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Abstract. In this paper, we introduce a new function class called n-fractional polynomial convex
function and their some algebric properties. We obtain some refinements of the right-hand side
of Hermite-Hadamard inequality for the class of functions whose derivatives in absolutely value
at certain powers are n-fractional polynomial convex. Also, we compare the results obtained with
both Hölder, Hölder-İşcan inequalities and power-mean, improved-power-mean integral inequal-
ities and show that the result obtained with Hölder-İşcan and improved power-mean inequalities
give better approach than the others. Some applications to special means of real numbers are also
given.

2010 Mathematics Subject Classification: 26A51; 26D10; 26D15

Keywords: convex function, n-fractional polynomial convexity, Hölder integral inequality, Höl-
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1. PRELIMINARIES

Due to its robustness, convex functions and convex sets have been generalized
and extended in many mathematics branches, in particular, many inequalities can
be found in the literature via convexity theory. To the best of our knowledge, the
Hermite–Hadamard inequality is a well-known, paramount and extensively useful
inequality in the applied literature of mathematical inequalities. Let ϕ : I → R be a
convex function. Then the following inequalities hold

ϕ

(
u+ v

2

)
≤ 1

v−u

∫ v

u
ϕ(x)dx≤ ϕ(u)+ϕ(v)

2
(1.1)

for all u,v ∈ I with u < v. Both inequalities hold in the reversed direction if the func-
tion ϕ is concave. This double inequality is well known as the Hermite-Hadamard
inequality [5]. Note that some of the classical inequalities for means can be derived
from Hermite-Hadamard integral inequalities for appropriate particular selections of
the mapping ϕ. Convexity theory provides powerful principles and techniques to
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study a wide class of problems in both pure and applied mathematics. See articles
[1, 3, 4, 6, 8, 9, 11] and the references therein.

Definition 1 ([12, Definition 4]). Let h : J→R be a non-negative function, h 6= 0.
We say that ϕ : I→R is an h-convex function, or that ϕ belongs to the class SX (h, I),
if ϕ is non-negative and for all u,v ∈ I, α ∈ (0,1) we have

ϕ(αu+(1−α)v)≤ h(α)ϕ(u)+h(1−α)ϕ(v) .

If this inequality is reversed, then ϕ is said to be h-concave, i.e. ϕ ∈ SV (h, I). It
is clear that, if we choose h(α) = α and h(α) = 1, then the h-convexity reduces to
convexity and definition of P-function, respectively.

Readers can look at [2] for studies on h-convexity.
In [7], İşcan gave a refinement of the Hölder integral inequality as follows:

Theorem 1 (Hölder-İşcan integral inequality [7, Theorem 2.1]). Let p > 1 and
1
p +

1
q = 1. If ϕ and ψ are real functions defined on interval [u,v] and if |ϕ|p, |ψ|q are

integrable functions on [u,v] then∫ v

u
|ϕ(x)ψ(x)|dx≤ 1

v−u

{(∫ v

u
(v− x) |ϕ(x)|p dx

) 1
p
(∫ v

u
(v− x) |ψ(x)|q dx

) 1
q

+

(∫ v

u
(x−u) |ϕ(x)|p dx

) 1
p
(∫ v

u
(x−u) |ψ(x)|q dx

) 1
q
}

An refinement of power-mean integral inequality as a different version of the
Hölder-İşcan integral inequality can be given as follows:

Theorem 2 (Improved power-mean integral inequality [10]). Let q≥ 1. If ϕ and ψ

are real functions defined on interval [u,v] and if |ϕ|, |ϕ| |ψ|q are integrable functions
on [u,v] then∫ v

u
|ϕ(x)ψ(x)|dx

≤ 1
v−u

{(∫ v

u
(v− x) |ϕ(x)|dx

)1− 1
q
(∫ v

u
(v− x) |ϕ(x)| |ψ(x)|q dx

) 1
q

+

(∫ v

u
(x−u) |ϕ(x)|dx

)1− 1
q
(∫ v

u
(x−u) |ϕ(x)| |ψ(x)|q dx

) 1
q
}

The main purpose of this paper is to introduce the concept of n-fractional poly-
nomial convex functions and establish some results connected with the right-hand
side of new inequalities similar to the Hermite-hadamard inequality for these classes
of functions. Some applications to special means of positive real numbers are also
given.
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2. THE DEFINITION OF N-FRACTIONAL POLYNOMIAL CONVEX FUNCTIONS

In this section, we introduce a new concept, which is called n-fractional polyno-
mial convexity and we give by setting some algebraic properties for the n-fractional
polynomial convex functions, as follows:

Definition 2. Let n ∈ N. A non-negative function ϕ : I ⊂ R→ R is called n-
fractional polynomial convex function if the inequality

ϕ(tu+(1− t)v)≤ 1
n

n

∑
i=1

t1/i
ϕ(u)+

1
n

n

∑
i=1

(1− t)1/i
ϕ(v) (2.1)

holds for every u,v ∈ I and t ∈ [0,1].

We will denote by FPC (I) the class of all fractional n-fractional polynomial con-
vex functions on interval I.

We note that, every fractional n-fractional polynomial convex function is a h-
convex function with the function h(t) = 1

n ∑
n
i=1 t1/i. Therefore, if ϕ,ψ ∈ FPC (I),

then
(i) ϕ+ψ ∈ FPC (I) and for c ∈ R (c ≥ 0) cϕ ∈ FPC (I) . (see [12, Proposition

9]).
(ii) if ϕ and g be a similarly ordered functions on I , then ϕψ ∈ FPC (I). (See

[12, Proposition 10]).
Also, if ϕ : I → J is a convex and ψ ∈ FPC (J) and nondecreasing, then ψ ◦ ϕ ∈
FPC (I) (see [12, Theorem 15]).

Remark 1. We especially note that; if we take n = 1 in the inequality (2.1), then
the 1-polynomial convexity reduces to the clasical convexity.

With the help of the following remark, we can give all non-negative convex func-
tions as an example of an n-fractional polynomial convex functions.

Remark 2. Every nonnegative convex function is also a n-fractional polynomial
convex function. Indeed, since

t ≤ t1/2 ≤ t1/3 ≤ ...≤ t1/n

for all t ∈ [0,1] and n ∈ N. We can write

t ≤ 1
n

n

∑
i=1

t1/i and 1− t ≤ 1
n

n

∑
i=1

(1− t)1/i

for all t ∈ [0,1] and n ∈ N. and thus, if ϕ is an nonnegative convex function on an
interval I ⊆ R, then we have

ϕ(tu+(1− t)v)≤ tϕ(u)+(1− t)ϕ(v)≤ 1
n

n

∑
i=1

t1/i
ϕ(u)+

1
n

n

∑
i=1

(1− t)1/i
ϕ(v)

for all u,v ∈ I, t ∈ [0,1] and n ∈ N.
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Theorem 3. Let ϕ : [u,v]→R be an n-fractional polynomial convex function, then
ϕ is bounded on [u,v] .

Proof. Let M = ϕ(u)+ϕ(v) and x ∈ [u,v] be an arbitrary point. There exists an
t ∈ [0,1] such that x = tu+(1− t)v. Also, since

1
n

n

∑
i=1

t1/i ≤ 1 and
1
n

n

∑
i=1

(1− t)1/i ≤ 1

for all t ∈ [0,1], we can write

ϕ(x)≤ 1
n

n

∑
i=1

t1/i
ϕ(u)+

1
n

n

∑
i=1

(1− t)1/i
ϕ(v)≤M.

It is also bounded from below as we see by writing an arbitrary point x ∈ [u,v] in the
form (u+v)/2+ t or (u+v)/2− t, t ∈ [0,(v−u)/2] .We can accept x = (u+v)/2+ t
since it will not loss the generality. Then

ϕ

(
u+ v

2

)
≤ 1

n

n

∑
i=1

(
1
2

)1/i[
ϕ(x)+ϕ

(
u+ v

2
− t
)]
≤
[

ϕ(x)+ϕ

(
u+ v

2
− t
)]

or

ϕ(x)≥ ϕ

(
u+ v

2

)
−ϕ

(
u+ v

2
− t
)
.

Using M as the upper bound, −ϕ
(u+v

2 − t
)
≥−M, so

ϕ(x)≥ ϕ

(
u+ v

2

)
−M = m.

Thus, the proof is completed. �

Theorem 4. Let ϕα : [u,v]→ R be an arbitrary family of n-fractional polyno-
mial convex functions and let ϕ(m) = supα ϕα(m). If J = {m ∈ [u,v] : ϕ(m)< ∞} is
nonempty, then J is an interval and ϕ is a n-fractional polynomial convex function on
J.

Proof. Let t ∈ [0,1] and m,r ∈ J be arbitrary. Then

ϕ(tm+(1− t)r) = sup
α

ϕα (tm+(1− t)r)

≤ sup
α

[
1
n

n

∑
i=1

t1/i
ϕα(m)+

1
n

n

∑
i=1

(1− t)1/i
ϕα(r)

]

≤ 1
n

n

∑
i=1

t1/i sup
α

ϕα (m)+
1
n

n

∑
i=1

(1− t)1/i sup
α

ϕα (r)

=
1
n

n

∑
i=1

t1/i
ϕ(m)+

1
n

n

∑
i=1

(1− t)1/i
ϕ(r)< ∞.
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This shows simultaneously that J is an interval, since it contains every point between
any two of its points, and that ϕ is a n-fractional polynomial convex function. This
completes the proof of theorem. �

3. HERMITE-HADAMARD INEQUALITY FOR N-FRACTIONAL POLYNOMIAL
CONVEX FUNCTIONS

The goal of this paper is to establish some inequalities of Hermite-Hadamard type
for n-fractional polynomial convex functions. In this section, we will denote by
L [u,v] the space of (Lebesgue) integrable functions on [u,v] .

Theorem 5. Let ϕ : [u,v]→ R be a n-fractional polynomial convex function. If
u < v and ϕ ∈ L [u,v], then the following Hermite-Hadaamrd type inequalities hold:

n

2∑
n
i=1
(1

2

)1/i ϕ

(
u+ v

2

)
≤ 1

v−u

∫ v

u
ϕ(x)dx≤

(
ϕ(u)+ϕ(v)

n

) n

∑
k=1

k
k+1

. (3.1)

Proof. From the propery of the n-fractional polynomial convex function of ϕ, we
get

ϕ

(
u+ v

2

)
= ϕ

(
(tu+(1− t)v)+ [(1− t)u+ tv]

2

)
= ϕ

(
1
2
(tu+(1− t)v)+

1
2
[(1− t)u+ tv]

)
≤ 1

n

n

∑
k=1

(
1
2

)1/k

ϕ(tu+(1− t)v)+
1
n

n

∑
k=1

(
1
2

)1/k

ϕ((1− t)u+ tv)

=
1
n

n

∑
k=1

(
1
2

)1/k

[ϕ(tu+(1− t)v)+ϕ((1− t)u+ tv)] .

By taking integral in the last inequality with respect to t ∈ [0,1], we deduce that

ϕ

(
u+ v

2

)
≤ 1

n

n

∑
k=1

(
1
2

)1/k [∫ 1

0
ϕ(tu+(1− t)v)dt +

∫ 1

0
ϕ((1− t)u+ tv)dt

]
=

2
(v−u)n

n

∑
k=1

(
1
2

)1/k ∫ v

u
ϕ(x)dx.

By using the property of the n-fractional polynomial convex function ϕ, if the variable
is changed as x = tu+(1− t)v, then

1
v−u

∫ v

u
ϕ(x)du =

∫ 1

0
ϕ(tu+(1− t)v)dt

≤
∫ 1

0

[
1
n

n

∑
k=1

t1/k
ϕ(u)+

1
n

n

∑
k=1

(1− t)1/k
ϕ(v)

]
dt
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=
ϕ(u)

n

∫ 1

0

n

∑
k=1

t1/kdt +
ϕ(v)

n

∫ 1

0

n

∑
k=1

(1− t)1/k dt

=
ϕ(u)
n+1

n

∑
i=1

∫ 1

0
t1/kdt +

ϕ(v)
n

n

∑
k=1

∫ 1

0
(1− t)1/k dt

=
ϕ(u)

n

n

∑
k=1

k
k+1

+
ϕ(v)

n

n

∑
k=1

k
k+1

=

[
ϕ(u)+ϕ(v)

n

] n

∑
k=1

k
k+1

where ∫ 1

0
t1/kdt =

∫ 1

0
(1− t)1/k =

k
k+1

.

This completes the proof of theorem. �

Remark 3. In case of n = 1, the inequality (3.1) coincides with the the inequality
(1.1)

4. TRAPEZOID TYPE INEQUALITIES FOR N-FRACTIONAL POLYNOMIAL CONVEX
FUNCTIONS

The main purpose of this section is to establish new estimates that refine Hermite-
Hadamard inequality for functions whose first derivative in absolute value, raised to
a certain power which is greater than one, respectively at least one, is n-fractional
polynomial convex function. Dragomir and Agarwal [3] used the following lemma:

Lemma 1. Let ϕ : I ⊆ R→ R be a differentiable function on I◦, u,v ∈ I◦ with
u < v. If ϕ′ ∈ L [u,v].The following identity holds:

ϕ(u)+ϕ(v)
2

− 1
v−u

∫ v

u
ϕ(x)dx =

v−u
2

∫ 1

0
(1−2t)ϕ′ (tu+(1− t)v)dt.

Theorem 6. Let ϕ : I ⊆ R→ R be a differentiable function on I◦, u,v ∈ I◦ with
u < v and assume that ϕ′ ∈ L [u,v]. If |ϕ′| is n-fractional polynomial convex function
on interval [u,v], then the following inequality holds∣∣∣∣ϕ(u)+ϕ(v)

2
− 1

v−u

∫ v

u
ϕ(x)dx

∣∣∣∣ (4.1)

≤ v−u
n

n

∑
k=1

[
k(k+21/k)

21/k(k+1)(2k+1)

]
A
(∣∣ϕ′ (u)∣∣ , ∣∣ϕ′ (v)∣∣) ,

where A(., .) is the arithmetic mean.
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Proof. Using Lemma 1 and the inequality∣∣ϕ′ (tu+(1− t)v)
∣∣≤ 1

n

n

∑
k=1

t1/k
∣∣ϕ′(u)∣∣+ 1

n

n

∑
k=1

(1− t)1/k
∣∣ϕ′(v)∣∣ ,

we get∣∣∣∣ϕ(u)+ϕ(v)
2

− 1
v−u

∫ v

u
ϕ(x)dx

∣∣∣∣
≤
∣∣∣∣v−u

2

∫ 1

0
(1−2t)ϕ′ (tu+(1− t)v)dt

∣∣∣∣
≤ v−u

2

∫ 1

0
|1−2t|

(
1
n

n

∑
k=1

t1/k
∣∣ϕ′(u)∣∣+ 1

n

n

∑
k=1

(1− t)1/k
∣∣ϕ′(v)∣∣)dt

≤ v−u
2n

(∣∣ϕ′ (u)∣∣∫ 1

0
|1−2t|

n

∑
k=1

t1/kdt +
∣∣ϕ′ (v)∣∣∫ 1

0
|1−2t|

n

∑
k=1

(1− t)1/kdt

)

=
v−u
2n

(∣∣ϕ′ (u)∣∣ n

∑
k=1

∫ 1

0
|1−2t| t1/kdt +

∣∣ϕ′ (v)∣∣ n

∑
k=1

∫ 1

0
|1−2t|(1− t)1/kdt

)

=
v−u
2n

(∣∣ϕ′ (u)∣∣ n

∑
k=1

[
k(k+21/k)

21/k(k+1)(2k+1)

]
+
∣∣ϕ′ (v)∣∣ n

∑
k=1

[
k(k+21/k)

21/k(k+1)(2k+1)

])

=
v−u

n

n

∑
k=1

[
k(k+21/k)

21/k(k+1)(2k+1)

]
A
(∣∣ϕ′ (u)∣∣ , ∣∣ϕ′ (v)∣∣)

where ∫ 1

0
|1−2t| t1/kdt =

∫ 1

0
|1−2t|(1− t)1/k =

k(k+21/k)

21/k(k+1)(2k+1)
.

This completes the proof of theorem. �

Corollary 1. If we take n = 1 in the inequality (4.1), we get the following inequal-
ity: ∣∣∣∣ϕ(u)+ϕ(v)

2
− 1

v−u

∫ v

u
ϕ(x)dx

∣∣∣∣≤ v−u
4

A
(∣∣ϕ′ (u)∣∣ , ∣∣ϕ′ (v)∣∣) .

This inequality coincides with the inequality in [3].

Theorem 7. Let ϕ : I ⊆R→R be a differentiable function on I◦, u,v∈ I◦ with u<
v, q > 1, 1

p +
1
q = 1 and assume that ϕ′ ∈ L [u,v]. If |ϕ′|q is an n-fractional polynomial

convex function on interval [u,v], then the following inequality holds∣∣∣∣ϕ(u)+ϕ(v)
2

− 1
v−u

∫ v

u
ϕ(x)dx

∣∣∣∣ (4.2)
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≤ v−u
2

(
1

p+1

) 1
p
(

2
n

n

∑
k=1

k
k+1

) 1
q

A
1
q
(∣∣ϕ′(u)∣∣q , ∣∣ϕ′(v)∣∣q) ,

where A(., .) is the arithmetic mean.

Proof. Using Lemma 1, Hölder’s integral inequality and the following inequality∣∣ϕ′ (tu+(1− t)v)
∣∣q ≤ 1

n

n

∑
k=1

t1/k
∣∣ϕ′(u)∣∣q + 1

n

n

∑
k=1

(1− t)1/k
∣∣ϕ′(v)∣∣q

which is the n-fractional polynomial convex function of |ϕ′|q, we get∣∣∣∣ϕ(u)+ϕ(v)
2

− 1
v−u

∫ v

u
ϕ(x)dx

∣∣∣∣
≤ v−u

2

(∫ 1

0
|1−2t|p dt

) 1
p
(∫ 1

0

∣∣ϕ′ (tu+(1− t)v)
∣∣q dt

) 1
q

≤ v−u
2

(
1

p+1

) 1
p
(
|ϕ′(u)|q

n

n

∑
k=1

∫ 1

0
t1/kdt +

|ϕ′(v)|q

n

n

∑
k=1

∫ 1

0
(1− t)1/kdt

) 1
q

=
v−u

2

(
1

p+1

) 1
p
(

2
n

n

∑
k=1

k
k+1

) 1
q

A
1
q
(∣∣ϕ′(u)∣∣q , ∣∣ϕ′(v)∣∣q) ,

where ∫ 1

0
|1−2t|p dt =

1
p+1

.

This completes the proof of theorem. �

Corollary 2. If we take n = 1 in the inequality (4.2), we get the following inequal-
ity: ∣∣∣∣ϕ(u)+ϕ(v)

2
− 1

v−u

∫ v

u
ϕ(x)dx

∣∣∣∣≤ v−u
2

(
1

p+1

) 1
p

A
1
q
(∣∣ϕ′(u)∣∣q , ∣∣ϕ′(v)∣∣q) .

This inequality coincides with the inequality in [3].

Theorem 8. Let ϕ : I ⊆ R→ R be a differentiable function on I◦, u,v ∈ I◦ with
u < v, q≥ 1and assume that ϕ′ ∈ L [u,v]. If |ϕ′|q is an n-fractional polynomial convex
function on the interval [u,v], then the following inequality holds∣∣∣∣ϕ(u)+ϕ(v)

2
− 1

v−u

∫ v

u
ϕ(x)dx

∣∣∣∣ (4.3)

≤ v−u
2

(
1
2

)1− 2
q
(

1
n

n

∑
k=1

k(k+21/k)

21/k(k+1)(2k+1)

) 1
q

A
1
q
(∣∣ϕ′(u)∣∣q , ∣∣ϕ′(v)∣∣q) ,

where A(., .) is the arithmetic mean.
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Proof. Assume first that q > 1. From Lemma 1, power mean integral inequality
and the property of the n-fractional polynomial convex function of |ϕ′|q, we obtain∣∣∣∣ϕ(u)+ϕ(v)

2
− 1

v−u

∫ v

u
ϕ(x)dx

∣∣∣∣
≤ v−u

2

(∫ 1

0
|1−2t|dt

)1− 1
q
(∫ 1

0
|1−2t|

∣∣ϕ′ (tu+(1− t)v)
∣∣q dt

) 1
q

≤ v−u
2

(
1
2

)1− 1
q
(∫ 1

0
|1−2t|

[
1
n

n

∑
k=1

t1/k
∣∣ϕ′(u)∣∣q

+
1
n

n

∑
k=1

(1− t)1/k
∣∣ϕ′(v)∣∣q dt

]) 1
q

=
v−u

2

(
1
2

)1− 1
q
[
|ϕ′ (u)|q

n

n

∑
k=1

∫ 1

0
|1−2t| t1/kdt

+
|ϕ′ (v)|q

n

n

∑
k=1

∫ 1

0
|1−2t|(1− t)1/kdt

] 1
q

=
v−u

2

(
1
2

)1− 2
q
(

1
n

n

∑
k=1

k(k+21/k)

21/k(k+1)(2k+1)

) 1
q

A
1
q
(∣∣ϕ′(u)∣∣q , ∣∣ϕ′(v)∣∣q) .

For q = 1 we use the estimates from the proof of Theorem 6, which also follow step
by step the above estimates. This completes the proof of theorem. �

Corollary 3. Under the assumption of Theorem 8 with q= 1, we get the conclusion
of Theorem 6.

Corollary 4. If we take n = 1 in the inequality (4.3), we get the following inequal-
ity: ∣∣∣∣ϕ(u)+ϕ(v)

2
− 1

v−u

∫ v

u
ϕ(x)dx

∣∣∣∣≤ v−u
4

A
1
q
(∣∣ϕ′(u)∣∣q , ∣∣ϕ′(v)∣∣q) .

If we take q = 1 in the above inequality, then obtained inequality coincides with the
inequality in [3].

Now, we will prove the Theorem 7 by using Hölder-İşcan integral inequality. Then
we will show that the result we have obtained in this theorem gives a better approach
than that obtained in the Theorem 7.

Theorem 9. Let ϕ : I ⊆ R→ R be a differentiable function on I◦, u,v ∈ I◦ with
u < v, q > 1, 1

p +
1
q = 1 and assume that ϕ′ ∈ L [u,v]. If |ϕ′|q is an n-fractional
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polynomial convex function on interval [u,v], then the following inequality holds∣∣∣∣ϕ(u)+ϕ(v)
2

− 1
v−u

∫ v

u
ϕ(x)dx

∣∣∣∣ (4.4)

≤ v−u
2

(
1

2(p+1)

) 1
p
(
|ϕ′(u)|q

n
K1(n)+

|ϕ′(v)|q

n
K2(n)

) 1
q

+
v−u

2

(
1

2(p+1)

) 1
p
(
|ϕ′(u)|q

n
K2(n)+

|ϕ′(v)|q

n
K1(n)

) 1
q

,

where

K1(n) =
n

∑
k=1

k2

(k+1)(2k+1)
, K2(n) =

n

∑
k=1

k
2k+1

.

Proof. Using Lemma 1, Hölder-İşcan integral inequality and the following in-
equality ∣∣ϕ′ (tu+(1− t)v)

∣∣q ≤ 1
n

n

∑
k=1

t1/k
∣∣ϕ′(u)∣∣q + 1

n

n

∑
k=1

(1− t)1/k
∣∣ϕ′(v)∣∣q

which is the n-fractional polynomial convex function of |ϕ′|q, we get∣∣∣∣ϕ(u)+ϕ(v)
2

− 1
v−u

∫ v

u
ϕ(x)dx

∣∣∣∣
≤ v−u

2

(∫ 1

0
(1− t) |1−2t|p dt

) 1
p
(∫ 1

0
(1− t)

∣∣ϕ′ (tu+(1− t)v)
∣∣q dt

) 1
q

+
v−u

2

(∫ 1

0
t |1−2t|p dt

) 1
p
(∫ 1

0
t
∣∣ϕ′ (tu+(1− t)v)

∣∣q dt
) 1

q

≤ v−u
2

(
1

2(p+1)

) 1
p
(
|ϕ′(u)|q

n

n

∑
k=1

∫ 1

0
(1− t)t1/kdt

+
|ϕ′(v)|q

n

n

∑
k=1

∫ 1

0
(1− t)(1− t)1/kdt

) 1
q

≤ v−u
2

(
1

2(p+1)

) 1
p
(
|ϕ′(u)|q

n

n

∑
k=1

∫ 1

0
t.t1/kdt

+
|ϕ′(v)|q

n

n

∑
k=1

∫ 1

0
t(1− t)1/kdt

) 1
q

=
v−u

2

(
1

2(p+1)

) 1
p
(
|ϕ′(u)|q

n
K1(n)+

|ϕ′(v)|q

n
K2(n)

) 1
q



n-FRACTIONAL POLYNOMIAL CONVEXITY 1399

+
v−u

2

(
1

2(p+1)

) 1
p
(
|ϕ′(u)|q

n
K2(n)+

|ϕ′(v)|q

n
K1(n)

) 1
q

where ∫ 1

0
(1− t) |1−2t|p dt =

∫ 1

0
t |1−2t|p dt =

1
2(p+1)

,∫ 1

0
(1− t)t1/kdt =

∫ 1

0
t(1− t)1/kdt =

k2

(k+1)(2k+1)
,∫ 1

0
(1− t)(1− t)1/kdt =

∫ 1

0
t.t1/kdt =

k
2k+1

.

This completes the proof of theorem. �

Corollary 5. If we take n = 1 in the inequality (4.4), we get the following inequal-
ity:∣∣∣∣ϕ(u)+ϕ(v)

2
− 1

v−u

∫ v

u
ϕ(x)dx

∣∣∣∣
≤ v−u

2

(
1

2(p+1)

) 1
p
[(
|ϕ′(u)|q +2 |ϕ′(v)|q

6

) 1
q

+

(
2 |ϕ′(u)|q + |ϕ′(v)|q

6

) 1
q
]
.

Remark 4. The inequality (4.4) gives better results than the inequality (4.2). In-
deed, using the inequality xr + yr ≤ 21−r (x+ y)r , x,y ∈ [0,∞) ,0 < r ≤ 1, by sample
calculation we get

v−u
2

(
1

2(p+1)

) 1
p
(
|ϕ′(u)|q

n
K1(n)+

|ϕ′(v)|q

n
K2(n)

) 1
q

+
v−u

2

(
1

2(p+1)

) 1
p
(
|ϕ′(u)|q

n
K2(n)+

|ϕ′(v)|q

n
K1(n)

) 1
q

≤ v−u
2

(
1

2(p+1)

) 1
p

21−1/q
(

K1(n)+K2(n)
n

) 1
q (∣∣ϕ′(u)∣∣q + ∣∣ϕ′(v)∣∣q) 1

q

=
v−u

2

(
1

p+1

) 1
p
(

2
n

n

∑
k=1

k
k+1

) 1
q

A
1
q
(∣∣ϕ′(u)∣∣q , ∣∣ϕ′(v)∣∣q)

which is the required.

Theorem 10. Let ϕ : I ⊆ R→ R be a differentiable function on I◦, u,v ∈ I◦ with
u< v, q≥ 1 and assume that ϕ′ ∈ L [u,v]. If |ϕ′|q is an n-fractional polynomial convex
function on the interval [u,v], then the following inequality holds for t ∈ [0,1].∣∣∣∣ϕ(u)+ϕ(v)

2
− 1

v−u

∫ v

u
ϕ(x)dx

∣∣∣∣ (4.5)
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≤ v−u
2

(
1
2

)2− 2
q
(
|ϕ′(u)|q

n

n

∑
k=1

M1(k)+
|ϕ′(v)|q

n

n

∑
k=1

M2(k)

) 1
q

+
v−u

2

(
1
2

)2− 2
q
(
|ϕ′(u)|q

n

n

∑
k=1

M2(k)+
|ϕ′(v)|q

n

n

∑
k=1

M1(k)

) 1
q

,

where

M1(k) =
k2
[(1

2

)1+1/k
(5k+1)+1− k

]
(k+1)(2k+1)(3k+1)

, M2(k) =
k
[(1

2

)1+1/k
k+1+ k

]
(2k+1)(3k+1)

.

Proof. Assume first that q > 1. From Lemma 1, improved power-mean integral
inequality and the property of the n-fractional polynomial convex function of |ϕ′|q,
we obtain∣∣∣∣ϕ(u)+ϕ(v)

2
− 1

v−u

∫ v

u
ϕ(x)dx

∣∣∣∣
≤ v−u

2

(∫ 1

0
(1− t) |1−2t|dt

)1− 1
q
(∫ 1

0
(1− t) |1−2t|

∣∣ϕ′ (tu+(1− t)v)
∣∣q dt

) 1
q

+
v−u

2

(∫ 1

0
t |1−2t|dt

)1− 1
q
(∫ 1

0
t |1−2t|

∣∣ϕ′ (tu+(1− t)v)
∣∣q dt

) 1
q

≤ v−u
2

(
1
4

)1− 1
q
(
|ϕ′(u)|q

n

n

∑
k=1

∫ 1

0
(1− t) |1−2t| t1/kdt

+
|ϕ′(v)|q

n

n

∑
k=1

∫ 1

0
(1− t) |1−2t|(1− t)1/kdt

) 1
q

+
v−u

2

(
1
4

)1− 1
q
(
|ϕ′(u)|q

n

n

∑
k=1

∫ 1

0
t |1−2t| t1/kdt

+
|ϕ′(v)|q

n

n

∑
k=1

∫ 1

0
t |1−2t|(1− t)1/kdt

) 1
q

=
v−u

2

(
1
2

)2− 2
q
(
|ϕ′(u)|q

n

n

∑
k=1

M1(k)+
|ϕ′(v)|q

n

n

∑
k=1

M2(k)

) 1
q

+
v−u

2

(
1
2

)2− 2
q
(
|ϕ′(u)|q

n

n

∑
k=1

M2(k)+
|ϕ′(v)|q

n

n

∑
k=1

M1(k)

) 1
q
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where ∫ 1

0
(1− t) |1−2t|dt =

∫ 1

0
t |1−2t|dt =

1
4
,

M1(k) =
∫ 1

0
(1− t) |1−2t| t1/k =

∫ 1

0
t |1−2t|(1− t)1/kdt

=
k2
[(1

2

)1+1/k
(5k+1)+1− k

]
(k+1)(2k+1)(3k+1)

,

M2(k) =
∫ 1

0
t |1−2t| t1/kdt =

∫ 1

0
(1− t) |1−2t|(1− t)1/kdt

=
k
[(1

2

)1+1/k
k+1+ k

]
(2k+1)(3k+1)

.

For q = 1 we use the estimates from the proof of Theorem 6, which also follow
step by step the above estimates. This completes the proof of theorem. �

Corollary 6. If we take n = 1 in the inequality (4.5), we get the following inequal-
ity: ∣∣∣∣ϕ(u)+ϕ(v)

2
− 1

v−u

∫ v

u
ϕ(x)dx

∣∣∣∣
≤ v−u

8

[(
|ϕ′(u)|q

4
+

3 |ϕ′(v)|q

4

) 1
q

+

(
3 |ϕ′(u)|q

4
+
|ϕ′(v)|q

4

) 1
q
]
.

Remark 5. The inequality (4.5) gives better result than the inequality (4.3). Indeed,
If we use the inequality xr + yr ≤ 21−r (x+ y)r , x,y ∈ [0,∞) ,0 < r ≤ 1, we get

v−u
2

(
1
2

)2− 2
q
(
|ϕ′(u)|q

n

n

∑
s=1

M1(k)+
|ϕ′(v)|q

n

n

∑
s=1

K2(s)

) 1
q

+
v−u

2

(
1
2

)2− 2
q
(
|ϕ′(u)|q

n

n

∑
s=1

M2(k)+
|ϕ′(v)|q

n

n

∑
s=1

K1(s)

) 1
q

≤ v−u
2

(
1
2

)1− 2
q
(

1
n

n

∑
s=1

[M1(k)+M2(k)]

) 1
q

A
1
q
(∣∣ϕ′(u)∣∣q , ∣∣ϕ′(v)∣∣q) ,

where

M1(k)+M2(k) =
k(k+21/k)

21/k(k+1)(2k+1)
which completes the proof of remark.
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5. APPLICATIONS FOR SPECIAL MEANS

Throughout this section, for shortness, the following notations will be used for
special means of two nonnegative numbers u,v with v > u:

1. The arithmetic mean

A := A(u,v) =
u+ v

2
.

2. The geometric mean

G := G(u,v) =
√

uv, u,v≥ 0.

3. The harmonic mean

H := H(u,v) =
2uv

u+ v
, u,v > 0.

4. The logarithmic mean

L := L(u,v) =

{
v−u

lnv−lnu , u 6= v;
u, u = v;

u,v > 0.

5. The p-logaritmic mean

Lp := Lp(u,v) =


(

vp+1−up+1

(p+1)(v−u)

) 1
p
, u 6= v, p ∈ R\{−1,0} ;

u, u = v;
u,v > 0.

6. The identric mean

I := I(u,v) =
1
e

(
vv

uu

) 1
v−u

, u,v > 0.

These means are often used in numerical approximation and in other areas. However,
the following simple relationships are known in the literature:

H ≤ G≤ L≤ I ≤ A.

It is also known that Lp is monotonically increasing over p ∈ R, denoting L0 = I and
L−1 = L.

Proposition 1. Let u,v ∈ [0,∞) with u < v and n ∈ (−∞,0)∪ [1,∞)\{−1}. Then,
the following inequalities are obtained:

n

2∑
n
i=1
(1

2

)1/i An(u,v)≤ Ln
n(u,v)≤ A(un,vn)

2
n

n

∑
k=1

k
k+1

.

Proof. The assertion follows from the inequalities (3.1) for the function

ϕ(x) = xn, x ∈ [0,∞) .

�
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Proposition 2. Let u,v ∈ (0,∞) with u < v . Then, the following inequalities are
obtained:

n

2∑
n
i=1
(1

2

)1/i ≤ L−1(u,v)≤ 2
n

H−1(u,v)
n

∑
k=1

k
k+1

.

Proof. The assertion follows from the inequalities (3.1) for the function

ϕ(x) = x−1, x ∈ (0,∞) .

�

Proposition 3. Let u,v ∈ (0,1] with u < v. Then, the following inequalities are
obtained:

2lnG(u,v)
n

n

∑
k=1

k
k+1

≤ ln I ≤ n

2∑
n
i=1
(1

2

)1/i lnA(u,v).

Proof. The assertion follows from the inequalities (3.1) for the function

ϕ(x) =− lnx, x ∈ (0,1] .

�
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