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Abstract. In this article, we deal with a logarithmic wave equation with distributed delay. Firstly,
we establish the well-posedness by utilizing the semigroup theory. Later, we obtain the global
existence of solutions by using the well-depth method. Moreover, under appropriate assumptions
on the weight of the distributed delay and that of strong damping, we get the exponential decay
results.
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1. INTRODUCTION

In this paper, we deal with the following logarithmic wave equation with distrib-
uted delay:

utt −∆u−µ1∆ut (x, t)−
∫

τ2
τ1

µ2 (s)∆ut (x, t− s)ds
= u |u|p−2 ln |u|k , in Ω× (0,∞) ,
u(x, t) = 0, on ∂Ω× (0,∞) ,
ut (x,−t) = f0 (x,−t) , 0 < t ≤ τ2,
u(x,0) = u0 (x) , ut (x,0) = u1 (x) , in Ω,

(1.1)

where Ω is a bounded and regular domain of Rn. k, µ1 are positive constants, the in-
tegral term denotes the distributed delay for τ1 < τ2 and µ2 : [τ1,τ2]→ R is a bounded
function and u0, u1, f0 are the functions of the initial data to be specified later.

The study of the asymptotic behavior of wave equation is an old and large areas
because it is important in the applications, for this reasons wave equation has been
taking different forms and names according to the phenomena it describes and also
the material using in the experiment. In this paper we will study the nonlinear wave
equation (1.1) with time delay. Also, in the same equation, we add the logarithmic
source term which seems in inflation cosmology, nuclear physics, geophysics and
optics, for instance (see [3–5,7,12]). To give a problem describe a phenomena enough
perfect, we must take a consideration the delay which appears in practical phenomena
like physical, biological, economic and some of themes. Furthermore, delay term
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influenced on the stability and instability of the studied system and many papers has
been discussed the both situations, for example [8–10, 16].

During the past decades, many authors considered extensively on existence, nonex-
istence, stability and blow-up of solutions for the strongly damped wave equations
with source term as follows:

utt −∆u−ω∆ut +µut = f (u) . (1.2)

Firstly, Sattinger [28] studied the existence of local as well as global solutions for the
equation (1.2) with ω = µ = 0 by introducing the concepts of stable and unstable sets.
In [13], Ikehata looked into the decay and blow-up of solutions for the equation (1.2)
with linear damping that is ω = 0 and µ > 0. In [11], Gazzola and Squassina obtained
the global existence and blow-up results for the equation (1.2) with both weak and
strong damping (ω > 0). In the case of logarithmic source term f (u) = u ln |u|k,
Ma and Fang [20] obtained the existence and blow-up results for the equation (1.2)
with ω = 1, µ = 0 and k = 2. In [18], Lian and Xu established the global existence,
energy decay and blow-up results in the case ω≥ 0 and µ >−ωλ1, here λ1 is the first
eigenvalue of the operator −∆ under homogeneous Dirichlet boundary conditions.

It is well known that, in the n-dimensional case, the equation:

utt −∆u+a0ut (x, t)+aut (x, t− τ) = 0, (1.3)

is exponentially stable without delay (a = 0, a0 > 0), (see [19, 35]). With delay
term (a > 0), Nicaise and Pignotti [23] considered the equation (1.3) and established,
under the condition that the weight of the feedback is larger than the weight of the
delay (a < a0), that the energy of (1.3) is exponentially stable. If the delay term in
the equation (1.3) is replaced by the distributed delay:∫

τ2

τ1

a(s)ut (x, t− s)ds,

exponential stability of solutions have been proved in Ref. [22] under the assumption:∫
τ2

τ1

a(s)ds < a0.

Without logarithmic nonlinearity (u |u|p−2 ln |u|k), the equation (1.1) takes the follow-
ing form:

utt −∆u−µ1∆ut (x, t)−
∫

τ2

τ1

µ2 (s)∆ut (x, t− s)ds = 0, (1.4)

Messaoudi et al. [21], established the well-posedness and obtained an exponential de-
cay results under a suitable assumption on the weight of the damping and the weight
of the delay of the equation (1.4 ). Furthermore, in [21], they extended the results
obtained to the case of strong delay (µ2∆ut (x, t− τ)) in same work. Some other re-
searchers considered delayed hyperbolic-type equations (see [2,14,15,25,27,29–34]).
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Motivated by previous works and in the presence of strong damping (−µ1∆ut (x, t)),
distributed delay (

∫
τ2
τ1

µ2 (s)∆ut (x, t− s)ds) and logarithmic (u |u|p−2 ln |u|k) nonlin-
earity, we consider the well-posedness, global existence and exponential decay for
the logarithmic wave equation (1.1) with strong damping and distributed delay.

The contents of this work is organized as follows: In Section 2, firstly, we obtain
the well-posedness by utilizing the semigroup theory. Then, in Section 3, we establish
the global existence results by the well-depth method. Finally, in Section 4, we get
the exponential decay of solutions.

2. WELL-POSEDNESS

As usual, the notation ‖.‖p denotes Lp norm and (., .) is the L2 inner product. In
particular, we write ‖.‖ instead of ‖.‖2 (see [1, 26], for details). Similar to the [23],
we introduce the new variable

z(x,ρ,s, t) = ut (x, t−ρs) , in Ω× (0,1)× (τ1,τ2)× (0,∞) .

Hence, we get

szt (x,ρ,s, t)+ zρ (x,ρ,s, t) = 0 in Ω× (0,1)× (τ1,τ2)× (0,∞) .

Therefore, the problem (1.1) becomes the form:

utt −∆u−µ1∆ut (x, t)−
∫

τ2
τ1

µ2 (s)∆z(x,1,s, t)ds
= u |u|p−2 ln |u|k , in Ω× (0,+∞)

szt (x,ρ,s, t)+ zρ (x,ρ,s, t) = 0, in Ω× (0,1)× (τ1,τ2)× (0,+∞)
u(x, t) = 0, on ∂Ω× (0,∞)
u(x,0) = u0 (x) , ut (x,0) = u1 (x) , in Ω

z(x,ρ,s,0) = f0 (x,−ρs) , in Ω× (0,1)× (τ1,τ2) .

(2.1)

We establish the local existence utilizing the semigroup theory [17,24]. Let υ = ut
and denote by

Φ= (u,υ,z)T , Φ(0) =Φ0 = (u0,u1, f0 (·,ρs))T and J (Φ) =
(

0,u |u|p−2 ln |u|k ,0
)T

.

Hence, (2.1) can be written as an initial-value problem:{
∂tΦ+AΦ = J (Φ) ,

Φ(0) = Φ0,
(2.2)

where the linear operator A : D(A)−→H is defined by

AΦ =

 −υ

−∆u−µ1∆υ−
∫

τ2
τ1

µ2 (s)∆z(x,1,s, t)ds
1
s zρ

 ,

where D(A) and H are introduced below.
The setting space of Φ is the Hilbert space

H =H1
0 (Ω)×L2 (Ω)×L2 ((0,1)× (τ1,τ2) ;H1

0 (Ω)
)

,
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equipped with the inner product〈
Φ,Φ̃

〉
H
=

∫
Ω

(∇u∇ũ+υυ̃)dx+
∫

Ω

∫
τ2

τ1

s |µ2 (s)|
∫ 1

0
∇z∇z̃dρdsdx,

for all Φ = (u,υ,z)T and Φ̃ = (ũ, υ̃, z̃)T in H . The domain of A is

D(A) =

{
Φ ∈H :

(
u+µ1υ+

(∫
τ2
τ1

µ2 (s)z
))
∈ H2 (Ω) ,

z, zρ ∈ L2
(
(0,1)× (τ1,τ2) ;H1

0 (Ω)
)

, z(·,0, ·) = υ

}
.

Now, we obtain the local existence and uniqueness of solutions as follows:

Theorem 1. Suppose that µ1 >
∫

τ2
τ1

µ2 (s)ds and{
p > 2 if n = 1,2,

2 < p < 2(n−1)
n−2 if n≥ 3.

(2.3)

Then, for any Φ0 ∈H , problem (2.2) has a unique weak solution

Φ ∈C ([0,T ) ;H ) .

Furthermore, if Φ0 ∈ D(A), the solution of (2.2) satisfies

Φ ∈C1 ([0,T ) ,H )∩C ([0,T ) ,D(A)) .

Proof. We will utilize the Hille-Yoside theorem [6, 17]. For this aim, we indicate
that A is monotone. Thus, for all Φ ∈ D(A), we obtain

〈AΦ,Φ〉H =−
∫

Ω

∇υ∇udx

−
∫

Ω

υ

[
∆u+µ1∆υ+

∫
τ2

τ1

µ2 (s)∆z(x,1,s, t)ds
]

dx

+
∫

Ω

∫
τ2

τ1

|µ2 (s)|
∫ 1

0
∇z∇zρdρdsdx (2.4)

= µ1

∫
Ω

|∇υ|2 dx+
∫

Ω

∇υ

(∫
τ2

τ1

µ2 (s)∇z(x,1,s, t)ds
)

dx

+
1
2

∫
Ω

∫
τ2

τ1

|µ2 (s)| |∇z(x,1,s, t)|2 dsdx

− 1
2

∫
Ω

∫
τ2

τ1

|µ2 (s)| |∇υ|2 dsdx.

By using the Young’s inequality, the estimate (2.4) becomes the form:

〈AΦ,Φ〉H ≥ µ1

∫
Ω

|∇υ|2 dx− |µ2|
2

∫
Ω

∫
τ2

τ1

|∇υ|2 dsdx− |µ2|
2

∫
Ω

∫
τ2

τ1

|∇υ|2 dsdx

=

(
µ1−

∫
τ2

τ1

|µ2|(s)ds
)∫

Ω

|∇υ|2 dx≥ 0.

Therefore, A is a monotone operator.
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To indicate that A is maximal, we establish that for each:

F = ( f ,g,h)T ∈H ,

there exists V = (u,υ,z)T ∈ D(A) such that (I +A)V = F . That is,
u−υ = f

υ−∆u−µ1∆υ−
∫

τ2
τ1
|µ2 (s)|∆z(x,1,s, t)ds = g,

sz+ zρ = sh.
(2.5)

As z(.,0, .) = u− f = υ, by the third equation of (2.5), we infer that

z(.,ρ, .) = (u− f )e−ρs + se−ρs
∫

ρ

0
h(.,γ,s)eγsdγ. (2.6)

By substituting (2.6) in the second equation of (2.5), we have

u− k∆u = G,

where

k = 1+µ1 +
∫

τ2

τ1

e−s |µ2 (s)|ds > 0,

G = g+ f −
(

µ1 +
∫

τ2

τ1

|µ2 (s)|e−sds
)

∆ f (2.7)

+ s
∫

τ2

τ1

|µ2 (s)|e−s
∫ 1

0
∆h(γ,x)eγsdγds ∈ H−1 (Ω) . (2.8)

We define, over H1
0 (Ω), the bilinear and linear forms:

B(u,w) =
∫

Ω

uwdx+ k
∫

Ω

∇u∇wdx, L(w) = 〈G,w〉H−1×H1
0

.

We see that B is coercive and continuous, and L is continuous on H1
0 (Ω).

Then, Lax-Milgram theorem specifies that the equation

B(u,w) = L(w) , ∀w ∈ H1
0 (Ω) , (2.9)

has a unique solution u ∈ H1
0 (Ω). Thus, υ = u− f ∈ H1

0 (Ω).
As a result, by (2.6), we obtain

z,zρ ∈ L2 (Ω× (0,1)× (τ1,τ2)) and z(.,0, .) = υ.

Replacing ∆ f by ∆(u−υ) and se−s ∫ 1
0 ∆h(γ,x)eγsdγ by ∆z(x,1,s)− e−s∆υ in the

right-hand side of (2.9) and utilizing the Green’s formula, we get∫
Ω

uυ+
∫

Ω

∇

(
u+µ1υ+

∫
τ2

τ1

µ2 (s)e−sz(x,1,s)ds
)

∇w=
∫

Ω

( f +g)w, ∀w∈H1
0 (Ω) .

From the standard elliptic regularity theory [6], we have

u+µ1υ+
∫

τ2

τ1

µ2 (s)e−sz(.,1,s)ds ∈ H2 (Ω) .
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Hence,

∆

(
u+µ1υ+

∫
τ2

τ1

µ2 (s)e−sz(.,1,s)ds
)
= g+ f −u ∈ L2 (Ω) .

Thus,
V = (u,υ,z)T ∈ D(A) .

As a result, I +A is surjective and then A is maximal.
Finally, we denote that J : H −→H is locally Lipschitz. Hence, if we set:

f (s) = |s|p−2 s ln |s|k , |s| 6= 0 and f (s) = 0, |s|= 0,

then
f ′ (s) = k [1+(p−1) ln |s|] |s|p−2 , |s| 6= 0 and f ′ (s) = 0, |s|= 0.

Thus, ∥∥∥J (Φ)− J
(

Φ̃

)∥∥∥2

H
=
∥∥∥(0, |u|p−2 u ln |u|k−|ũ|p−2 ũ ln |ũ|k ,0

)∥∥∥2

H

=
∥∥∥|u|p−2 u ln |u|k−|ũ|p−2 ũ ln |ũ|k

∥∥∥2

L2

= ‖ f (u)− f (ũ)‖2
L2 .

By the mean value theorem, we obtain, for some θ ∈ [0,1],

| f (u) − f (ũ)|=
∣∣ f ′ (θu+(1−θ) ũ)(u− ũ)

∣∣
= k
∣∣∣[1+(p−1) ln |θu+(1−θ) ũ|] |θu+(1−θ) ũ|p−2 (u− ũ)

∣∣∣
≤ k [1+(p−1) |ln |θu+(1−θ) ũ||] |θu+(1−θ) ũ|p−2 |u− ũ|

= k (p−1) |ln |θu+(1−θ) ũ|| |θu+(1−θ) ũ|p−2 |u− ũ|

+ k |θu+(1−θ) ũ|p−2 |u− ũ| .

To control the logarithmic term

ln |θu+(1−θ) ũ| |θu+(1−θ) ũ|p−2 ,

seems in the last inequality we remind that, for any ε > 0,

lim
|s|→+∞

ln |s|
|s|ε

= 0.

Then, there exists B > 0 such that

ln |s|
|s|ε

< 1, ∀|s|> B.

Hence, whenever |θu+(1−θ) ũ|> B, we get

ln |θu+(1−θ) ũ| ≤ |θu+(1−θ) ũ|ε ,



EXISTENCE AND EXPONENTIAL DECAY OF A LOGARITHMIC WAVE EQUATION... 1063

and
ln |θu+(1−θ) ũ| |θu+(1−θ) ũ|p−2 ≤ |θu+(1−θ) ũ|p−2+ε .

Since p > 2, then for some A > 0 and |θu+(1−θ) ũ| ≤ B, we obtain

ln |θu+(1−θ) ũ| |θu+(1−θ) ũ|p−2 ≤ A.

Thus, we get

ln |θu+(1−θ) ũ| |θu+(1−θ) ũ|p−2 ≤ A+ |θu+(1−θ) ũ|p−2+ε .

Then, we obtain the following estimation for

| f (u)− f (ũ)| ≤ k (p−1) |θu+(1−θ) ũ|p−2+ε |u− ũ|

+ k |θu+(1−θ) ũ|p−2 |u− ũ|+ kA(p−1) |u− ũ|

≤ k (p−1)(|u|+ |ũ|)p−2+ε |u− ũ| (2.10)

+ k (|u|+ |ũ|)p−2 |u− ũ|+ kA(p−1) |u− ũ| .

As u, ũ ∈ H1
0 (Ω), by utilizing Hölder’s inequality, (2.3) and the Sobolev embedding

H1
0 (Ω) ↪→ Lr (Ω) , 1≤ r ≤ 2n

n−2
,

to have ∫
Ω

[
(|u|+ |ũ|)p−2 |u− ũ|

]2
dx =

∫
Ω

(|u|+ |ũ|)2(p−2) |u− ũ|2 dx

≤C
(∫

Ω

(|u|+ |ũ|)2(p−1) dx
) p−2

p−1
(∫

Ω

|u− ũ|2(p−1) dx
) 1

p−1

≤C
[
‖u‖2(p−1)

L2(p−1)(Ω)
+‖ũ‖2(p−1)

L2(p−1)(Ω)

] p−2
p−1 ‖u− ũ‖2

L2(p−1)(Ω)

≤C
[
‖u‖2(p−1)

H1
0 (Ω)

+‖ũ‖2(p−1)
H1

0 (Ω)

] p−2
p−1 ‖u− ũ‖2

H1
0 (Ω) .

Similarly,∫
Ω

[
(|u|+ |ũ|)p−2+ε |u− ũ|

]2
dx =

∫
Ω

(|u|+ |ũ|)2(p−2+ε) |u− ũ|2 dx

≤
(∫

Ω

(|u|+ |ũ|)
2(p−2+ε)(p−1)

p−2 dx
) p−2

p−1
(∫

Ω

|u− ũ|2(p−1) dx
) 1

p−1

≤
(∫

Ω

(|u|+ |ũ|)2(p−1)+ 2ε(p−1)
p−2 dx

) p−2
p−1

‖u− ũ‖2
L2(p−1)(Ω) .

Since p < 2(n−1)
n−2 , by choosing ε > 0 small enough, such that

p∗ = 2(p−1)+
2ε(p−1)

p−2
≤ 2n

n−2
.
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Thus, we get∫
Ω

(|u|+ |ũ|)2(p−2+ε) |u− ũ|2 dx≤C
[
‖u‖p∗

Lp∗ (Ω)
+‖ũ‖p∗

Lp∗ (Ω)

] p−2
p−1 ‖u− ũ‖2

L2(p−1)(Ω)

≤C
[
‖u‖p∗

H1
0 (Ω)

+‖ũ‖p∗

H1
0 (Ω)

] p−2
p−1 ‖u− ũ‖2

H1
0 (Ω) .

Thus, by combining the last three estimations, we get∥∥∥J (Φ)− J
(

Φ̃

)∥∥∥2

H
≤
[
k2 (p−1)2 A2

]
‖u− ũ‖2

H1
0 (Ω)

+C
[(
‖u‖2(p−1)

H1
0 (Ω)

+‖ũ‖2(p−1)
H1

0 (Ω)

) p−2
p−1

+
(
‖u‖p∗

H1
0 (Ω)

+‖ũ‖p∗

H1
0 (Ω)

) p−2
p−1
]
‖u− ũ‖2

H1
0 (Ω)

≤C
(
‖u‖H1

0 (Ω) ,‖ũ‖H1
0 (Ω)

)
‖u− ũ‖2

H1
0 (Ω) .

Hence, J is locally Lipschitz. Then, as a consequence of the Theorem 1.2 page
184, Pazy [24] (see also a remark in the beginning of page 118, Komornik [17]), we
complete the proof. �

3. GLOBAL EXISTENCE

In this section, we establish that the solution of (2.1) is uniformly bounded and
global in time. The energy functional for the problem (2.1) is,

E (t) =
1
2
‖ut‖2 +

1
2
‖∇u‖2 +

k
p2 ‖u‖

p
p−

1
p

∫
Ω

|u|p ln |u|k dx

+
1
2

∫
Ω

∫ 1

0

∫
τ2

τ1

s |µ2 (s)| |∇z(x,ρ,s, t)|2 dsdρdx. (3.1)

The following lemma indicates that the energy functional is nonincreasing:

Lemma 1. The energy E (t) satisfies, along the solution (u,z) of (2.1), the estimate

E ′ (t)≤−
[

µ1−
(∫

τ2

τ1

|µ2 (s)|ds
)]∫

Ω

|∇ut |2 dx < 0. (3.2)

Proof. Multiply the first equation in (2.1) by ut and integrate over Ω and the second
equation in (2.1) by −|µ2|∆z and integrate over Ω× (0,1)× (τ1,τ2), sum up, we
obtain

d
dt

[
1
2 ‖ut‖2 + 1

2 ‖∇u‖2 + k
p2 ‖u‖p

p− 1
p

∫
Ω
|u|p ln |u|k dx

+1
2
∫

Ω

∫ 1
0
∫

τ2
τ1

s |µ2 (s)| |∇z(x,ρ,s, t)|2 dsdρdx

]

=−µ1

∫
Ω

|∇ut |2 dx−
∫

Ω

∇ut

∫
τ2

τ1

|µ2 (s)|∇z(x,1,s, t)dsdx
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−|µ2 (s)|
∫

Ω

∫ 1

0

∫
τ2

τ1

∇z∇zρ (x,ρ,s, t)dsdρdx. (3.3)

Now, we handle the last two terms of the right-hand side for (3.3) as:

−|µ2 (s)|
∫

Ω

∫ 1

0

∫
τ2

τ1

∇z∇zρ (x,ρ,s, t)dsdρdx

=−|µ2 (s)|
2

∫
Ω

∫ 1

0

∫
τ2

τ1

∂

∂ρ

[
|∇z(x,ρ,s, t)|2

]
dsdρdx

=
1
2

(∫
τ2

τ1

|µ2 (s)|ds
)∫

Ω

|∇ut |2 dx

− |µ2 (s)|
2

∫
Ω

∫
τ2

τ1

|∇z(x,1,s, t)|2 dsdx

and

−
∫

Ω

∇ut

∫
τ2

τ1

|µ2 (s)|∇z(x,1,s, t)dsdx

≤ 1
2

(∫
τ2

τ1

|µ2 (s)|ds
∫

Ω

|∇ut |2 dx+ |µ2 (s)|
∫

Ω

∫
τ2

τ1

|∇z(x,1,s, t)|2 dsdx
)
.

Thus, we obtain

dE (t)
dt
≤−µ1

∫
Ω

|∇ut |2 dx+
1
2

(∫
τ2

τ1

|µ2 (s)|ds
)∫

Ω

|∇ut |2 dx

− |µ2 (s)|
2

∫
Ω

∫
τ2

τ1

|∇z(x,1,s, t)|2 dsdx

+
1
2

(∫
τ2

τ1

|µ2 (s)|ds
∫

Ω

|∇ut |2 dx+ |µ2 (s)|
∫

Ω

∫
τ2

τ1

|∇z(x,1,s, t)|2 dsdx
)
.

Therefore, we get

E ′ (t)≤−
[

µ1−
(∫

τ2

τ1

|µ2 (s)|ds
)]∫

Ω

|∇ut |2 dx≤ 0.

�

Firstly, we set

I (t) = ‖∇u‖2−
∫

Ω

|u|p ln |u|k dx,

J (t) =
1
2

∫
Ω

|∇u|2 dx+
k
p2 ‖u‖

p
p−

1
p

∫
Ω

|u|p ln |u|k dx

+
1
2

∫
Ω

∫ 1

0

∫
τ2

τ1

s |µ2 (s)| |∇z(x,ρ,s, t)|2 dsdρdx. (3.4)
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Thus, we obtain

E (t) = J (t)+
1
2
‖ut‖2 .

Lemma 2. Assume that the initial data u0, u1 ∈ H1
0 (Ω)×L2 (Ω) satisfying

I (0)> 0 and β = kCp+l

(
2pE (0)

p−2

) p−2+l
2

< 1. (3.5)

Then, I (t)> 0, for any t ∈ [0,T ].

Proof. Since I (0)> 0, we infer from continuity that there exists T ∗ ≤ T such that
I (t)≥ 0 for all t ∈ [0,T ∗]. This implies that, for all t ∈ [0,T ∗],

J (t) =
p−2
2p
‖∇u‖2 +

k
p2 ‖u‖

p
p +

1
p

I (t)

+
1
2

∫
Ω

∫ 1

0

∫
τ2

τ1

s |µ2 (s)| |∇z(x,ρ,s, t)|2 dsdρdx.

Thus, we get

J (t)≥ p−2
2p
‖∇u‖2 .

Therefore,

‖∇u‖2 ≤ 2p
p−2

J (t)≤ 2p
p−2

E (t)≤ 2p
p−2

E (0) . (3.6)

On the other hand, by using the fact that ln |u|< |u|l , we obtain∫
Ω

|u|p ln |u|dx≤
∫

Ω

|u|p+l dx, (3.7)

where l is chosen to be 0 < l < 2
n−2 , such that

p+ l <
2n−2
n−2

+ l <
2n

n−2
.

Hence, the embedding H1
0 (Ω) ↪→ Lp+l (Ω), satisfies∫

Ω

|u|p ln |u|dx≤Cp+l ‖∇u‖p+l

=Cp+l ‖∇u‖2 ‖∇u‖p−2+l =Cp+l ‖∇u‖2
(
‖∇u‖2

) p−2+l
2

≤Cp+l

(
2pE (0)

p−2

) p−2+l
2

‖∇u‖2 , (3.8)

where Cp+l is the embedding constant.
As a result, from (3.4) and (3.5), we have

I (t)> ‖∇u‖2−β‖∇u‖2 > 0, ∀t ∈ [0,T ∗] . (3.9)

Therefore, T ∗ can be extended to T . �
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Theorem 2. Assume that the initial data u0, u1 satisfy the conditions of Lemma 2,
then the solution of (2.1) is uniformly bounded and global in time.

Proof. It suffices to indicate that ‖∇u‖2+‖ut‖2 is bounded independently of t. We
have,

E (0)≥ E (t) =
1
2
‖ut‖2 + J (t)≥ 1

2
‖ut‖2 +

k
p2 ‖u‖

p
p +

1
p

I (t)

+
1
2

∫
Ω

∫ 1

0

∫
τ2

τ1

s |µ2 (s)| |∇z(x,ρ,s, t)|2 dsdρdx

≥ 1
2
‖ut‖2 +

1
p
(1−β)‖∇u‖2 .

Therefore,
‖∇u‖2 +‖ut‖2 ≤CE (0) ,

where C is a positive constant depending only on k, p and Cp+1. �

4. EXPONENTIAL DECAY

In this section, we establish the exponential decay results. Firstly, we give the
lemmas as follows:

Lemma 3. [21] The functional

F1 (t) =
∫

Ω

∫ 1

0

∫
τ2

τ1

se−sρ |µ2 (s)| |∇z(x,ρ,s, t)|2 dsdρdx,

satisfies, along the solution of (2.1),

F ′1 (t)≤
(∫

τ2

τ1

|µ2 (s)|ds
)∫

Ω

|∇ut |2 dx−
∫

Ω

∫
τ2

τ1

e−s |µ2 (s)| |∇z(x,1,s, t)|2 dsdx

−
∫

Ω

∫
τ2

τ1

s |µ2 (s)|
∫ 1

0
e−sρ |∇z(x,ρ,s, t)|2 dρdsdx. (4.1)

Lemma 4. The functional

F2 (t) = NE (t)+ ε

∫
Ω

uutdx+
εµ1

2

∫
Ω

|∇u|2 dx,

satisfies, along the solution of (2.1),

F ′2 (t)≤−
{

N
[

µ1−
(∫

τ2

τ1

|µ2 (s)|ds
)]
− ε

}∫
Ω

|∇ut |2 dx

− ε(1−β−δ)‖∇u‖2 + ε
c∗
4δ

∫
Ω

∫
τ2

τ1

|∇z(x,1,s, t)|2 dsdx, (4.2)

where N, α and ε are positive constants.
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Proof. A direct differentiation, from the equations in (2.1), satisfies

F ′2 (t)≤−N
[

µ1−
(∫

τ2

τ1

|µ2 (s)|ds
)]∫

Ω

|∇ut |2 dx

+ ε

(∫
Ω

|ut |2 dx−
∫

Ω

|∇u|2 dx+
∫

Ω

|u|p ln |u|k dx
)

− ε

∫
Ω

∫
τ2

τ1

|µ2 (s)|∇u∇z(x,1,s, t)dsdx. (4.3)

From the Young’s inequality and the boundness property of µ2 (s), we get, for any
δ > 0 and some c∗ > 0,

−
∫

Ω

∫
τ2

τ1

|µ2 (s)|∇u∇z(x,1,s, t)dsdx

≤ δ‖∇u‖2 +
c∗
4δ

∫
Ω

∫
τ2

τ1

|∇z(x,1,s, t)|2 dsdx. (4.4)

Combining (3.7), (4.3) and (4.4), the result follows: �

Theorem 3. Assume that (3.5) holds. Then, there exist two positive constants c3
and c4 such that

E (t)≤ c3e−c4t .

Proof. By setting
F3 (t) = F1 (t)+F2 (t) .

It is easy to see, for ε small enough, that

F3 (t)∼ E (t) . (4.5)

From the (4.1) and (4.2), we get

F ′3 (t)≤−
{

N
[

µ1−
(∫

τ2

τ1

|µ2 (s)|ds
)]
−
(∫

τ2

τ1

|µ2 (s)|ds
)
− ε

}
‖∇ut‖2

− ε(1−β−δ)‖∇u‖2−
(

e−s |µ2 (s)|− ε
c∗
4δ

)∫
Ω

∫
τ2

τ1

|∇z(x,1,s, t)|2 dsdx

−
∫

Ω

∫
τ2

τ1

s |µ2 (s)|
∫ 1

0
e−sρ |∇z(x,ρ,s, t)|2 dρdsdx. (4.6)

Since β < 1, by choosing δ small enough, such that α = 1−β−δ > 0.
For some ω > 0, the embedding H1

0 (Ω) ↪→ Lp (Ω) satisfies

‖u‖p
p ≤C‖∇u‖p

2 ≤C
(
‖∇u‖2

) p−2
2 ‖∇u‖2 ≤C (E (0))

p−2
2 ‖∇u‖2

≤ ω‖∇u‖2 ,

or

−εαω−1

2
‖u‖p

p ≥−
εα

2
‖∇u‖2

2 .
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Therefore, (4.6) becomes the form

F ′3 (t)≤−
{

N
[

µ1−
(∫

τ2

τ1

|µ2 (s)|ds
)]
−
(∫

τ2

τ1

|µ2 (s)|ds
)
− ε

}
‖∇ut‖2

− εα

2
‖∇u‖2− εαω−1

2
‖u‖p

p−
(

e−s |µ2 (s)|− ε
c∗
4δ

)∫
Ω

∫
τ2

τ1

|∇z(x,1,s, t)|2 dsdx

−
∫

Ω

∫
τ2

τ1

s |µ2 (s)|
∫ 1

0
e−sρ |∇z(x,ρ,s, t)|2 dρdsdx. (4.7)

Whence δ is fixed, by choosing N to be large enough, such that

N
[

µ1−
(∫

τ2

τ1

|µ2 (s)|ds
)]
−
(∫

τ2

τ1

|µ2 (s)|ds
)
− ε > 0 and e−s |µ2 (s)|− ε

c∗
4δ

> 0.

Hence, (4.7) takes the form, for some C > 0,

F ′3 (t)≤−C
[
‖∇ut‖2 +‖∇u‖2 +‖u‖p

p

+
∫

Ω

∫ 1

0

∫
τ2

τ1

s |µ2 (s)| |∇z(x,ρ,s, t)|2 dsdρdx
]

≤−CE (t) .

From the equivalence relation (4.5) and taking a simple integration over (0, t), the
result is established. �
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Dicle University, Department of Mathematics, Diyarbakir, Turkey
E-mail address: episkin@dicle.edu.tr

http://dx.doi.org/10.1007/BF00250942
http://dx.doi.org/10.33773/jum.957748
http://dx.doi.org/10.33773/jum.957741
http://dx.doi.org/10.15864/jmscm.3203
http://dx.doi.org/10.15864/jmscm.3209
http://dx.doi.org/10.1155/2021/4414545
http://dx.doi.org/10.1155/2021/8561626
http://dx.doi.org/10.1080/03605309908820684

	1. Introduction
	2. Well-posedness
	3. Global existence
	4. Exponential decay
	Acknowledgement
	References

