AN ENUMERATION APPROACH TO NETWORK EVOLUTION

GÁBOR BACSÓ AND JÓZSEF TÚRI

Received 21 February, 2022

Abstract. A simple theoretical model of network evolution is discussed here. In each step, we add a new vertex to the graph and it is allowed to connect it to maximum degree vertices (hubs) only. Given a constant p, the probability of such a connection is p for any hub. The initial (non-random) graph G_1 is arbitrary but here we investigate mostly the case when G_1 has one vertex.

We solve here some particular cases of the problem, using enumeration methods. We obtain not limit theorems but exact results for the parameters discussed.

2010 Mathematics Subject Classification: 05C80

Keywords: enumeration, random graphs, preferential attachment rule

1. INTRODUCTION

Network evolution is the subject of very intensive research since the starting of World Wide Web [4]. The literature of random graphs is extremely diverse [5]. In [3] the authors examine the size of large subgraphs of the binomial random graphs. From [15] we get a general insight how random graphs model large networks. In [16] a sequential metric dimension was examined in random graphs. Móri and Backhausz [1] study the degree distribution in the lower levels of the uniform recursive tree. Among the numerous further models and applications we mention here the solution of problems in physics [7].

In [8] the random graph dynamics appears, and [12] examines the adversarial deletion in a scale-free random graph process. In [17], the random graphs and the complex networks are examined. [13] actually reports the same results as Erdős and Rényi [9]. In Grenander’s book [14], the descriptions of [10] is generalized. [11] details the probability theory information used in the article.

A simple theoretical model of such processes is investigated here. As we know, for numerous processes in large networks, Web, pandemic, and so on, the new vertex will be adjacent mostly to vertices of large degrees. According to that, we define a sequence of random graphs such that the rules of developing yields a model for

Supported in part by the National Research, Development and Innovation Office – NKFIH under the grant SNN 129364.

© 2023 Miskolc University Press
the properties above. A very frequent problem is to determine the distribution of
degrees. We have partial results, concerning that. The model is far from the Erdős-
Rényi one ([9], [10]), even the simplest questions are difficult here, thus often it is
worth assuming that we start with the one-vertex graph and in every step, a new
vertex appears.

Paper of Bollobás ([6]) is also significant on the subject.

Note that even now, for many networks, different from Web, the ‘old’ model can
be applied successfully. In [2], for example, we solve domination problems, using
Erdős-Rényi model. Here we would have tried it in vain.

2. Definitions and Notation

Here random graphs will be denoted by boldface characters. Let the random graph
G_N be the output of the following process, called Majority Process. Given a constant
non-random graph G_1, the vertex set of the t'th graph G_t is $V(G_1) \cup \{x_2, \ldots, x_t\}$. The maximum possible value of t is denoted by N. G_N, the final graph, represents
the entire network. We call $V(G_N)$ by V for brevity. A vertex of a (random or
deterministic) graph is called hub if it has maximum degree in the underlying graph.

In general, G_1 is an arbitrary fixed graph, but we begin the work by the special case
$G_1 \cong K_1$, where K_n is the clique on n vertices.

Supposed that the t'th graph is G_t, we define G_{t+1} in the following way:

For any hub x, v_{t+1} is adjacent to x with probability p. These decisions are com-
pletely independent. For any other vertex x, xv_{t+1} is defined to be a non-edge.

Remark 1. At this step, we can see already that the model differs from the Erdős-
Rényi one.

Remark 2. N and p are the only non-random values here.

The maximum vertex degree of a graph G is denoted by $\Delta(G)$. We denote the
set of hubs in G by $B(G)$, $|B(G)|$ by $b(G)$. A vertex of a graph is universal, if it is
adjacent to all the other vertices in the graph. For a non-empty graph G, omitting the
isolated points, we obtain graph G'. A vertex is quasi-universal in G if it is universal
in G'. A graph is primitive if it consists of a clique and isolated points. A graph
is (γ, ε)-primitive if the clique has γ vertices and the number of isolated points is ε. Empty graphs and cliques are primitive, by definition. For a graph G_i in the process, the probability of being (γ, ε)-primitive, will be denoted $\pi(t, \gamma, \varepsilon)$.

A cycle (path) on n vertices is denoted by C_n (P_n). We need a basic definition
concerning the general model.

Definition 1. A graph is G_1-relevant if it appears as G_t somewhere during the
Majority Process, beginning with G_1. G_1 is G_1-relevant, by definition. If $G_1 \cong K_1$, we often write relevant for short.

Example 1. C_4 and P_4 are not $[K_1]$-relevant.
3. RESULTS AND PROOFS FOR THE GENERAL CASE

As we shall see, in the special case the number of hubs and the maximum degree are in thorough connection. (See Corollary 1, for example.) The following statement shows that for the general case, on the contrary, the pair \((b, \Delta)\) can be almost arbitrary.

Proposition 1. Let \(b_0 \geq 1\) and \(\Delta_0 \geq 0\) be arbitrary integers, except the case "\(b_0\) odd, \(\Delta_0 = 1\)". Then there exists some graph \(G_1\) with \(\Delta(G_1) = \Delta_0\) and \(b(G_1) = b_0\).

Proof. We begin by the case \(\Delta_0 \geq 2\). Let \(H\) be any graph on \(b_0 \geq 3\) vertices with all degrees at most \(\Delta_0\). (Such a graph exists, say, the cycle on \(b_0\) vertices.) For a vertex \(x\) in \(H\), we join \(\Delta_0 - \deg_H(x)\) pendant edges to \(x\). For \(b_0 = 2\), a \(P_4\) fits.

For \(\Delta_0 = 1\), the construction for an even \(b_0\) is a set of independent edges and isolates, which always yields an even number of hubs. The case \(\Delta_0 = 0\) is trivial.

The following statement is valid for every graph \(G_1\).

Proposition 2. Suppose for a \(G_1\)-relevant graph \(G_j\) that \(|B(G_j)| = \Delta(G_j) + 1\), in words, the number of hubs is exactly one greater than the maximum degree. Then, starting from this graph, there exists even an infinite sequence of increasing \(b\) and \(\Delta\), keeping their distance 1.

Proof. We may connect the new vertex with every hub, in every step. □

Remark 3. Clearly, the probability of this phenomenon tends to zero.

We will use the statements below also in the next section.

Proposition 3. Suppose \(v_j\) is universal in \(G_j\). Then \(G_{j-1}\) is a regular graph.

Proof. In this case, by definition, each vertex in \(G_{j-1}\) is a hub. Thus, it is regular. □

We present here a surprising fact.

Proposition 4. If a \(G_1\)-relevant graph is regular, then it is a clique or an empty graph.

Proof. Let \(G\) be a graph in the statement of the Lemma and let \(G\) be \(r\)-regular. Let us omit the last vertex \(y\) of \(G\). Suppose, by way of contradiction, that \(y\) does have both neighbors and non-neighbors. (This is equivalent for the whole graph to be neither a clique nor an empty graph.) Take a neighbor \(z\) of \(y\). Clearly, \(r \geq 1\) and the degree of \(z\) is \(r - 1\). The non-neighbors of \(y\) have degree \(r\) in \(G - y\), thus \(z\) is not a hub in \(G - y\). We have got a contradiction since a non-hub must be nonadjacent to \(y\), by definition. □
4. Results and Proofs for the Special Case

Let us give now some further definitions and notation. Let x be an arbitrary element of V and let $\Pi(k)$ be the probability that x has degree k in G_N.

Remark 4. This probability depends on N, p and G_1 but they may be considered as constants.

Theorem 1. For the probability of being universal in G_N, the following result is valid.

$$\Pi(N-1) = (p^{N-1}/N) \sum_{j=1}^{N} (p^{\lambda_j} + (1-p)^{\lambda_j})$$

where

$$\lambda_j = (j-1)(j-2)/2.$$

First we prepare the proof of Theorem 1 by six statements.

For a given element u of V, for any j between 1 and N, $\mathbb{P}(u = v_j) = 1/N$. Let us introduce now the following auxiliary variables:

- $a_j := \mathbb{P}(G_{j-1} \text{ is a clique})$
- $b_j := \mathbb{P}(v_j \text{ is universal in } G_j)$
- $c_j := \mathbb{P}(\text{For every } l > j, v_l \text{ and } v_j \text{ are adjacent})$
- $d_j := \mathbb{P}(G_{j-1} \text{ is an empty graph})$

The two variables below are of more importance:

- $q_j := \mathbb{P}(G_{j-1} \text{ is a clique and } v_j \text{ is universal in } G_N)$
- $r_j := \mathbb{P}(G_{j-1} \text{ is an empty graph and } v_j \text{ is universal in } G_N)$

Proposition 5.

$$a_j = p^{(j-1)(j-2)/2}$$

Proof.

$$\mathbb{P}(G_{t+1} \text{ is a clique | } G_t \text{ is a clique}) = p^t$$

for every $t < j$ since each vertex of G_t is a hub. Moreover, $\sum_{i=1}^{j-2} i = (j-1)(j-2)/2.$

\blacksquare

Proposition 6.

$$d_j = (1-p)^{(j-1)(j-2)/2}$$

Proof.

$$\mathbb{P}(G_{t+1} \text{ is an empty graph | } G_t \text{ is an empty graph}) = (1-p)^t$$

for every $t \leq j - 2$ since each vertex of G_t is a hub. We continue similarly as in the proof of Proposition 5.

\blacksquare
Proposition 7.

\[b_j = p^{j-1} \]

Proof. Each vertex of \(G_{j-1} \) is a hub.

Proposition 8.

\[c_j = p^{N-j} \]

Proof. For each \(l > j \), \(v_j \) is a hub in \(G_{j-1} \), thus \(\mathbb{P}(v_l \text{ and } v_j \text{ are adjacent}) = p \).

Proposition 9.

\[q_j = p^{(j-1)(j-2)/2+N-1} \]

Proof. Clearly, \(q_j = a_j b_j c_j \). From Proposition 5 and Proposition 8, we obtain the result.

Proposition 10.

\[r_j = (1-p)^{(j-1)(j-2)/2} p^{N-1} \]

Proof. Clearly, \(r_j = d_j b_j c_j \). From Proposition 7 and Proposition 6, the statement follows.

Proof of Theorem 1. Let us apply the statements above, to prove Theorem 1. We denote \(\mathbb{P}(v_j \text{ is universal in } G_N) \) by \(s_j \). Clearly,

\[s_j = q_j + r_j \]

Finally, it can be easily seen that \(\Pi(N-1) = 1/N \sum_{j=2}^{N} s_j \) The proof of Theorem 1 has been established.

Theorem 2. Suppose \(G_1 \cong K_1 \). Then in any non-empty relevant graph, the hubs are quasi-universal.

Proof. We use induction on \(|V(G)| \). The first step is obvious. By the induction hypothesis, the hubs are universal in \(G'_{j-1} \). Let \(v_j \) be a hub in \(G_j \). If \(v_j \) is isolated in \(G_j \) then we are done. Otherwise, taking a neighbor \(s \) of \(v_j \), it is a hub of \(G_{j-1} \), by definition. That is, \(s \) is universal in \(G'_{j-1} \). The degree of \(v_j \) in \(G_j \) is at least the degree of \(s \). Consequently, it is quasi-universal in \(G_j \).

Corollary 1. For the special case, the number of hubs is at most one more than the maximum degree.

(This is an example for the difference between special and general case.) Before stating the theorem below, we give a definition.
Definition 2. If a graph consists of a clique and isolated points, we call it primitive.

Theorem 3. Suppose $G_1 \cong K_1$. Then, in the Majority Process, two phases can be distinguished.

Phase 1 Every graph in this first sequence is primitive. In some steps the clique is growing, in other steps new isolates appear.

Phase 2 In this phase, we find two types of steps.

Step type a) The set B of hubs (which is always a clique, by Theorem 2) is replaced by one of its proper subsets (but it remains non-empty of course).

Step type b) The set B does not change.

Proof. Suppose G_{j-1} is not primitive. We state that in this case, the step from $j-1$ to j is in Phase 2 and from this subscript on, we stay in this phase. From the supposition, there exist vertices which are neither isolates nor quasi-universal. As we know from Theorem 2, even they are not hubs. Consequently, v_j is not adjacent to them and thus it is not universal.

If v_j is adjacent to each point of B_{j-1} then this step is of type b). Otherwise, it is of type a). We stay in this second phase since the new graph G_j is not primitive.

Theorems 2 and 3 show that for the special case the structure of the graphs occurring in the process is too poor. However, the calculation of $\Pi(0)$ is even more difficult than that of $\Pi(N-1)$. Let

$$S_j := \Pr(v_j \text{ is isolated in } G_N)$$

Obviously

$$\Pi(0) = \frac{1}{N} \sum_{j=1}^{N} S_j$$

Our aim is to determine S_j for all j’s.

We begin by two cases, $j = 1$ and $j = N$. The general solution will be a mixture of them.

Proposition 11.

$$S_1 = (1-p)^{\binom{N}{2}} + \sum_{t=2}^{N-1} (1-p)^{\binom{t}{2}+1} - \sum_{t=2}^{N-1} (1-p)^{\binom{t+1}{2}}$$

Proof. Let A_t be the event that G_t is an empty graph and G_{t+1} is not. (Clearly, in this case all the graphs G_v with $v \leq t$ are empty graphs as well.)

Let F_t be the product of the events A_t and "v_1 is isolated in G_N". Clearly

Claim 1.

$$S_1 = (1-p)^{\binom{N}{2}} + \sum_{t=2}^{N-1} \Pr(F_t)$$
Proof. The events $F_ι$ and the event ”G_N is an empty graph” are pairwise exclusive.

Take $G_ι$ and the neighborhood of $v_{ι+1}$ as random variables. By the definition of the process, they are independent. The neighborhood does not contain v_1 but it contains at least one vertex $v_{υ}$ with $2 ≤ υ ≤ ι$. This implies

$$P(F_ι) = (1 - p)^{ι}((1 - p) - (1 - p)^1)$$

and, using $\binom{ι}{2} + 1 = \binom{ι + 1}{2}$,

$$S_1 = (1 - p)^{ι} + \sum_{ι=2}^{N-1} (1 - p)^{ι} - \sum_{ι=2}^{N-1} (1 - p)^{ι+1}$$

We need further notation.

$B_i := \{x ∈ V(G_i) \mid x \text{ hub in } G_i\}$,

to define a quantity helping in the calculation of the S_j’s.

$$κ(i, h) := P(|B_i| = h)$$

Remark 5. By Theorem 2, instead of ’hub’, we could write ’quasi-universal vertex’.

First, we can easily show the fact

Proposition 12.

$$S_N = \sum_{z=1}^{N-1} κ(N − 1, z)(1 − p)^z$$

Proof.

$$S_N = \sum_{z=1}^{N-1} P(v_N \text{ is isolated in } G_N \text{ and } |B_{N−1}| = z)$$

We need further notation.

$$θ(i, j) := P(v_j \text{ is isolated in } G_N \text{ and } A_i \text{ occurs})$$

Now we are in the position to state the theorem determining S_j for arbitrary j. (S_0 and S_N are determined already.)

Theorem 4. For $3 ≤ j ≤ N − 1$, $S_j = T_j + U_j + (1 − p)^{ι_j}$ where

$$T_j = \sum_{ι=1}^{j-1} κ(ι − 1, z)(1 − p)^z$$
Moreover, for \(j = 2 \), \(T_2 = 0 \) but the equality for \(U_2 \) remains valid.

Proof. For the subscript of the effectively occurring event \(A_\iota \), there are three cases.
\(\iota \leq j - 1 \), \(j \leq \iota \leq N - 1 \) or \(\iota = N \). According to that, \(S_j \) is the sum of three probabilities.

Claim 2. For \(\iota \leq j - 2 \), if \(v_j \) is isolated in \(G_j \) then it is isolated in \(G_N \) as well.

Proof. \(G_j \) is not an empty graph, thus, having degree zero, \(v_j \) is not a hub in any further graph and consequently it will not get any new neighbor.

Proposition 13. Let \(j \leq \iota \leq N - 1 \). Then

\[
\theta(\iota, j) = (1 - p)^{\lfloor \frac{j}{2} \rfloor}((1 - p) - (1 - p)^{\iota})
\]

Proof. The new vertex is not adjacent to \(v_j \) but it has to be adjacent to some other vertex.

We will present a recursion formula for \(\kappa \).

Let us add one vertex to a graph in the process. The number of hubs may increase, namely, when the original graph is a specific primitive one. This is the reason that the recursion formula for \(\kappa \) is in connection also with primitive graphs.

Proposition 14.

\[
\kappa(i, h) = \mathbb{P}(G_{i-1} \text{ is } (h-1, t-h)-\text{primitive})p^{h-1} + \sum_{z=h}^{N} \kappa(i-1, z) \binom{z}{h} p^h(1 - p)^{z-h}
\]

To obtain the probability of being primitive, a recursion formula is needed. This can be obtained by finding a recursion for the probability of being \((\gamma, \varepsilon)\)-primitive. Let the underlying graph have \(t \) vertices. Thus \(\gamma + \varepsilon = t \).

For \(\gamma = 0 \) we have an empty graph and for \(\varepsilon = 0 \) we have a clique. The calculation of the probabilities in these cases is straightforward. We consider them as starting values. In most of the cases, the following recursion can be used.

Proposition 15. For \(\gamma \geq 3 \) and \(\varepsilon \geq 1 \)

\[
\mathbb{P}(G_t \text{ is } (\gamma, \varepsilon)\text{-primitive}) = \mathbb{P}(G_{t-1} \text{ is } (\gamma - 1, \varepsilon)\text{-primitive})p^{\gamma-1} + \mathbb{P}(G_{t-1} \text{ is } (\gamma, \varepsilon - 1)\text{-primitive})(1 - p)^{\gamma-1}
\]

Proof. We can obtain the large graph in two ways: by increasing the clique or the empty part. The two addends here represent exclusive events.

Instead of \((1, \varepsilon)\)-primitiveness, \((0, \varepsilon + 1)\)-primitiveness will be used. But this means that the recursion formula for \(\gamma = 2 \) must have an exceptional form:
Proposition 16.
\[P(G_t \text{ is } (2,e)-\text{primitive}) = (t - 1) P(G_{t-1} \text{ is } (0,t-1)-\text{primitive}) p(1-p)^{t-2} \]
\[+ P(G_{t-1} \text{ is } (2,t-3)-\text{primitive}) (1-p)^{t-2} \]

Proof. In the first graph at the right hand side, we have to choose exactly one neighbor for \(v_t \).

Summarising, we expressed the \(S_j \)'s by two quantities, \(\theta \) and \(\kappa \). An explicit formula for \(\theta \) has been found, while for \(\kappa \) a recursion only, moreover, we needed another auxiliary parameter, not explicitly known but using a recursion again.

5. Concluding Remarks

In the subject, the most frequent question is the degree distribution of the network. For general degrees, to obtain exact formulae like here for \(\Pi(0) \) and \(\Pi(N-1) \) is not hopeful. Inspite of that, we ask:

Open problem How does the degree distribution depend on the initial graph \(G_1 \)?

References

Authors’ addresses

Gábor Bacsó
Institute for Computer Science and Control, 1111 Budapest, Hungary
E-mail address: tud23sci@gmail.com

József Túri
(Corresponding author) University of Miskolc, 3515 Miskolc, Hungary
E-mail address: matturij@uni-miskolc.hu