

Miskolc Mathematical Notes Vol. 24 (2023), No. 3, pp. 1569–1579

NJ-SEMICOMMUTATIVE RINGS

SANJIV SUBBA AND TIKARAM SUBEDI

Received 22 February, 2022

Abstract. We call a ring *R* NJ-semicommutative if $wh \in N(R)$ implies $wRh \subseteq J(R)$ for any $w, h \in R$. The class of NJ-semicommutative rings is large enough that it contains semicommutative rings, left (right) quasi-duo rings, J-clean rings, and J-quasipolar rings. We provide some conditions for NJ-semicommutative rings to be reduced. We also observe that if R/J(R) is reduced, then *R* is NJ-semicommutative, and therefore we provide some conditions for NJ-semicommutative ring *R* for which R/J(R) is reduced. We also study some extensions of NJ-semicommutative rings wherein, among other results, we prove that the polynomial ring over an NJ-semicommutative ring need not be NJ-semicommutative.

2010 Mathematics Subject Classification: 16U80; 16S34, 16S36

Keywords: semicommutative rings, NJ-semicommutative rings, Jacobson radicals

1. INTRODUCTION

All rings considered in this paper are associative with identity unless otherwise mentioned. *R* represents a ring, and all modules are unital. The symbols Z(R), E(R), J(R), N(R), U(R), $T_n(R)$, $M_n(R)$, $N^*(R)$, and $N_*(R)$ respectively denote the set of all central elements of *R*, the set of all idempotent elements of *R*, the Jacobson radical of *R*, the set of all nilpotent elements of *R*, the set of all units of *R*, the ring of upper triangular matrices of order $n \times n$ over *R*, the ring of all $n \times n$ matrices over *R*, the upper nil radical of *R*, and the lower nil radical of *R*. For any $a \in R$, the notation l(a)(r(a)) stands for the left (right) annihilator of *a*.

Recall that *R* is said to be:

- (1) reduced if N(R) = 0.
- (2) *semicommutative* ([8]) if wh = 0 implies wRh = 0 for any $w, h \in R$.
- (3) *abelian* if $E(R) \subseteq Z(R)$.
- (4) *directly finite* if xy = 1 implies yx = 1, where $x, y \in R$.
- (5) *left (right) quasi-duo (*[7]) if every maximal left (right) ideal of *R* is an ideal of *R*.
- (6) 2-*primal* if $N(R) = N_*(R)$.

Let $ME_l(R) = \{e \in E(R) \mid Re \text{ is a minimal left ideal of } R\}$. An element $e \in E(R)$ is said to be *left (right) semicentral* if re = ere (er = ere) for any $r \in R$. Following

© 2023 Miskolc University Press

[13], *R* is called *left min-abel* if every element of $ME_l(R)$ is left semicentral in *R*. *R* is called left MC2 ([13]) if aRe = 0 implies eRa = 0 for any $a \in R$, $e \in ME_l(R)$.

2. Results

Definition 1. We call *R* an *NJ* – *semicommutative* if $a, b \in R$ and $ab \in N(R)$, then $aRb \subseteq J(R)$.

Evidently, semicommutative rings are NJ-semicommutative. However, the converse is not true (see the following example).

Example 1. In view of Corollary 10, $T_2(\mathbb{Z})$ is NJ-semicommutative, where \mathbb{Z} is the ring of integers. Note that $e_{11}e_{22} = 0$, $e_{11}e_{12}e_{22} = e_{12}$, where e_{ij} denote the matrix units in $T_2(\mathbb{Z})$ whose $(i, j)^{th}$ entry is 1 and zero elsewhere. So, $T_2(\mathbb{Z})$ is not semicommutative.

Theorem 1. Left (right) quasi-duo rings are NJ-semicommutative.

Proof. Let *R* be a left quasi-duo ring, and *M* be a maximal left ideal of *R*. Let $w, h \in R$ be such that $wh \in N(R)$. If $w \notin M$, then M + Rw = R. This implies that m + rw = 1 for some $m \in M, r \in R$. So mh + rwh = h. By [14, Lemma 2.3], $wh \in J(R) \subseteq M$. Since *M* is an ideal, $h \in M$. Therefore, either $w \in M$ or $h \in M$. This yields that $wRh \subseteq M$, and hence $wRh \subseteq J(R)$, that is, *R* is NJ-semicommutative. Similarly, it can be shown that *R* is an NJ-semicommutative ring whenever *R* is a right quasi-duo ring.

However, the converse is not true (see the following example).

Example 2. By [5, Example 2(ii)], $\mathbb{H}[x]$ is not right quasi-duo, where \mathbb{H} is the Hamilton quaternion over the field of real numbers. Since $\mathbb{H}[x]$ is reduced, it is NJ-semicommutative.

R is said to be *J*-clean if for each $w \in R$, w = e + j for some $e \in E(R)$ and $j \in J(R)$.

Theorem 2. J-clean rings are NJ-semicommutative.

Proof. Let *R* be a J-clean ring, and *w*, $h \in R$ be such that $wh \in N(R)$. By hypothesis, for any $r \in R$, there exists $e \in E(R)$ such that $wrh - e \in J(R)$. We prove that e = 0. Observe that

$$(wrh - e)^{2} = wrhwrh - wrhe - e(wrh - e).$$
(2.1)

Since $wh \in N(R)$, $1 - hw \in U(R)$. As *R* is J-clean, $1 - hw - e_1 \in J(R)$ for some $e_1 \in E(R)$. Therefore, $1 - (1 - hw)^{-1}e_1 \in J(R)$. This yields that $(1 - hw)^{-1}e_1 \in U(R)$ and hence $e_1 \in U(R)$, that is, $e_1 = 1$. This implies that $hw \in J(R)$. So, from Equation (2.1), $wrhe \in J(R)$. Note that wrh - e = j for some $j \in J(R)$. Hence $e = wrhe - je \in J(R)$, and so e = 0. Thus, $wrh \in J(R)$.

However, the converse of Theorem 2 is not true; for example, any commutative ring which is not J-clean (for example any field with more than two elements).

Following [6], for any $w \in R$, the *commutant* of w is defined by $comm(w) = \{y \in R \mid yw = wy\}$ and $comm^2(w) = \{x \in R \mid yx = xy \text{ for all } y \in comm(w)\}$ is called the *double commutant* of w. According to [4], R is called J - quasipolar, if for any $w \in R$, $w + f \in J(R)$ for some $f^2 = f \in comm^2(w)$.

The proof of the following proposition is similar to that of Theorem 2.

Proposition 1. J-quasipolar rings are NJ-semicommutative.

Theorem 3. If R/J(R) is NJ-semicommutative, then R is NJ-semicommutative.

Proof. Let $a, b \in R$ and $ab \in N(R)$. Clearly, $\bar{a}\bar{b} \in N(R/J(R))$. Since R/J(R) is NJ-semicommutative, $\bar{a}\bar{r}\bar{b} \in J(R/J(R))$. As R/J(R) is semiprimitive, $arb \in J(R)$.

The converse of Theorem 3 is not true (see the following example), and hence a homomorphic image of an NJ-semicommutative ring need not be NJ-semicommutative.

Example 3. Let $R = \mathbb{Z}_{(3\mathbb{Z})}$ be the localization of \mathbb{Z} at $3\mathbb{Z}$ and S the set of quaternions over the ring R. Observe that S is a noncommutative domain. So, S is an NJ-semicommutative ring. Observe that J(S) = 3S and $S/3S \cong M_2(\mathbb{Z}_3)$ via the isomorphism Ψ defined by $\Psi((x_0/y_0) + (x_1/y_1)i + (x_2/y_2)j + (x_3/y_3)k + 3S) =$

$$\begin{pmatrix} \frac{1}{x_{0}y_{0}^{-1} + x_{1}y_{1}^{-1} - x_{2}y_{2}^{-1}} & \frac{1}{x_{1}y_{1}^{-1} + x_{2}y_{2}^{-1} - x_{3}y_{3}^{-1}} \\ \frac{1}{x_{1}y_{1}^{-1} + x_{2}y_{2}^{-1} + x_{3}y_{3}^{-1}} & \frac{1}{x_{0}y_{0}^{-1} - x_{1}y_{1}^{-1} + x_{2}y_{2}^{-1}} \end{pmatrix}$$

for any $(x_0/y_0) + (x_1/y_1)i + (x_2/y_2)j + (x_3/y_3)k) + 3S \in S/3S$. Take $A = \begin{pmatrix} \overline{0} & \overline{1} \\ \overline{0} & \overline{0} \end{pmatrix}$ and $B = \begin{pmatrix} \overline{0} & \overline{0} \\ \overline{1} & \overline{1} \end{pmatrix}$. Observe that $A^2 \in N(M_2(\mathbb{Z}_3))$ and $ABA \notin J(M_2(\mathbb{Z}_3))$ as $J(M_2(\mathbb{Z}_3)) = 0$. So, S/J(S) is not NJ-semicommutative.

Proposition 2. Let R be an NJ-semicommutative ring. Then

- (1) *R* is left-min abel.
- (2) If $ab \in N(R)$ then, either $a \in M$ or $b \in M$ for any maximal left ideal M of R.
- (3) *R* is directly finite.

Proof.

(1) Let $e \in ME_l(R)$ and $a \in R$. Take w = ae - eae. Then ew = 0, we = w and $w^2 = 0$. Since *R* is NJ-semicommutative, $wRw \subseteq J(R)$. As J(R) is semiprime, $w \in J(R)$. If w = 0, then we are done. Assume, if possible, that $w \neq 0$. Since

SANJIV SUBBA AND TIKARAM SUBEDI

Re is minimal left ideal of *R*, Re = Rw. As $w \in J(R)$, $Re = Rw \subseteq J(R)$, a contradiction. Thus, *R* is left-min abel.

- (2) Let *M* be a maximal left ideal of *R*, and $ab \in N(R)$. Suppose $a \notin M$. Then, Ra + M = R. So, ra + m = 1 for some $r \in R$ and $m \in M$. Thus, bra + bm = b. Since *R* is NJ-semicommutative, $bra \in J(R)$. So, $b \in M$.
- (3) Let wh = 1. Observe that $(1 hw)w1 \in N(R)$. Since *R* is NJ-semicommutative, $(1 hw)wh1 \in J(R)$, that is, $1 hw \in J(R) \cap E(R)$. Hence hw = 1.

A left *R*-module *M* is called *Wnil-injective* ([12]) if for each $a \ (\neq 0) \in N(R)$, there exists a positive integer *n* such that $a^n \neq 0$ and each left *R*-homomorphism from Ra^n to *M* can be extended to one from *R* to *M*.

It is evident that reduced rings are NJ-semicommutative. By Example 1, $T_2(\mathbb{Z})$ is NJ-semicommutative, but it is not reduced. In this context, we have the following result.

Proposition 3. If *R* is an *NJ*-semicommutative ring, then *R* is reduced in each of the following cases:

- (1) R is semiprimitive.
- (2) *R* is a left MC2 NJ-semicommutative ring and each simple singular left *R* module is Wnil-injective.
- *Proof.* (1) Suppose $h^2 = 0$. Since *R* is NJ-semicommutative, $hRh \subseteq J(R)$. As J(R) is semiprime, $h \in J(R) = 0$.
- (2) Suppose $h^2 = 0$ for some $h \ (\neq 0) \in R$. Then, $l(h) \subseteq M$ for some maximal left ideal M of R. Assume, if possible, that M is not an essential left ideal of R, then M = l(e) for some $e \in ME_l(R)$. By Proposition 2 (1), R is left minabel, and since R is left MC2, by [13, Theorem 1.8], $e \in Z(R)$. So, eh = 0. Thus, $e \in l(h) \subseteq M = l(e)$, a contradiction. Therefore, M is an essential left ideal of R and R/M is simple singular left R module. By hypothesis, R/M is Wnil-injective. Define a left R-homomorphism $\Psi : Rh \to R/M$ via $\Psi(rh) = r + M$. As R/M is Wnil-injective, $1 ht \in M$ for some $t \in R$. Since R is NJ-semicommutative, and $h^2 = 0$, $hRh \subseteq J(R)$. Therefore, $h \in J(R)$. So $1 ht \in U(R)$, a contradiction. Hence h = 0.

R is said to be:

- (1) *semiperiodic* ([2]) if for each $w \in R \setminus (J(R) \cup Z(R))$, $w^q w^p \in N(R)$ for some integers *p* and *q* of opposite parity.
- (2) *left* (*right*) *SF* ([10]) if all simple left (right) *R*-modules are flat.

Theorem 4. If R/J(R) is reduced, then R is NJ-semicommutative. The converse holds if R is:

(1) semiperiodic.

(2) *left SF*.

Proof. Suppose R/J(R) is reduced. Let $ab \in N(R)$. Clearly, $\bar{b}\bar{a} \in N(R/J(R))$. Since R/J(R) is reduced, $ba \in J(R)$. For any $r \in R$, $(arb)^2 = arbarb \in J(R)$, that is, $\bar{a}\bar{r}\bar{b} \in N(R/J(R)) = 0$ and so, $arb \in J(R)$. Conversely;

- (1) Suppose *R* is an NJ-semicommutative semiperiodic ring. Write $\bar{R} = R/J(R)$ and let $\bar{w} \in \bar{R}$ with $\bar{w}^2 = 0$. Then by [2, Lemma 2.6], $w^2 \in J(R) \subseteq N(R) \cup Z(R)$. If $w^2 \in N(R)$, then $wRw \subseteq J(R)$ (since *R* is NJ-semicommutative). As J(R) is semiprime, $\bar{w} = 0$. Suppose $w^2 \notin N(R)$, then $w^2 \in Z(R)$. If $w \in Z(R)$, then $\bar{w}R\bar{w} = 0$. As \bar{R} is semiprime, $\bar{w} = 0$. Assume, if possible, that $\bar{w} \notin Z(\bar{R})$ then $w \notin J(R) \cup Z(R)$. By [2, Lemma 2.3(iii)], there exist $e \in E(R)$ and a positive integer *p* satisfying $w^p = w^p e$ and e = wy for some $y \in R$. Hence $e = ewy = ew(1 - e)y + ewey = ew(1 - e)y + ew^2y^2$. As *R* is NJ-semicommutative, $eR(1 - e) \subseteq J(R)$. Hence $e \in J(R)$, that is, e = 0. This yields that $w^p = 0$ and so $w \in N(R)$, a contradiction to $w^2 \notin N(R)$. Therefore $\bar{w} \in Z(\bar{R})$ and so $\bar{w} = 0$. Thus, \bar{R} is reduced.
- (2) Suppose *R* is an NJ-semicommutative left SF ring. By [11, Proposition 3.2], R/J(R) is left SF. Let $w^2 \in J(R)$ such that $w \notin J(R)$. Assume, if possible, Rr(w) + J(R) = R, then $1 = x + \sum_{i=1}^{inite} r_i s_i$, $x \in J(R)$, $r_i \in R$, $s_i \in r(w)$. Then $w = xw + \sum_{i=1}^{inite} r_i s_i w$. Observe that $s_i w \in N(R)$. As *R* is NJ-semicommutative, $s_i Rw \in J(R)$. This implies that $w \in J(R)$, a contradiction. Hence $Rr(w) + J(R) \neq R$. There exist some maximal left ideal *H* satisfying $Rr(w) + J(R) \subseteq$ *H*. Note that $w^2 \in H$. By [11, Lemma 3.14], $w^2 = w^2 x$ for some $x \in H$, that is, $w - wx \in r(w) \subseteq H$. So, $w \in H$. Hence there exists $y \in H$ satisfying w = wy, that is, $1 - y \in r(w) \subseteq H$. This implies that $1 \in H$, a contradiction. Therefore, R/J(R) is reduced.

Corollary 1. If R is an NJ-semicommutative semiperiodic ring, then R/J(R) is commutative.

Proof. Since R/J(R) is semiperiodic, by Theorem 4 (1) and [2, Theorem 4.4], R/J(R) is commutative.

Corollary 2. If *R* is an *NJ*-semicommutative left SF, then *R* is strongly regular.

Proof. By Theorem 4, R/J(R) is reduced. Hence R/J(R) is strongly regular by [11, Remark 3.13]. This implies that *R* is left quasi-duo, and hence by [11, Theorem 4.10], *R* is strongly regular.

As an immediate consequence of Corollary 1 and Corollary 2, the following co-rollary is obtained.

Corollary 3. If R is an NJ-semicommutative, semiperiodic, left SF ring, then R is commutative regular ring.

The proof of the following proposition is trivial.

Proposition 4. Suppose $\{R_{\delta}\}_{\delta \in \Delta}$ is a family of rings, and Δ represents an index set. Then $\prod_{\delta \in \Delta} R_{\delta}$ is NJ-semicommutative if and only if R_{δ} is NJ-semicommutative for each $\delta \in \Delta$.

Corollary 4. *eR* and (1 - e)R are NJ-semicommutative for some central idempotent $e \in R$ if and only if R is NJ-semicommutative.

Proposition 5. *R* is *NJ*-semicommutative if and only if eRe is *NJ*-semicommutative for all $e \in E(R)$.

Proof. Suppose *R* is NJ-semicommutative. Let *eae*, $ebe \in eRe$ with $(eae)(ebe) \in N(eRe)$. Since *R* is NJ-semicommutative, $(eae)(ere)(ebe) \in J(R)$ for all $r \in R$. Since eJ(R)e = J(eRe), $(eae)(ere)(ebe) \in J(eRe)$. Hence, eRe is NJ-semicommutative. Whereas the converse is trivial.

Proposition 6. Let I be an ideal of an NJ-semicommutative ring W and R a subring of W with $I \subseteq R$. If R/I is NJ-semicommutative, then so is R.

Proof. Let $x, y \in R$ and $xy \in N(R)$. Since W is NJ-semicommutative, $xr_0y \in J(W)$ for any $r_0 \in R$. Therefore, for any $r \in R$, $1 - xr_0yr \in U(W)$. There exists $w \in W$ such that $w(1 - xr_0yr) = 1 = (1 - xr_0yr)w$. Note that $\bar{x}\bar{y} \in N(R/I)$. Since R/I is NJ-semicommutative, $\bar{x}\bar{r}_0\bar{y} \in J(R/I)$. This implies that $\bar{1} - \bar{x}\bar{r}_0\bar{y}\bar{r} \in U(R/I)$. So there exists $\bar{t} \in R/I$ such that $\bar{t}(\bar{1} - \bar{x}\bar{r}_0\bar{y}\bar{r}) = \bar{1}$. This implies that $1 - t(1 - xr_0yr) \in I$. Hence, $w - t(1 - xr_0yr)w \in R$, that is, $w \in R$. Hence $xr_0y \in J(R)$.

Corollary 5. Let I be an ideal of an NJ-semicommutative ring W and R an NJ-semicommutative subring of W. Then, I+R is NJ-semicommutative.

Proof. Follows directly from Proposition 6.

Corollary 6. Every finite subdirect product of NJ-semicommutative rings is NJ-semicommutative.

Proof. Let R/K and R/L be NJ-semicommutative rings for some ideals K and L of R with $K \cap L = 0$. Define $\Psi : R \to R/K \bigoplus R/L$ via $\Psi(x) = (x + K, x + L)$. So $R \cong Im(\Psi)$. By hypothesis, $Im(\Psi)/\Psi(K) \cong R/K$ is NJ-semicommutative. Observe that $\Psi(K) \subseteq Im(\Psi) \subseteq R/K \bigoplus R/L$. By Proposition 6, R is NJ-semicommutative. \Box

Corollary 7. Let K and L be ideals of R such that R/K and R/L are NJ-semicommutative. Then, $R/(K \cap L)$ is NJ-semicommutative.

Proof. Define $\Psi : R/(K \cap L) \to R/K$ and $\Phi : R/(K \cap L) \to R/L$ via $\Psi(r+K \cap L) = r+K$ and $\Phi(r+K \cap L) = r+L$, respectively. Clearly, Ψ and Φ are epimorphism with $ker(\Psi) \cap ker(\Phi) = 0$. So, $R/(K \cap L)$ is the subdirect product of R/K and R/L. By Corollary 6, $R/(K \cap L)$ is NJ-semicommutative.

Lemma 1. Let I be a nil ideal of R such that R/I is an NJ-semicommutative ring. Then, R is NJ-semicommutative.

Proof. Let $w, h \in R$ and $wh \in N(R)$. Clearly, $\bar{w}h \in N(R/I)$. Since R/I is NJ-semicommutative, $\bar{w}r_0h \in J(R/I)$ for any $r_0 \in R$. So $\bar{1} - \bar{w}r_0h \bar{r} \in U(R/I)$ for all $r \in R$. So $(\bar{1} - \bar{w}r_0h \bar{r})\bar{s} = \bar{1} = \bar{s}(\bar{1} - \bar{w}r_0h \bar{r})$ for some $s \in R$. This implies that $1 - (1 - wr_0hr)s \in I$. Since I is nil, $(1 - wr_0hr)s \in U(R)$ and hence $1 - wr_0hr \in U(R)$. Therefore $wr_0h \in J(R)$, that is, R is NJ-semicommutative.

Proposition 7. If K and L are ideals of R such that R/K and R/L are NJ-semicommutative, then R/KL is NJ-semicommutative.

Proof. Observe that $KL \subseteq K \cap L$ and $R/(K \cap L) \cong (R/KL)/((K \cap L)/KL)$. Clearly, $((K \cap L)/KL)^2 = 0$, and by Corollary 7, $R/(K \cap L)$ is NJ-semicommutative. By Lemma 1, R/KL is NJ-semicommutative.

The following result is an immediate consequence of Proposition 7.

Corollary 8. The following are equivalent for an ideal I of R.

- (1) R/I is NJ-semicommutative.
- (2) R/I^n is NJ-semicommutative for all positive integer n.

A Morita context ([9]) is a 4-tuple $\begin{pmatrix} R_1 & M \\ P & R_2 \end{pmatrix}$, where R_1 , R_2 are rings, M is (R_1, R_2) -bimodule and P is (R_2, R_1) -bimodule, and there exists a context product $M \times P \to R_1$ and $P \times M \to R_2$ written multiplicatively as $(m, p) \mapsto mp$ and $(p, m) \mapsto pm$. Clearly, $\begin{pmatrix} R_1 & M \\ P & R_2 \end{pmatrix}$ is an associative ring with the usual matrix operations.

A Morita context $\begin{pmatrix} R_1 & M \\ P & R_2 \end{pmatrix}$ is said to be trivial if the context products are trivial, that is, MP = 0 and PM = 0.

Proposition 8. Suppose $R = \begin{pmatrix} R_1 & M \\ P & R_2 \end{pmatrix}$ is a trivial Morita context. Then R is *NJ*-semicommutative if and only if R_1 and R_2 are *NJ*-semicommutative.

Proof. Suppose *R* is NJ-semicommutative. By Proposition 5, *eRe* is NJ-semicommutative. So R_1 and R_2 are NJ-semicommutative. Conversely, assume that R_1 and R_2 are NJ-semicommutative and $\alpha = \begin{pmatrix} a_1 & m_1 \\ p_1 & b_1 \end{pmatrix}$, $\beta = \begin{pmatrix} a_0 & m_0 \\ p_0 & b_0 \end{pmatrix} \in R$ be such that $\alpha\beta \in N(R)$. Then $a_1a_0 \in N(R_1)$ and $b_1b_0 \in N(R_2)$. Let $\gamma = \begin{pmatrix} a & m \\ p & b \end{pmatrix}$ be any element of *R*. Since R_1 and R_2 are NJ-semicommutative rings, $a_1aa_0 \in J(R_1)$ and $b_1bb_0 \in J(R_1)$. Therefore $\alpha\beta\gamma \in J(R)$. Hence *R* is NJ-semicommutative.

Let R_1 and R_2 be any rings, M a (R_1, R_2) -bimodule and $R = \begin{pmatrix} R_1 & M \\ 0 & R_2 \end{pmatrix}$, the formal triangular matrix ring. It is well known that $J(R) = \begin{pmatrix} J(R_1) & M \\ 0 & J(R_2) \end{pmatrix}$.

Corollary 9. Let R_1 and R_2 be any rings and M a (R_1, R_2) -bimodule. Then $\begin{pmatrix} R_1 & M \\ 0 & R_2 \end{pmatrix}$ is NJ-semicommutative if and only if R_1 and R_2 are NJ-semicommutative.

Corollary 10. *R* is *NJ*-semicommutative if and only if $T_n(R)$ is *NJ*-semicommutative. **Proposition 9.** The following are equivalent.

(1) R is NJ-semicommutative.

(2)
$$R_{n} = \left\{ \begin{pmatrix} a & a_{12} & \dots & a_{1(n-1)} & a_{1n} \\ 0 & a & \dots & a_{2(n-1)} & a_{2n} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & a & a_{(n-1)n} \\ 0 & 0 & \dots & 0 & a \end{pmatrix} : a, a_{ij} \in R, \ i < j \right\}$$
is NJ-semi-
commutative.

Proof. (1)
$$\implies$$
 (2) Let $I = \left\{ \begin{pmatrix} 0 & a_{12} & \dots & a_{1n} \\ 0 & 0 & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix} : a_{ij} \in R \right\} \subseteq R_n$. Note

that I is an ideal of R_n and $I^n = 0$. Also $R_n/I \cong R$. By Lemma 1, R_n is NJsemicommutative.

(2) \implies (1) It follows from Proposition 5.

Corollary 11. The following are equivalent.

- (1) *R* is *NJ*-semicommutative.
- (2) $R[x]/\langle x^n \rangle$ is NJ-semicommutative for any positive integer n, where $\langle x^n \rangle$ is the ideal generated by x^n in R[x].

Proof. Observe that

$$R[x]/ < x^{n} > \cong \left\{ \begin{pmatrix} a_{1} & a_{2} & a_{3} & \dots & a_{n-1} & a_{n} \\ 0 & a_{1} & a_{2} & \dots & a_{n-2} & a_{n-1} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \\ 0 & 0 & 0 & \dots & a_{1} & a_{2} \\ 0 & 0 & 0 & \dots & 0 & a_{1} \end{pmatrix} : a_{i} \in R \right\}.$$
 So, the proof follows from the proof of Proposition 9.

lows from the proof of Proposition 9.

Let A be a (R,R)-bimodule which is a general ring (not necessarily with unity) in which (aw)r = a(wr), (ar)w = a(rw) and (ra)w = r(aw) hold for all $a, w \in A$ and $r \in A$ R. Then *ideal-extension* (also called *Dorroh extension*) I(R;A) of R by A is defined

to be the additive abelian group $I(R;A) = R \oplus A$ with multiplication (r,a)(s,w) = (rs, rw + as + aw).

Proposition 10. Let A be an (R,R)-bimodule which is a general ring (not necessarily with unity) in which (aw)r = a(wr), (ar)w = a(rw) and (ra)w = r(aw) hold for all $a, w \in A$ and $r \in R$. Suppose that for any $a \in A$ there exists $w \in A$ such that a + w + aw = 0. Then the following are equivalent.

- (1) *R* is *NJ*-semicommutative.
- (2) Dorroh extension S = I(R;A) is NJ-semicommutative.

Proof. (1) ⇒ (2) Suppose *R* is NJ-semicommutative and α = (*r*, *v*), β = (*p*, *w*) ∈ *S* be such that αβ ∈ *N*(*S*). Let γ = (*s*, *u*) be any element of *S*. Since *R* is NJ-semicommutative *rsp* ∈ *J*(*R*). We claim that αγβ ∈ *J*(*S*). Now, let (0, *a*) ∈ (0, *A*). For any (*r*₁, *a*₁) ∈ *S*, we have, (1,0) − (0,*a*)(*r*₁, *a*₁) = (1,−*ar*₁ − *aa*₁). By hypothesis, there exists *a*₂ ∈ *A* such that (1,−*ar*₁ − *aa*₁)(1,*a*₂) = (1,0). Therefore (0,*A*) ⊆ *J*(*S*). Note that αγβ = (*rsp*, *w*) for some *w* ∈ *A*. So if we show (*rsp*,0) ∈ *J*(*S*) then we are done. Let (*r*₁, *v*₁) be any element of *S*. Then (1,0) − (*r*₁, *v*₁)(*rsp*,0) = (1 − *r*₁*rsp*,−*v*₁*rsp*) ∈ *U*(*S*), as (1−*r*₁*rsp*,−*v*₁*rsp*) = (1−*r*₁*rsp*,0)(1,(1−*r*₁*rsp*)⁻¹(−*v*₁*rsp*)) and (1,(1−*r*₁*rsp*)⁻¹(−*v*₁*rsp*)) = (1,0) + (0,(1−*r*₁*rsp*)⁻¹(−*v*₁*rsp*)) ∈ *U*(*S*). Thus (*rsp*,0) ∈ *J*(*S*) and hence αγβ ∈ *J*(*S*). Therefore *S* is NJ-semicommutative.

(2) \implies (1) Let $a, b \in R$ and $ab \in N(R)$. Clearly, $(a,0)(b,0) \in N(S)$. Since S is NJ-semicommutative ring, $(a,0)(r,0)(b,0) \in J(S)$ for all $r \in R$. Hence $arb \in J(R)$, that is, R is an NJ-semicommutative ring.

Let $\Psi : R \to R$ be a ring homomorphism , $R[[x, \Psi]]$ represents the ring of skew formal power series over R, that is, all formal power series in x with coefficients from R and multiplication is defined with respect to the rule $xr = \Psi(r)x$ for all $r \in R$. It is well known that $J(R[[x, \Psi]]) = J(R) + \langle x \rangle, \langle x \rangle$ is the ideal of $R[[x, \Psi]]$ generated by x. Since $R[[x, \Psi]] \cong I(R; \langle x \rangle)$, the following result is an immediate consequence of Proposition 10.

Corollary 12. Let Ψ : $R \to R$ be a ring homomorphism. Then the following are equivalent.

- (1) *R* is *NJ*-semicommutative.
- (2) $R[[x, \Psi]]$ is NJ-semicommutative.

Corollary 13. *Then the following are equivalent.*

- (1) *R* is *NJ*-semicommutative.
- (2) R[[x]] is NJ-semicommutative.

It is a natural question to ask whether the polynomial ring over an NJ-semicommutative ring is NJ-semicommutative. However, the following example gives the answer in negative.

Example 4. For any countable field K, there exists a nonzero nil algebra S over K such that $N^*(S[x]) = 0$ (see the proof of Lemma 3.7 in [3]). Let R = K + S. Observe that R is a local ring with J(R) = S. Hence, R is an NJ-semicommutative ring and $N^*(R[x]) = N^*(S[x])$. If R[x] is not NJ-semicommutative, then we are done. If R[x] is NJ-semicommutative, then we show that (R[x])[y] is not NJ-semicommutative. Assume, if possible, that (R[x])[y] is NJ-semicommutative. By [1, Theorem 1], J((R[x])[y]) = I[y] for some nil ideal I of R[x] which is $N^*(R[x]) = N^*(S[x]) = 0$. Therefore, J((R[x])[y]) = 0. So, (R[x])[y] is semicommutative, which further implies that R[x] is a semicommutative ring. Hence R[x] is 2-primal, and so, $N(R[x]) = N_*(R[x])$. But, this is a contradiction to the fact that $0 \neq N(R) = S \subseteq N(R[x])$ and $N_*(R[x]) \subseteq N^*(R[x]) = N^*(S[x]) = 0$.

REFERENCES

- S. A. Amitsur, "Radicals of polynomial rings," *Canadian Journal of Mathematics*, vol. 8, pp. 355–361, 1956, doi: 10.4153/CJM-1956-040-9.
- [2] H. E. Bell and A. Yaqub, "On commutativity of semiperiodic rings," *Results in Mathematics*, vol. 53, no. 1, pp. 19–26, 2009, doi: 10.1007/s00025-008-0305-5.
- [3] W. Chen, "On linearly weak armendariz rings," *Journal of Pure and Applied Algebra*, vol. 219, no. 4, pp. 1122–1130, 2015, doi: 10.1016/j.jpaa.2014.05.039.
- [4] J. Cui and J. Chen, "A class of quasipolar rings," *Communications in Algebra*, vol. 40, no. 12, pp. 4471–4482, 2012, doi: 10.1080/00927872.2011.610854.
- [5] C. Huh, S.-H. Jang, C.-O. Kim, and Y. Lee, "Ring whose maximal one-sided ideals are twosided," *Bulletin of the Korean Mathematical Society*, vol. 39, no. 3, pp. 411–422, 2002, doi: 10.4134/BKMS.2002.39.3.411.
- [6] J. J. Koliha and P. Patricio, "Elements of rings with equal spectral idempotents," *Journal of the Australian Mathematical Society*, vol. 72, no. 1, pp. 137–152, 2002, doi: 10.1017/S1446788700003657.
- [7] T. Lam and A. S. Dugas, "Quasi-duo rings and stable range descent," *Journal of pure and applied algebra*, vol. 195, no. 3, pp. 243–259, 2005, doi: 10.1016/j.jpaa.2004.08.011.
- [8] L. Liang, L. Wang, and Z. Liu, "On a generalization of semicommutative rings," *Taiwanese Journal of Mathematics*, vol. 11, no. 5, pp. 1359–1368, 2007, doi: 10.11650/twjm/1500404869.
- [9] K. Morita, "Duality for modules and its applications to the theory of rings with minimum condition," *Science Reports of the Tokyo Kyoiku Daigaku, Section A*, vol. 6, no. 150, pp. 83–142, 1958, doi: https://www.jstor.org/stable/43698445.
- [10] V. Ramamurthi, "On the injectivity and flatness of certain cyclic modules," *Proceedings of the American Mathematical Society*, vol. 48, no. 1, pp. 21–25, 1975, doi: 10.1090/S0002-9939-1975-0354779-3.
- [11] M. Rege, "On von neumann regular rings and sf-rings," *Mathematica Japonica*, vol. 31, no. 6, pp. 927–936, 1986.
- [12] J. C. Wei and J. H. Chen, "nil- injective rings," *International Electronic Journal of Algebra*, vol. 2, no. 2, pp. 1–21, 2007.
- [13] J. Wei, "Certain rings whose simple singular modules are nil-injective," *Turkish Journal of Mathematics*, vol. 32, no. 4, pp. 393–408, 2008.
- [14] H.-P. Yu, "On quasi-duo rings," *Glasgow Mathematical Journal*, vol. 37, no. 1, pp. 21–31, 1995, doi: 10.1017/S0017089500030342.

Authors' addresses

Sanjiv Subba

National Institute of Technology Meghalaya, Department of Mathematics, Bijni Complex, 793003 Shillong, India

E-mail address: sanjivsubba59@gmail.com

Tikaram Subedi

(**Corresponding author**) National Institute of Technology Meghalaya, Department of Mathematics, Bijni Complex, 793003 Shillong, India

Current address: National Institute of Technology Meghalaya, Department of Mathematics, Bijni Complex, 793003 Shillong, India

E-mail address: tikaram.subedi@nitm.ac.in