λd(a,Sa)

d(a,Sa)(1−λ) = 0

given that λ 6= 1, this means that d(a,Sa) = 0. �

3. ENRICHED CONTRACTIONS IN CAT(0) SPACE

Definition 1. Let (E,d) be a CAT(0) space. If there exist c∗ ∈ [0,1) and λ∈ [0,1),
then a self mapping S defined on E is an enriched contraction such that

d(λa⊕ (1−λ)Sa,λb⊕ (1−λ)Sb)≤ c∗d(a,b),∀a,b ∈ E.

(1) S is also known as a (λ,c∗)-enriched contraction because it specifies the para-
meters c∗ and λ. “A (0,c∗)-enriched contraction is a usual Banach contraction
which can be easily seen.”

(2) Let E = [0,1]× [0,1]. Define the radial distance dr between a,b∈ E to be the
usual distance if they are on the same ray emanating from origin; otherwise
take

dr(a,b) = d(a,0)+d(0,b).
(Here d denotes the usual Euclidean distance and 0 denotes the origin.) Note
that dr is a metric on E and is known as a radial metric on E ([8]). Let S be
a self map on E defined as Sa = −a, for all a ∈ E. Then S is an enriched
contraction, not a contraction.
However, if S is a contraction, then there would exist c∗ ∈ [0,1) by the defin-
ition of contraction, such that

d(Sa,Sb) = d(−a,−b) = ‖b−a‖= d(a,b)≤ c∗.d(a,b),∀a,b ∈ [0,1]× [0,1].

This leads to the contradiction 1 ≤ c∗ < 1 for any a 6= b. Take a,b ∈ E and
λ = 1

2 . If a and b are on the same ray emanating from the origin, the enriched
contraction condition is identical to

d
(

1
2

a+
1
2

Sa,
1
2

b+
1
2

Sb
)
≤ c∗d(a,b).

Now we show that the above inequality holds for all a,b ∈ E.

d
(

1
2

a+
1
2

Sa,
1
2

b+
1
2

Sb
)
=

1
2
‖a+Ta−b−T b‖= 1

2
‖a−b+Ta−T b‖

=
1
2
‖a−b−a+b‖= 0≤ c∗d(a,b),
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which is true. Now, if a and b are not on the same ray emanating from the
origin, then enriched contraction condition becomes:

dr

(
1
2

a+
1
2

Sa,
1
2

b+
1
2

Sb
)
≤ c∗dr(a,b),

which can equivalently be written :

d
(

1
2

a+
1
2

Sa,0
)
+d
(

0,
1
2

b+
1
2

Sb
)
≤ c∗d(a,0)+d(0,b)

1
2
(|a+Sa|+ |b+Sb|)≤ c∗|a|+ |b|

⇒ 1
2
(|a+(−a)|+ |b+(−b)|) = 0≤ c∗|a|+ |b|,

which shows that S is an enriched contraction.

Theorem 1. A self map S defined on CAT(0) space E is a (λ,c∗)-enriched con-
traction. Then,

(a): Fix(S) = {p}, for some p ∈ E.
(b): The sequence {an} obtained from the Krasnoselskii iterative method [3]

an+1 = λan⊕ (1−λ)Tan,n≥ 0, (3.1)

converges to p, for any a0 ∈ E.
(c): Also, the following holds

d(an+i−1, p)≤ (c∗)i

1− (c∗)
·d(an,an−1) n = 1,2, . . . ; i = 1,2, . . .

Proof. The mapping Sλ : E → E described by Sλa = (1−λ)a⊕λSa satisfies en-
riched contractive condition, so

d(Sλa,Sλb)≤ c∗ ·d(a,b), (3.2)

for all a,b ∈ E, i.e., Sλ is a contraction. We also notice that the Picard iteration linked
with Sλ is the Krasnoselskii iterative process {an} linked with S and described by
(3.2), i.e.,

an+1 = Sλan,n≥ 0. (3.3)
Now, we take a = an and b = an−1 in (3.2) to get

d(an+1,an)≤ c∗ ·d(an,an−1),n≥ 1, (3.4)

which inductively implies

d(an+1,an)≤ (c∗)n ·d(a1,a0),n≥ 1, (3.5)

We can derive from c∗ ∈ [0,1) that

lim
n→∞

d(an+1,an) = 0, (3.6)



FIXED POINT RESULTS CAT(0) SPACES 1481

i.e., {an} is asymptotically regular. for all n and k > 0, we have the following using
the triangle inequality and (3.2),

d(an+k+1,an+1)≤ c∗ ·d(an+k,an)

≤ c∗[d(an+k,an+k+1)+d(an+k+1,an+1)+d(an+1,an)]

≤ c∗

1− c∗
[d(an+k,an+k+1)+d(an+1,an)].

As a result of (3.6), limn→∞ d(an+k+1,an+1) = 0, uniformly w.r.t. k, demonstrating
that {an} is Cauchy sequence. Hence, {an} is convergent and let us represent

p = lim
n→∞

an. (3.7)

By taking n→ ∞ in (3.3) and employing the continuity of Sλ (which follows by the
fact that Sλ is contraction), we obtain immediately

p = Sλ p,

i.e., p ∈ Fix(Sλ).
Next, we show that p is the only fixed point of Sλ. Suppose that q 6= p is yet

another fixed point of Sλ. After that, by (3.2),

0 < d(p,q) = d(Sλ p,Sλq)≤ c ·d(p,q)< d(p,q),

This is a contradiction. As a result, Fix(Sλ) = {p} and, as a result of Lemma 2,
p ∈ Fix(S) , which demonstrates (a).

(3.7) proves the conclusion (b).
To prove (c), first by (3.4) and (3.5), The following estimates are obtained com-

monly,

d(an+m,an)≤ (c∗)n · (1− (c∗)m)

1− c∗
·d(a1,a0), n≥ 1,m≥ 1. (3.8)

d(an+m,an)≤
c∗

1− c∗
·d(an,an−1), n≥ 1,m≥ 1. (3.9)

By taking m→ ∞ in (3.8) and (3.9), we obtain

d(an, p)≤ (c∗)n

1− c∗
·d(a1,a0),n≥ 1 (3.10)

and

d(an, p)≤ c∗

1− c∗
·d(an,an−1),n≥ 1, (3.11)

respectively. Finally, (3.10) and (3.11) can be combined to obtain the unifying error
estimate in conclusion (c). �

The following example support the above theorem:
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Example 1. Let E = [0,1] and consider the usual metric d on E. Define a function
S : E→ E by

Sa = 1−a
for all a ∈ [0,1]. Here, S is an enriched contraction. We note that Picard itera-
tion {xn} defined by an+1 = San does not converge, for any initial value a0 except
the unique fixed point 1

2 of S while Krasnoselskij iteration {xn} defined by (3.1)
converges for any λ ∈ (0,1) and any initial value a0 ∈ [0,1]. We also observe that
Krasnoselskij iteration converges faster for λ closer to but different from the unique
fixed point 1

2 . The fact is illustrated by some numerical experiments performed
for the starting value a0 = 1 and for four different values of the control parameter
λ,λ ∈ {0.1,0.25,0.3,0.49} which are presented in Table 1. Also graphical represent-
ation is also given in Figure 1

TABLE 1. Results of the numerical experiments for Ta = 1−a

λ = 0.1 λ = 0.25 λ = 0.3 λ = 0.49
1 1 1 1

0.1 0.25 0.3 0.49
0.82 0.625 0.58 0.5002
0.244 0.4375 0.468 0.499996
0.7048 0.53125 0.5128 0.50000008
0.33616 0.484375 0.49488 0.499999998

0.631072 0.5078125 0.502048 0.5
0.3951424 0.49609375 0.4991808 0.5
0.58388608 0.501953125 0.50032768 0.5
0.432891136 0.499023438 0.499868928 0.5
0.553687091 0.500488281 0.500052429 0.5
0.457050327 0.499755859 0.499979028 0.5
0.534359738 0.50012207 0.500008389 0.5
0.472512209 0.499938965 0.499996645 0.5
0.521990233 0.500030518 0.500001342 0.5
0.482407814 0.499984741 0.499999463 0.5
0.514073749 0.500007629 0.500000215 0.5
0.488741001 0.499996185 0.499999914 0.5
0.509007199 0.500001907 0.500000034 0.5
0.492794241 0.499999046 0.499999986 0.5
0.505764608 0.500000477 0.500000005 0.5
0.495388314 0.499999762 0.499999998 0.5
0.503689349 0.500000119 0.500000001 0.5
0.497048521 0.49999994 0.5 0.5
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FIGURE 1. Convergence of xn to the unique fixed point 1
2 for differ-

ent values of λ.

Remark 1. The contraction map principle in the context of a CAT(0) space is
obtained by Theorem 1 if S is a (0,c∗)-contraction. The Krasnoselskii type iterative
method simplifies to the Picard iteration in this case.

“The local variant of Banach contraction mapping principle (see, [6]), which in-
volves an open ball B in a complete metric space (E,d) and a nonself contraction
map of B into E with the key property of not displacing the center of the ball too
far, is important in actual applications.” The following theorem is an analogue of this
conclusion in the case CAT(0) spaces.

Theorem 2. Consider (E,d) is a complete CAT(0) space, a0 ∈ E,r > 0,B =
B(a0,r) := {a∈E : d(a,a0)< r} and also, S : B→E is a (λ,c∗)-enriched contraction
and

d(Sa0,a0)<
1− c∗

1−λ
· r,

then S has a fixed point.

Proof. We can select ε < r in such a way that

d(Sa0,a0)<
1− c∗

1−λ
· ε < 1− c∗

1−λ
· r. (3.12)

Since S is a (λ,c∗)-enriched contraction, there exists c∗ ∈ [0,1) such that

d(Sλa,Sλb)≤ c∗d(a,b), for all a,b ∈ B,

for any λ ∈ (0,1), where we denote as before Sλa = (1−λ)a⊕λSa.
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By Proposition 1, we have

d(Sλa0,a0) = d((1−λ)a0⊕λSa0,a0) = (1−λ)d(a0,Sa0)

and therefore (3.12) implies that d(Sλa0,a0)≤ (1− c∗)ε.
We now prove that the closed ball Bε := {a ∈ E : d(a,a0) ≤ ε} is invariant with

respect to Sλ. Indeed, for any a ∈ Bε, we have

d(Sλa,a0)≤ d(Sλa,Sλa0)+d(Sλa0,a0)≤ c∗d(a,a0)+(1− c∗)ε≤ ε.

Since Bε is complete, the conclusion follows by Theorem 1. �

The following example demonstrates that while some mappings S are not contrac-
tions, a certain iterate of them is.

Example 2. Let E = R and S : E→ E be given by

Sa =

{
0, if a ∈ (−∞,3]
−1
2 if a ∈ (3,∞).

Then S is not a contraction as it is discontinuous at a = 3. But S2 is a contraction as
S2a = 0, if a ∈ (−∞,∞).

We cannot use Theorem 1 in these instances, but the following result could be
beneficial in applications.

Theorem 3. Let (E,d) be a complete CAT(0) space and let V be a self mapping
defined on E with the property that there exists a positive integer N such that V N is a
(λ,c∗)-enriched contraction. Then,

(a): Fix(V ) = {p}
(b): The sequence {an} obtained from the iterative process

an+1 = λan⊕ (1−λ)SNan,n≥ 0,

converges to p, for any a0 ∈ E.

Proof. We apply Theorem 1 (a) for the mapping S=V N and obtain that Fix(V N)=
{p}. We also have

V N(V (p)) =V N+1(p) =V (V N(p)) =V (p),

which shows that V (p) is a fixed point of V N . However, V N has a unique fixed point,
p, hence V (p) = p and so p ∈ Fix(V ). The remaining part of the proof follows by
Theorem 1 �
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4. ENRICHED A -CONTRACTION AND ENRICHED A ′-CONTRACTION IN CAT(0)
SPACES

Mondal et al. [9] proposed two new forms of enriched contractions, and found
fixed points of mappings meeting such contractions using the fixed point property
of the average operator of a map . We will introduce enriched A-contraction and
enriched A ′-contraction in the context of CAT(0) space in this section, as follows.

Definition 2. “Let (E,d) be a CAT(0) space. Let A be the collection of all map-
pings f : R3

+→ R satisfying the following conditions:

(A1): f is continuous;
(A2): if r≤ f (s,r,s) or r≤ f (r,s,s), then there exists k ∈ [0,1) such that r≤ ks;
(A3): for λ > 0 and for all r,s, t ∈ R+,λ f (r,s, t)≤ f (λr,λs,λt).

Let S : E→ E be a mapping such that there exist f ∈ A with

d(Sλa,Sλb)≤ λ f ((b∗+1)d(a,b),d(a,Sa),d(b,Sb)) (4.1)

for all a,b ∈ E with a 6= b and b∗ ∈ [0,∞). Then S is said to be an enriched A-
contraction.”

Example 3. Let E = [0,1]× [0,1]. Define the radial distance dr between a,b ∈ E
to be the usual distance if they are on the straight ray initiating from origin; otherwise
take

dr(a,b) = d(a,0)+d(0,b).

(Here d denotes the usual Euclidean distance and 0 denotes the origin.) Let S be a
self map on E defined as Sa = −2a, for all a ∈ E. S is not an enriched contraction
but is an enriched A-contraction.

Indeed, if S would be an enriched contraction, then there would exist b∗ ∈ [0,+∞)
and θ ∈ [0,b∗+1) such that ∀ a,b ∈ E,

d(λa⊕ (1−λ)Sa,λb⊕ (1−λ)Sb)≤ θd(a,b)

‖b∗(a−b)+Sa−Sb‖ ≤ θ‖(a−b)‖.

Take λ = 0 and then θ ∈ [0,1),

d(Sa,Sb)≤ θd(a,b)

‖Sa−Sb‖ ≤ θ‖(a−b)‖
‖−2a+2b‖ ≤ θ‖(a−b)‖

2‖a−b‖ ≤ θ‖(a−b)‖,

which yields to the contradiction 2≤ 1.
S is an enriched A-contraction for b∗ = 5

4 , λ = 1
2 and f (r,s, t) = s+t

3 . Assume
a,b ∈ E and a,b are on the straight ray initiating from origin, then the contractive
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condition becomes;

d
(

1
2

a+
1
2

Sa,
1
2

b+
1
2

Sb
)
≤ 1

2
f ((b∗+1)d(a,b),d(a,Sa),d(b,Sb)) ,

which can be written as
1
2
‖a−2a+b−2b‖ ≤ 1

2
f ((b∗+1)‖a−b‖,‖a−Sa‖,‖b−Sb‖)

1
2
‖−a−b‖ ≤ 1

2
× 1

3
[‖a−Sa‖+‖b−Sb‖]

1
2
‖a+b‖ ≤ 1

6
[‖a+2a‖+‖b+2b‖]

1
2
‖a+b‖ ≤ 3

6
[‖a‖+‖b‖] = 1

2
[‖a‖+‖b‖] ,

which is true.
Now, if a and b are not on the straight ray initiating from the origin, then the

contractive condition becomes;

dr

(
1
2

a+
1
2

Sa,
1
2

b+
1
2

Sb
)
≤ 1

2
f ((b∗+1)dr(a,b),dr(a,Sa),dr(b,Sb)) .

It gives that

d
(

1
2

a+
1
2

Sa,0
)

d
(

0,
1
2

b+
1
2

Sb
)
≤ 1

2
f ((b∗+1)d(a,0)+d(0,b),d(a,0)

+d(0,Sa),d(b,0)+d(0,Sb))∥∥∥∥1
2

a+
1
2

Ta
∥∥∥∥+∥∥∥∥1

2
b+

1
2

Sb
∥∥∥∥≤ 1

6
[d(a,0)+d(0,Ta)+d(b,0)+d(0,Sb)]

1
2
‖a−2a‖+ 1

2
‖b−2b‖ ≤ 1

6
[‖a‖+‖2a‖+‖b‖+‖2b‖]

1
2
[‖a‖+‖b‖]≤ 3

6
[‖a‖+‖b‖] = 1

2
[‖a‖+‖b‖],

that is true. This shows that S is an enriched A-contraction.

Theorem 4. Let (E,d) be a complete CAT(0) space and S be an enriched A-
contraction. Then S has a unique fixed point in E and there exists λ ∈ (0,1] such that
the sequence {an} defined by an+1 = λan⊕ (1−λ)San, n≥ 0 converges to that fixed
point , for any a0 ∈ E.

Proof. Let b∗ > 0. Set λ = 1
b∗+1 > 0. Then

d(Sλa,Sλb)≤ λ f (
1
λ

d(a,b),d(a,Sa),d(b,Sb))

≤ f (d(a,b),λd(a,Sa),λd(b,Sb))

d(Sλa,Sλb)≤ f (d(a,b),d(a,Sλa),d(b,Sλb)) (4.2)
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Let a0 ∈ E be arbitrary. Define an = Sn
λ
a0 for all n≥ 1. Let us put a= an and y= an−1

in (4.2). Then

d(an+1,an)≤ f (d(an,an−1),d(an,an+1),d(an−1,an))

which implies that
d(an+1,an)≤ k.d(an,an−1)

for some k ∈ [0,1]. From this we get

d(an+1,an)≤ kn.d(a1,a0).

Now for all m,n≥ 1, we have

d(an+m,an)≤ d(an+m,an+m−1)+d(an+m−1,an+m−2)+ ...+d(an+1,an)

≤ (kn+m−1 + kn+m−2 + ...+ kn)d(a1,a0)

= kn

(
1− km

1− k

)
d(a1,a0)

This implies that d(an+m,an)→ 0 as m,n→∞ . Hence {an} is a Cauchy sequence in
E and hence there exists an element p ∈ E such that an→ p as n→ ∞.

Now

d(Sλ p,an+1) = d(Sλ p,Sλan)

≤ f (d(p,an),d(p,Sp),d(an,an+1))

= f (d(p,an),d(p,Sλ p),d(an,an+1))

Taking limit as n→ ∞, we get

d(Sλ p, p)≤ f (d(p, p),d(p,Sλ p),d(p, p))≤ k ·d(p, p) = 0.

Hence, Sλ p = p and consequently Sp = p. Therefore, p is a fixed point of S.
Let p∗ be another fixed point of S and consequently, a fixed point of Sλ. Then

d(p, p∗) = d(Sλ p,Sλ p∗)≤ f (d(p, p∗),d(p,Sp),d(p∗,Sp∗))

= f (d(p, p∗),d(p, p),d(p∗, p∗)) = f (d(p, p∗),0,0).

This gives that d(p, p∗)≤ k.0 = 0 for some k ∈ [0,1). Hence p = p∗.
If b = 0, then (4.1) reduces to

d(Sλa,Sλb)≤ λ f (d(a,b),d(a,Sa),d(b,Sb))

for all a,b ∈ E with a 6= b which can easily be solved. �

Definition 3. Let (E,d) be a CAT(0) space. Let A ′ be the collection of all map-
pings f : R3

+→ R satisfying the following conditions:

(A ′
1): f is continuous;

(A ′
2): if r≤ f (r,s,s) or r≤ f (s,s,r), then there exists k ∈ [0,1) such that r≤ ks;

(A ′
3): for λ > 0 and for all r,s, t ∈ R+,λ f (r,s, t)≤ f (λr,λs,λt);
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(A ′
4): if t ≤ t1, then f (r,s, t)≤ f (r,s, t1);

(A ′
5): if r ≤ f (s,0,r+ s), then r ≤ ks for some k ∈ [0,1);

(A ′
6): if r ≤ f (r,r,r) then r = 0.

Let T : E→ E be a mapping such that there exist f ∈ A ′ with

d(Sλa,Sλb)≤ λ f ((b∗+1)d(a,b),(b∗+1)d(a,Sb),(b∗+1)d(b,Sa)) (4.3)

for all a,b ∈ E with a 6= b and b∗ ∈ [0,∞). Then S is said to be an enriched A ′-
contraction.

Example 4. Let E =R be endowed with the usual norm and S : E→ E be defined
by Sa = 2− a, for all a ∈ E. S is not an enriched contraction but is an enriched
A ′-contraction.

Indeed, if S would be an enriched contraction, then there would exist b∗ ∈ [0,+∞)
and θ ∈ [0,b∗+1) such that ∀ a,b ∈ R,

‖b∗(a−b)+Sa−Sb‖ ≤ θ‖(a−b)‖
Take b∗ = 0 and then θ ∈ [0,1),

‖a−b‖ ≤ θ‖a−b‖,
which, for a = 0 and b = 1 yields the contradiction 1 ≤ θ < 1. S is an enriched
A ′-contraction for b∗ = 1 and f (r,s, t) = s+t

6 (see [9]).

Theorem 5. Let (E,d) be a complete CAT(0) space and S be an enriched A ′-
contraction. Then S has a unique fixed point in E and there exists λ ∈ (0,1] such that
the sequence {an} defined by an+1 = λan⊕ (1−λ)San, n≥ 0 converges to that fixed
point , for any a0 ∈ E.

Proof. Let b∗ > 0. Set λ = 1
b∗+1 so that 0 < λ < 1. Now note that

d(Sλa,Sλb)≤ λ f (
1
λ

d(a,b),
1
λ

d(a,Sb),
1
λ

d(b,Sa))

≤ f (d(a,b),d(a,Sb),d(b,Sa))

d(Sλa,Sλb)≤ f (d(a,b),d(a,Sλb),d(b,Sλa)) (4.4)

for all a,b ∈ E with a 6= b.
Let a0 ∈ E be arbitrary. Define an = Sn

λ
a0 for all n ≥ 1. Let us put a = an and

b = an−1 in (4.4). Then

d(an+1,an)≤ f (d(an,an−1),d(an,an),d(an−1,an+1))

≤ f (d(an,an−1),d(an,an),d(an−1,an),d(an,an+1))

which implies that
d(an+1,an)≤ k.d(an,an−1)

for some k ∈ [0,1]. From this we get

d(xn+1,xn)≤ kn.d(x1,x0).
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Now for all m,n≥ 1, we have

d(an+m,an)≤ d(an+m,an+m−1)+d(an+m−1,an+m−2)+ ...+d(an+1,an)

≤ (kn+m−1 + kn+m−2 + ...+ kn)d(a1,a0)

= kn

(
1− km

1− k

)
d(a1,a0)

So, d(an+m,an)→ 0 as m,n→ ∞ . Hence {an} is a Cauchy sequence in E and hence
there exists an element p ∈ E such that an→ p as n→ ∞.

Now

d(Sλ p,an+1) = d(Sλ p,Sλan)≤ f (d(p,an),d(p,an+1),d(an,Sp))

Taking limit as n→ ∞, we get

d(Sλ p, p)≤ f (d(p, p),d(p, p),d(p,Sλ p))≤ k ·d(p, p) = 0.

Hence, Sλ p = p and consequently Sp = p. Therefore, p is a fixed point of S.
Let p∗ be another fixed point of S and hence, a fixed point of Sλ. Then

d(p, p∗) = d(Sλ p,Sλ p∗)

≤ f (d(p, p∗),d(p,Sp∗),d(p∗,Sp))

= f (d(p, p∗),d(p, p∗),d(p, p∗))

This gives that d(p, p∗) = 0. Hence p = p∗.
If b = 0, then (4.3) reduces to

d(Sλa,Sλb)≤ λ f (d(a,b),d(a,Sa),d(b,Sb))

for all a,b ∈ E with a 6= b which can easily be solved. �

Example 5. Let E = R be a CAT(0) space equipped with usual norm. Let S be a
self map on E defined as Sa = 4−a for all a ∈ E.

We choose f ∈A , defined by f (r,s, t)= 1
4 max{s, t} for r,s, t ∈R+ and λ= 1

2 ,b= 1.
Then

d(Sλa,Sλb) = |Sλa−Sλb|= 0
and

λ f ((b∗+1)d(a,b),d(a,Sa),d(b,Sb)) =
1
2
· 1

4
max{d(a,Sa),(b,Sb)}

=
1
8

max{|2a−4|, |2b−4|}

Therefore,
d(Sλa,Sλb)≤ λ f ((b∗+1)d(a,b),d(a,Sa),d(b,Sb))

for all a,b ∈ E. Hence, S is an enriched A-contraction on E. So, by Theorem 4, S has
a unique fixed point. It is to be noticed that a = 2 is the unique fixed point of S.



1490 A. PANWAR, PINKI, V. RAKOČEVIĆ, AND D. GOPAL

Example 6. Let E = R be a CAT(0) space equipped with usual norm. Let S be a
self map on E defined as Sa = 1−a for all a ∈ E.

Let us consider the mapping f ∈ A ′, defined by f (r,s, t) = s+t
2 for r,s, t ∈ R+ and

λ = 1
2 ,b = 1. Then

d(Sλa,Sλb) = |Sλa−Sλb|= 0
and

λ f ((b∗+1)d(a,b),(b+1)d(a,Sb),(b+1)d(b,Sa)) =
2(d(a,Sb)+d(b,Sa))

4

=
|a−Sb|+ |b−Sa|

2

=
|a−1+b|+ |a+b−1|

2
Hence,

d(Sλa,Sλb)≤ λ f ((b∗+1)d(a,b),(b∗+1)d(a,Sb),(b∗+1)d(b,Sa))

for all a,b ∈ E. Therefore, S is an enriched A ′-contraction on E. So, by Theorem 5,
S has a unique fixed point. It is to be noticed that a = 1

2 is the unique fixed point of S.

Now, we study well-posedness and limit shadowing property of fixed point prob-
lem for both types of contractions.

Definition 4. Let S be a self map defined on a CAT(0) space (E,d). Then the fixed
point problem concerning S is known as well-posed if the followings hold:

(i): S has a unique fixed point p ∈ E;
(ii): for any sequence {an} in E with lim

n→∞
d(an,San) = 0, we have

lim
n→∞

d(an, p) = 0.

Theorem 6. Let (E,d) be a complete CAT(0) space and S be an enriched A-
contraction (resp. enriched A ′-contraction). Then the fixed point problem is well
posed.

Proof. Theorem 1(resp. in Theorem 2) ensures that S possesses a unique fixed
point p, say.

d(an,Sλan) = d(an,λan +(1−λ)San)

≤ (1−λ)d(an,San).

for all a ∈ E. Let {an} be a sequence in E such that limn→∞ d(an,San) = 0 . Then
limn→∞ d(an,Sλan) = 0.

Then

d(an, p)≤ d(an,Sλan)+d(Sλan, p)

= d(an,Sλan)+d(Sλan,Sλ p).



FIXED POINT RESULTS CAT(0) SPACES 1491

Now
d(Sλan,Sλ p)≤ f (d(an, p),d(an,Sλan),d(p,Sp)).

Therefore, we have

d(an, p)≤ d(an,Sλan)+ f (d(an, p),d(an,Sλan),d(p,Sp)).

Taking limit as n→ ∞, we get

lim
n→∞

d(an, p)≤ f ( lim
n→∞

d(an, p),0,0).

So, there exist k ∈ [0,1) such that

lim
n→∞

d(an, p)≤ k ·0 ⇒ lim
n→∞

d(an, p) = 0.

Hence the result follows. �

Definition 5. Let S be a self map defined on a CAT(0) space (E,d). Then the
fixed point problem involving S is said to posses limit shadowing property in E
if for any sequence {an} in E such that lim

n→∞
d(an,San) = 0, we have p ∈ E with

lim
n→∞

d(Sn p,an) = 0.

Theorem 7. Let (E,d) be a complete CAT(0) space and S be an enriched A-
contraction (resp. enriched A ′-contraction). Then the fixed point problem involving
S possesses limit shadowing property.

Proof. We have already shown in Theorem 4 (resp. in Theorem 5) that
limn→∞ d(an, p)= 0, where p is the unique fixed point of S. Then for any n∈N,Sn p=
p and therefore

lim
n→∞

d(an,Sn p) = 0.

i.e.,
lim
n→∞

d(Sn p,an) = 0.

Hence the fixed point problems has limit shadowing property in both the cases. �

5. CONCLUSION

(1) The existence and approximation of fixed points for the class of enriched
contractions in the context of CAT(0) space are introduced and investigated
in this article.

(2) We show that in a complete CAT(0) space, any enriched contraction has a
unique fixed point that can be approximated using a Kransnoselskii type iter-
ative procedure

(3) For enriched contractions in CAT(0) spaces, we derive a local fixed point
conclusion (Theorem 2) along with an asymptotic fixed point consequence
(Theorem 3). These results expand the results in [2] from Banach spaces to
complete CAT(0) spaces in a significant way.
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(4) Some convergence results are obtained for enriched A-contraction and en-
riched A ′-contraction in the context of CAT(0) space and numerical examples
are also provided to illustrate the findings of our paper. These outcomes are
generalization of the results in [9] from Banach spaces to complete CAT(0)
spaces.

6. FUTURE WORK

(1) Other important conclusions on the solution of the fixed point problem in
CAT(0) spaces or in Banach spaces, metric spaces and generalized metric
spaces could be derived using the approach considered in this study along
with the ideas given in [7].

(2) In the case of CAT(k) spaces for k > 0, an approach identical to that described
in this paper can be applied.
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