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Abstract. In this paper, we find all repdigits which can be expressed as the sum of three Half-
companion Pell numbers. To prove our main result, we use the combined approach of lower
bounds for linear forms in logarithms of algebraic numbers and a version of the Baker Davenport
reduction method.
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1. INTRODUCTION

Diophantine equations involving recurrence sequences have been studied for a
long time. One of the most interesting of these equations is the equations involving
repdigits.

A repdigit, short for “repeated digit”, T is a natural number composed of repeated
instances of the same digit in its decimal expansion. That is, T is of the form

x ·
(

10t −1
9

)
for some positive integers x, t with t ≥ 1 and 1≤ x≤ 9.

Some of the most recent papers related to the Diophantine equations and repdigits
with well known recurrence sequences are [2–5, 7, 8, 10, 11]. In this note, we use
Half-companion Pell sequence in our main result.

The companion Pell numbers or Pell–Lucas numbers are defined by the recurrence
relation

Qn =


2 if n = 0,
2 if n = 1,
2Qn−1 +Qn−2 otherwise.

The first few terms of the sequence are (sequence A002203 in the OEIS): 2,2,6,14,
34, 82,198,478, . . . .
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Binet’s formula for Companion Pell numbers numbers is

Qn = ϕ
n +ψ

n

where ϕ =
(

1+
√

2
)

(the silver ratio) and ψ =
(

1−
√

2
)

are roots of the character-

istic equation x2−2x−1 = 0. From this formula, one can easiliy prove that

ϕ
n−2 ≤ Qn ≤ 2ϕ

n−1.

by the induction on n.
Half-companion Pell numbers Hn that play an important role in obtaning Lucas-

Balancing numbers Cn as Cn = H2n are defined by Hn = Qn/2. So, it is obvious that

Hn =
ϕn +ψn

2
.

Further, for every positive integer n≥ 2,

ϕ
n−1 ≤ 2Hn ≤ ϕ

n+1. (1.1)

In this study, our main result is the following:

Theorem 1.1. All nonnegative integer solutions (n,m,k,x, t) with 1≤ x≤ 9 satis-
fying the Diophantine equation

N = Hn +Hm +Hk = x ·
(

10t −1
9

)
(1.2)

as follows:

(n,m,k,x, t) ∈ {(0,1,1,3,1) ,(0,1,2,5,1),(0,1,3,9,1) ,(0,2,1,5,1) ,(0,2,2,7,1) ,
(0,2,3,1,2) , (0,3,1,9,1) ,(0,3,2,1,2),(1,1,1,3,1) ,(1,1,2,5,1) ,

(1,1,3,9,1) ,(1,2,1,5,1) , (1,2,2,7,1) ,(1,2,3,1,2),(1,3,1,9,1) ,

(1,3,2,1,2) ,(2,1,1,5,1) ,(2,1,2,7,1) , (2,1,3,1,2) ,(2,2,1,7,1),

(2,2,2,9,1) ,(2,3,1,1,2) ,(3,1,1,9,1) ,(3,1,2,1,2) , (3,2,1,1,2) ,

(3,3,5,5,2),(3,5,3,5,2) ,(4,5,5,9,2) ,(5,3,3,5,2) ,(5,4,5,9,2) ,

(5,5,4,9,2)}

2. PRELIMINARIES

Before proceeding with the proof of our main result, let us give some necessary
information for proof. We give the definition of the logarithmic height of an algebraic
number and its some properties.
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Definition 2.1. Let z be an algebraic number of degree d (z) with minimal poly-
nomial

f (x) = a0xd(z)+a1xd(z)−1 + · · ·+ad(z) = a0 ·
d(z)

∏
i=1

(x− zi)

where ai’s are relatively prime integers with a0 > 0 and zi’s are conjugates of z. Then

h(z) =
1

d (z)

(
loga0 +

d(z)

∑
i=1

log(max{|zi| ,1})

)
is called the logarithmic height of z. The following proposition gives some properties
of logarithmic height that can be found in [12].

Proposition 2.1. Let z,z1,z2, . . . ,zt be elements of an algebraic closure of Q and
m ∈ Z. Then

(1) h(z1 · · ·zt)≤ ∑
t
i=1 h(zi)

(2) h(z1 + · · ·+ zt)≤ log t +∑
t
i=1 h(zi)

(3) h(zm)=|m|h(z) .
We will use the following theorem (see [9] or Theorem 9.4 in [1]) for proving our
results.

Theorem 2.1. Let z1,z2, . . . ,zs be nonzero elements of algebraic number field F of
degree D over Q and let b1,b2, . . . ,bs ∈ Z. Set

B := max{|b1| , . . . , |bs|}
and

Λ := zb1
1 . . .zbs

s −1.
If Λ is nonzero, then

log |Λ|>−3 ·30s+4 · (s+1)5.5 ·D2 · (1+ logD) · (1+ log(sB)) ·A1 · · ·As

where
Ai ≥max{D ·h(zi), |logzi| ,0.16}

for all 1≤ i≤ s. If F= R, then

log |Λ|>−1.4 ·30s+3 · s4.5 ·D2 · (1+ logD) · (1+ logB) ·A1 · · ·As.

Another main tool for our proof is a variant of Baker and Davenport reduction
method due to [6].

Let ψ1,ψ2,ε ∈ R be given and let x1,x2 ∈ Z be unknowns. Let

Γ = ε+ x1ψ1 + x2ψ2. (2.1)

Let c,δ be positive constants. Set X = max{|x1| , |x2|}. Let X0,Y be positive. Assume
that

|Γ|< c · exp(−δ ·Y ) , (2.2)
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Y ≤ X ≤ X0. (2.3)
Set ψ=−ψ1/ψ2. Let the continued fraction expansion of ψ be given by [a0,a1,a2, . . . ]
and let the kth convergent of ψ be pk/qk for k = 0,1,2, . . . . Without loss of the gen-
erality, we may assume that |ψ1|< |ψ2| and that x1 > 0. We have the following two
result from [6].

Lemma 2.1. Let
A = max

0≤k≤Y0
ak+1.

If (2.2) and (2.3) hold for x1,x2 and ε = 0 in (2.1), then

Y <
1
δ

log
(

c(A+2)X0

|ψ2|

)
.

If ε 6= 0, then setting φ = ε/ψ2 we have that
Γ

ψ2
= φ− x1ψ+ x2.

Lemma 2.2. Let p/q be a convergent of ψ with q > X0. Suppose that

‖qφ‖> 2X0

q

where ‖·‖ denotes the distance from the nearest integer. Then, the solutions of (2.2)
and (2.3) satisfy

Y <
1
δ

log
(

q2c
|ψ2|X0

)
.

3. THE PROOF OF THEOREM 1.1

Let us assume that n ≥ m ≥ k, t > 0 and x ∈ {1,2, . . . ,9}. A quick search in
Mathematica reveals that the solutions of equation (1.2) for 0≤ n≤ 500 are as stated
in Theorem 1.1. Exactly, the solutions of equation (1.2) are

N ∈ {3,5,7,9,11,55,99} .
We will assume n> 500 for the remainder of the work. Further, since Half-companion
Pell numbers are all odd, (1.2) has no solution for even x. Thus, with A= {1,3,5,7,9},
x ∈ A.

The equations (1.1) and (1.2) imply that

H501 ≤ Hn ≤ Hn +Hm +Hk = x ·
(

10t −1
9

)
≤ 10t −1.

It follows that

191≤ log(1+H501)

log(10)
≤ t. (3.1)

Now,
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10t−1 ≤ x ·
(

10t −1
9

)
= Hn +Hm +Hk ≤ 3Hn

≤ 3
2
(ϕn + |ψ|n)< 3

2
(ϕn +1)<

3
2

ϕ
n < ϕ

n+0.47

which means that

2.61(t−1)< (t−1)
log10
logϕ

< n+0.47.

It can be easily seen from the last inequality that

t < 2.61t−3.08 < n

and from (3.1) that
191 < t < n.

Let us rewrite the equation (1.2) as

ϕn +ψn

2
+

ϕm +ψm

2
+

ϕk +ψk

2
= x ·

(
10t −1

9

)
. (3.2)

The equality (3.2) can be simply converted to

ϕn +ψn

2
+

ϕm +ψm

2
+

ϕk +ψk

2
− x×10t

9
=− x

9
. (3.3)

In order to obtain a bound on n, we examine equation (3.3) in three different cases.

Case 1. We have that

ϕn

2

(
1+ϕ

m−n +ϕ
k−n
)
− x×10t

9
=− x

9
− ψn

2
− ψm

2
− ψk

2
.

This yields∣∣∣∣ϕn

2

(
1+ϕ

m−n +ϕ
k−n
)
− x×10t

9

∣∣∣∣≤ x
9
+
|ψ|n

2
+
|ψ|m

2
+
|ψ|k

2
<

1
2
(2+3) .

From this inequality, we get∣∣∣∣ϕn

2

(
1+ϕ

m−n +ϕ
k−n
)
− x×10t

9

∣∣∣∣< ϕ2

2
. (3.4)

By multiplying both sides of the inequality (3.4) by

2ϕ−n

1+ϕm−n +ϕk−n

we obtain∣∣∣∣1−ϕ
−k10t

(
2x

9(ϕn−k +ϕm−k +1)

)∣∣∣∣< ϕ2−n

1+ϕm−n +ϕk−n < ϕ
2−n. (3.5)
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Now let us check whether the obtained inequality (3.5) conforms to the hypothesis in
Theorem 2.1. Set

∆1 := 1−ϕ
−k10t

(
2x

9(ϕn−k +ϕm−k +1)

)
.

Suppose that ∆1 = 0. Then, we have

ϕ
n +ϕ

m +ϕ
k =

10t ×2x
9

and hence, ϕn +ϕm +ϕk ∈ Q, which is not possible for any n,m,k > 0. Therefore
∆1 6= 0. Thus, we can apply Theorem 2.1 to the inequality (3.5). Take,

z1 = ϕ, z2 = 10, z3 =
2x

9(ϕn−k +ϕm−k +1)
, b1 =−k, b2 = t, b3 = 1

where z1,z2,z3 ∈Q
√

2 and b1,b2,b3 ∈ Z. Since zi ∈Q
√

2 for i ∈ {1,2,3} D = 2. So,
we can take

0.9 = A1 ≥ 2 ·h(ϕ) = 2 · 1
2

log(ϕ) = log(ϕ)∼ 0.88

4.7 = A2 ≥ 2 ·h(10)< 2 · log(10)∼ 4.6.

Let us compute A3. We have

z3 =
2x

9(ϕn−k +ϕm−k +1)
< 2

and

z−1
3 =

9
(
ϕn−k +ϕm−k +1

)
2x

<
27
2

ϕ
n−k.

So, |log(z3)|< 3+(n− k) logϕ. Also,

h(z3)≤ h(2x)+h(9)+h
(

ϕ
n−k +ϕ

m−k +1
)

≤ h(18)+h(9)+h
(

ϕ
n−k +ϕ

m−k
)
+ log2

≤ h(18)+h(9)+ log2+h
(

ϕ
m−k (

ϕ
n−m +1

))
≤ log18+ log9+2log2+h

(
ϕ

m−k
)
+h
(
ϕ

n−m)
≤ log18+ log9+2log2+(m− k)h(ϕ)+(n−m)h(ϕ)

= log18+ log9+2log2+
1
2
(n− k) logϕ.

Therefore, 2h(z3)≤ 13+(n− k) logϕ. This yields

13+(n− k) logϕ = A3 ≥max{2h(z3) , |log(z3)| ,0.16} .
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Finally, B = max{k, t,1} < n. Set K1 = 1.4 · 306 · 34.5 · 22 · (1+ log2) ·A1 ·A2. By
applying Theorem 2.1 to ∆1, we get

log |∆1|>−K1 · (1+ log(n)) · (13+(n− k) logϕ)

and by using the inequality (3.5), we obtain

n logϕ < 2logϕ+K1 · (1+ log(n)) · (13+(n− k) logϕ) . (3.6)

Case 2. Let us rewrite the equation (3.3) as

ϕn

2
(
1+ϕ

m−n)− x×10t

9
=− x

9
− ψn

2
− ψm

2
− ϕk

2
− ψk

2
. (3.7)

This equation yields∣∣∣∣ϕn

2
(
1+ϕ

m−n)− x×10t

9

∣∣∣∣≤ x
9
+
|ψ|n

2
+
|ψ|m

2
+

ϕk

2
+
|ψ|k

2

≤ 1+
1
2
+

1
2
+

ϕk

2
+

1
2

≤ 1
2
(2+4)ϕ

k

and from the last inequality we have that∣∣∣∣ϕn

2
(
1+ϕ

m−n)− x×10t

9

∣∣∣∣< ϕk+3

2
. (3.8)

By multiplying both sides of the inequality (3.8) by

2ϕ−n

1+ϕm−n

we get ∣∣∣∣1−ϕ
−m10t

(
2x

9(1+ϕn−m)

)∣∣∣∣< ϕk−n+3

1+ϕm−n .

Finally, we can write ∣∣∣∣1−ϕ
−m10t

(
2x

9(1+ϕn−m)

)∣∣∣∣< ϕ
k−n+3. (3.9)

Set

∆2 := 1−ϕ
−m10t

(
2x

9(1+ϕn−m)

)
.

Similar to the proof given in the previous case, it can be seen easily that ∆2 6= 0.
Using the notations in Theorem 2.1, we deduce that

z1 = ϕ, z2 = 10, z3 =
2x

9(1+ϕn−m)
, b1 =−m, b2 = t, b3 = 1
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where z1,z2,z3 ∈Q
√

2 and b1,b2,b3 ∈ Z. Since zi ∈Q
√

2 for i ∈ {1,2,3} D = 2 and
B = max{m, t,1}< n. So, we can take A1 = 0.9 and A2 = 4.7 as in the previous case.
Let us compute A3. We have

z3 =
2x

9(1+ϕn−m)
< 2

and

z−1
3 =

9(1+ϕn−m)

2x
<

18
2

ϕ
n−m,

so |log(z3)|< 3+(n−m) logϕ. Also,

h(z3)≤ h(2x)+h(9)+h
(
1+ϕ

n−m)
≤ h(18)+h(9)+ log2+(n−m)h(ϕ)

= h(18)+h(9)+ log2+
1
2
(n−m) logϕ.

Therefore, 2h(z3)≤ 12+(n−m) logϕ, and so

12+(n−m) logϕ = A3 ≥max{2h(z3) , |log(z3)| ,0.16} .
Applying Theorem 2.1 to ∆2 gives us

log |∆2|>−K1 · (1+ log(n)) · (12+(n−m) logϕ)

with K1 as given in the previous case. By using the inequality (3.9), we get

(n− k) logϕ < 3logϕ+K1 · (1+ log(n)) · (12+(n−m) logϕ) . (3.10)

Case 3. Let us consider equation (3.3) for the last time as follows:

ϕn

2
− x×10t

9
=− x

9
− ψn

2
− ϕm

2
− ψm

2
− ϕk

2
− ψk

2
. (3.11)

This yields ∣∣∣∣ϕn

2
− x×10t

9

∣∣∣∣≤ x
9
+
|ψ|n

2
+

ϕm

2
+
|ψ|m

2
+

ϕk

2
+
|ψ|k

2

≤ 1+
1
2
+

ϕm

2
+

1
2
+

ϕk

2
+

1
2
≤ 1

2
(2+5)ϕ

m

and so ∣∣∣∣ϕn

2
− x×10t

9

∣∣∣∣< ϕm+3

2
. (3.12)

Multiplying through (3.12) by 2ϕ−n, we obtain∣∣∣∣1−ϕ
−n10t

(
2x
9

)∣∣∣∣< ϕ
m−n+3. (3.13)

Set

∆3 := 1−ϕ
−n10t

(
2x
9

)
.
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Again it is clear that ∆3 6= 0. We apply Theorem 2.1 with the data

z1 = ϕ, z2 = 10, z3 =
2x
9
, b1 =−n, b2 = t, b3 = 1

where z1,z2,z3 ∈Q
√

2 and b1,b2,b3 ∈ Z. Since zi ∈Q
√

2 for i ∈ {1,2,3} D = 2. We
have the same A1 and A2 as in the previous cases. Let us compute A3.

z3 =
2x
9
≤ 2

and
z−1

3 =
9
2x
≤ 9

2
,

so |logz3|< 1.51. Also,

h(z3)≤ h(2x)+h(9)≤ h(18)+h(9)

which implies that
2h(z3)< 10.2.

Therefore, we obtain

10.2 = A3 ≥max{2h(z3) , |logz3| ,0.16} .
By applying Theorem 2.1 to (3.13), we get

(n−m) logϕ < 3logϕ+10.2 ·K1 · (1+ logn)< 10.4 ·K1 · (1+ logn) .

Combining this result with the inequality (3.10), we get

(n− k) logϕ < 3logϕ+K1 · (1+ log(n)) · (12+10.4 ·K1 · (1+ log(n)))

< 10.6 ·K2
1 · (1+ log(n))2 .

The last result and the inequality (3.6) show that

n logϕ < 2logϕ+K1 · (1+ log(n)) ·
(

13+10.6 ·K2
1 · (1+ log(n))2

)
< 10.8 ·K3

1 · (1+ log(n))3 .

Simplifying the last inequality we obtain

n≤ 9.68×1044.

Now let us try to lower this bound. Set

Γ1 =−n logϕ+ t log10+ log
(

2x
9

)
.

If we insert the Γ1 into the equation (3.11), we get
ϕn

2
(
1− eΓ1

)
=− x

9
− ψn

2
−Hm−Hk < 0

and so Γ1 > 0. Thus, we obtain

0 < Γ1 < eΓ1−1 < ϕ
m−n+3
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from the inequality (3.13). It follows that

|Γ1|< ϕ
3.1exp(−0.88(n−m))

with n−m≤ n≤ 9.68×1044. If we divide Γ1 by log10, we get

Γ1

log10
=

log(2x/9)
log10

−n
logϕ

log10
+ t.

Hence, we can take

c = ϕ
3.1, δ = 0.88, X0 = 9.68×1044, φ =

log(2x/9)
log10

ψ =
logϕ

log10
, ψ1 =− logϕ, ψ2 = log10, ε = log(2x/9) .

For all values of x ∈ {1,2, . . . ,9}, q = q99 satisfies the conditions q > X0 and ‖qφ‖>
2X0

q given in the Lemma 2.2. So, applying Lemma 2.2, we obtain

n−m < 128.

Set

Γ2 =−m logϕ+ t log10+ log
(

2x
9(ϕn−m +1)

)
.

From (3.7), we have that
ϕn

2
(
1+ϕ

m−n)(1− eΓ2
)
=− x

9
− ψn

2
− ψm

2
−Hk < 0

which implies Γ2 > 0. From the inequality (3.9), we obtain

0 < Γ2 < eΓ2−1 < ϕ
k−n+3.

Hence,
|Γ2|< ϕ

3.1exp(−0.88(n− k))

where n− k ≤ n ≤ 9.68× 1044. q = q103 satisfies the hypothesis of Lemma 2.2 and
applying the Lemma 2.2, we obtain n− k ≤ 141. Finally, set

Γ3 =−k logϕ+ t log10+ log
(

2x
9(ϕn−k +ϕm−k +1)

)
.

It is easy to see from previous trials that Γ3 > 0. So, the inequality (3.5) implies that

0 < Γ3 < eΓ3−1 < ϕ
2−n < ϕ

2.1 · exp(−0.88 ·n)

which yields
|Γ3|< ϕ

2.1 · exp(−0.88 ·n) .
We see that hypothesis of Lemma 2.2 holds for q = q109. Thus, applying Lemma 2.2
we obtain n < 155 which contradicts our assumption that n > 500.

This completes our proof.
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4. CONCLUSION

In this paper we have given all solutions of equation (1.2). A similar work can be
done for the quadruple sum.
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[3] A. Çağman, “Repdigits as product of Fibonacci and Pell numbers,” Turkish Journal of Science,
vol. 6, no. 1, pp. 31–35, 2021.
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