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AN ENUMERATION APPROACH TO NETWORK EVOLUTION
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Abstract. A simple theoretical model of network evolution is discussed here. In each step, we
add a new vertex to the graph and it is allowed to connect it to maximum degree vertices (hubs)
only. Given a constant p, the probability of such a connection is p for any hub. The initial
(non-random) graph G1 is arbitrary but here we investigate mostly the case when G1 has one
vertex.

We solve here some particular cases of the problem, using enumeration methods. We obtain
not limit theorems but exact results for the parameters discussed.
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1. INTRODUCTION

Network evolution is the subject of very intensive research since the starting of
World Wide Web [4]. The literature of random graphs is extremely diverse [5]. In
[3] the authors examine the size of large subgraphs of the binomial random graphs.
From [15] we get a general insight how random graphs model large networks. In [16]
a sequential metric dimension was examined in random graphs. Móri and Backhausz
[1] study the degree distribution in the lower levels of the uniform recursive tree.
Among the numerous further models and applications we mention here the solution
of problems in physics [7].

In [8] the random graph dynamics appears, and [12] examines the adversarial de-
letion in a scale-free random graph process. In [17], the random graphs and the
complex networks are examined. [13] actually reports the same results as Erdős and
Rényi [9]. In Grenander’s book [14], the descriptions of [10] is generalized. [11]
details the probability theory information used in the article.

A simple theoretical model of such processes is investigated here. As we know,
for numerous processes in large networks, Web, pandemic, and so on, the new vertex
will be adjacent mostly to vertices of large degrees. According to that, we define
a sequence of random graphs such that the rules of developing yields a model for
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the properties above. A very frequent problem is to determine the distribution of
degrees. We have partial results, concerning that. The model is far from the Erdős-
Rényi one ([9], [10]), even the simplest questions are difficult here, thus often it is
worth assuming that we start with the one-vertex graph and in every step, a new
vertex appears.

Paper of Bollobás ([6]) is also significant on the subject.
Note that even now, for many networks, different from Web, the ’old’ model can

be applied successfully. In [2], for example, we solve domination problems, using
Erdős-Rényi model. Here we would have tried it in vain.

2. DEFINITIONS AND NOTATION

Here random graphs will be denoted by boldface characters. Let the random graph
GN be the output of the following process, called Majority Process. Given a constant
non-random graph G1, the vertex set of the t’th graph Gt is V (G1)∪ {x2, . . . ,xt}.
The maximum possible value of t is denoted by N. GN , the final graph, represents
the entire network. We call V (GN) by V for brevity. A vertex of a (random or
deterministic) graph is called hub if it has maximum degree in the underlying graph.
In general, G1 is an arbitrary fixed graph, but we begin the work by the special case
G1 ∼= K1, where Kn is the clique on n vertices.

Supposed that the t’th graph is Gt , we define Gt+1 in the following way:
For any hub x, vt+1 is adjacent to x with probability p. These decisions are com-

pletely independent. For any other vertex x, xvt+1 is defined to be a non-edge.

Remark 1. At this step, we can see already that the model differs from the Erdős-
Rényi one.

Remark 2. N and p are the only non-random values here.

The maximum vertex degree of a graph G is denoted by ∆(G). We denote the
set of hubs in G by B(G), |B(G)| by b(G). A vertex of a graph is universal, if it is
adjacent to all the other vertices in the graph. For a non-empty graph G, omitting the
isolated points, we obtain graph G′. A vertex is quasi-universal in G if it is universal
in G′. A graph is primitive if it consists of a clique and isolated points. A graph
is (γ,ε)-primitive if the clique has γ vertices and the number of isolated points is ε.
Empty graphs and cliques are primitive, by definition. For a graph Gt in the process,
the probability of being (γ,ε)-primitive, will be denoted π(t,γ,ε).

A cycle (path) on n vertices is denoted by Cn (Pn). We need a basic definition
concerning the general model.

Definition 1. A graph is G1-relevant if it appears as Gt somewhere during the
Majority Process, beginning with G1. G1 is G1-relevant, by definition. If G1 ∼= K1,
we often write relevant for short.

Example 1. C4 and P4 are not [K1-]relevant.
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3. RESULTS AND PROOFS FOR THE GENERAL CASE

As we shall see, in the special case the number of hubs and the maximum degree
are in thorough connection. (See Corollary 1, for example.) The following statement
shows that for the general case, on the contrary, the pair (b,∆) can be almost arbitrary.

Proposition 1. Let b0 ≥ 1 and ∆0 ≥ 0 be arbitrary integers, except the case ”b0
odd, ∆0 = 1”. Then there exists some graph G1 with ∆(G1) = ∆0 and b(G1) = b0.

Proof. We begin by the case ∆0 ≥ 2. Let H be any graph on b0 ≥ 3 vertices with
all degrees at most ∆0. (Such a graph exists, say, the cycle on b0 vertices.) For a
vertex x in H, we join ∆0−degH(x) pendant edges to x. For b0 = 2, a P4 fits.

For ∆0 = 1, the construction for an even b0 is a set of independent edges and
isolates, which always yields an even number of hubs. The case ∆0 = 0 is trivial. 2

The following statement is valid for every graph G1.

Proposition 2. Suppose for a G1-relevant graph G j that |B(G j)|= ∆(G j)+1, in
words, the number of hubs is exactly one greater than the maximum degree. Then,
starting from this graph, there exists even an infinite sequence of increasing b and ∆,
keeping their distance 1.

Proof. We may connect the new vertex with every hub, in every step. 2

Remark 3. Clearly, the probability of this phenomenon tends to zero.

We will use the statements below also in the next section.

Proposition 3. Suppose v j is universal in G j. Then G j−1 is a regular graph.

Proof. In this case, by definition, each vertex in G j−1 is a hub. Thus, it is regular.
2

We present here a surprising fact.

Proposition 4. If a G1-relevant graph is regular, then it is a clique or an empty
graph.

Proof. Let G be a graph in the statement of the Lemma and let G be r-regular. Let
us omit the last vertex y of G. Suppose, by way of contradiction, that y does have both
neighbors and non-neighbors. (This is equivalent for the whole graph to be neither a
clique nor an empty graph.) Take a neighbor z of y. Clearly, r ≥ 1 and the degree of
z is r−1. The non-neighbors of y have degree r in G−y, thus z is not a hub in G−y.
We have got a contradiction since a non-hub must be nonadjacent to y, by definition.
2
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4. RESULTS AND PROOFS FOR THE SPECIAL CASE

Let us give now some further definitions and notation. Let x be an arbitrary element
of V and let Π(k) be the probability that x has degree k in GN .

Remark 4. This probability depends on N, p and G1 but they may be considered
as constants.

Theorem 1. For the probability of being universal in GN , the following result is
valid.

Π(N−1) = (pN−1/N)
N

∑
j=1

(pλ j +(1− p)λ j)

where
λ j = ( j−1)( j−2)/2.

First we prepare the proof of Theorem 1 by six statements.
For a given element u of V , for any j between 1 and N, P(u = v j) = 1/N. Let us

introduce now the following auxiliary variables:

a j := P(G j−1 is a clique)

b j := P(v j is universal in Gj)

c j := P(For every l > j, vl and v j are adjacent)

d j := P(G j−1 is an empty graph)

The two variables below are of more importance:

q j := P(G j−1 is a clique and v j is universal in GN)

r j := P(G j−1 is an empty graph and v j is universal in GN)

Proposition 5.
a j = p( j−1)( j−2)/2

Proof.
P(Gt+1 is a clique |Gt is a clique) = pt

for every t < j since each vertex of Gt is a hub. Moreover, ∑
j−2
i=1 i = ( j−1)( j−2)/2.

2

2

Proposition 6.
d j = (1− p)( j−1)( j−2)/2

Proof.

P(Gt+1 is an empty graph |Gt is an empty graph) = (1− p)t

for every t ≤ j−2 since each vertex of Gt is a hub. We continue similarly as in the
proof of Proposition 5. 2
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Proposition 7.
b j = p j−1

Proof. Each vertex of G j−1 is a hub. 2

2

Proposition 8.
c j = pN− j

Proof. For each l > j, v j is a hub in Gl−1, thus P(vl and v j are adjacent)= p. 2

2

Proposition 9.
q j = p( j−1)( j−2)/2+N−1

Proof. Clearly, q j = a jb jc j. From Proposition 5 and Proposition 8, we obtain the
result. 2

2

Proposition 10.
r j = (1− p)( j−1)( j−2)/2 pN−1

Proof. Clearly, r j = d jb jc j. From Proposition 7 and Proposition 6, the statement
follows. 2

Proof of Theorem 1. Let us apply the statements above, to prove Theorem 1. We
denote P(v j is universal in GN) by s j. Clearly,

s j = q j + r j

Finally, it can be easily seen that Π(N− 1) = 1/N ∑
N
j=2 s j The proof of Theorem 1

has been established. 2

Theorem 2. Suppose G1 ∼= K1. Then in any non-empty relevant graph, the hubs
are quasi-universal.

Proof. We use induction on |V (G)|. The first step is obvious. By the induction
hypothesis, the hubs are universal in G′j−1. Let v j be a hub in G j. If v j is isolated in
G j then we are done. Otherwise, taking a neighbor s of v j, it is a hub of G j−1, by
definition. That is, s is universal in G′j−1. The degree of v j in G j is at least the degree
of s. Consequently, it is quasi-universal in G j. 2

Corollary 1. For the special case, the number of hubs is at most one more than
the maximum degree.

(This is an example for the difference between special and general case.)
Before stating the theorem below, we give a definition.
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Definition 2. If a graph consists of a clique and isolated points, we call it primitive.

Theorem 3. Suppose G1 ∼= K1. Then, in the Majority Process, two phases can be
distinguished.

Phase 1 Every graph in this first sequence is primitive. In some steps the clique is
growing, in other steps new isolates appear.

Phase 2 In this phase, we find two types of steps.
Step type a) The set B of hubs (which is always a clique, by Theorem 2) is replaced

by one of its proper subsets (but it remains non-empty of course).
Step type b) The set B does not change.

Proof. Suppose G j−1 is not primitive. We state that in this case, the step from
j− 1 to j is in Phase 2 and from this subscript on, we stay in this phase. From the
supposition, there exist vertices which are neither isolates nor quasi-universal. As we
know from Theorem 2, even they are not hubs. Consequently, v j is not adjacent to
them and thus it is not universal.

If v j is adjacent to each point of B j−1 then this step is of type b). Otherwise, it is
of type a). We stay in this second phase since the new graph G j is not primitive. 2

Theorems 2 and 3 show that for the special case the structure of the graphs oc-
curring in the process is too poor. However, the calculation of Π(0) is even more
difficult than that of Π(N−1). Let

S j := P(v j is isolated in GN)

Obviously

Π(0) = 1/N
N

∑
j=1

S j

Our aim is to determine S j for all j’s.
We begin by two cases, j = 1 and j = N. The general solution will be a mixture

of them.

Proposition 11.

S1 = (1− p)(
N
2) +

N−1

∑
ι=2

(1− p)(
ι

2)+1−
N−1

∑
ι=2

(1− p)(
ι+1

2 )

Proof. Let Aι be the event that Gι is an empty graph and Gι+1 is not. (Clearly, in
this case all the graphs Gν with ν≤ ι are empty graphs as well.)

Let Fι be the product of the events Aι and ”v1 is isolated in GN”. Clearly

Claim 1.

S1 = (1− p)(
N
2) +

N−1

∑
ι=2

P(Fι)
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Proof. The events Fι and the event ”GN is an empty graph” are pairwise exclusive.
2

Take Gι and the neighborhood of vι+1 as random variables. By the definition of the
process, they are independent. The neighborhood does not contain v1 but it contains
at least one vertex vµ with 2≤ µ≤ ι. This implies

P(Fι) = (1− p)(
ι

2)((1− p)− (1− p)ι)

and, using
(

ι

2

)
+ ι =

(
ι+1

2

)
,

S1 = (1− p)(
N
2) +

N−1

∑
ι=2

(1− p)(
ι

2)+1−
N−1

∑
ι=2

(1− p)(
ι+1

2 )

The calculation of S1 has been achieved. 2

We need
Bi := {x ∈V (Gi) | x hub in Gi},

to define a quantity helping in the calculation of the S j’s.

κ(i,h) := P(|Bi|= h)

Remark 5. By Theorem 2, instead of ’hub’, we could write ’quasi-universal ver-
tex’.

First, we can easily show the fact

Proposition 12.

SN =
N−1

∑
z=1

κ(N−1,z)(1− p)z

Proof.

SN =
N−1

∑
z=1

P(vN is isolated in GN and |BN−1|= z)

2

We need further notation.

θ(ι, j) := P(v j is isolated in GN and Aι occurs)

Now we are in the position to state the theorem determining S j for arbitrary j. (S0
and SN are determined already.)

Theorem 4. For 3≤ j ≤ N−1, S j = Tj +U j +(1− p)(
N
2) where

Tj =
j−1

∑
z=1

κ( j−1,z)(1− p)z
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and

U j =
N−1

∑
ι= j

θ(ι, j)

Moreover, for j = 2, T2 = 0 but the equaity for U2 remains valid.

Proof. For the subscript of the effectively occurring event Aι, there are three cases.
ι≤ j−1, j ≤ ι≤ N−1 or ι = N. According to that, S j is the sum of three probabil-
ities. 2

Claim 2. For ι≤ j−2, if v j is isolated in G j then it is isolated in GN as well.

Proof. G j is not an empty graph, thus, having degree zero, v j is not a hub in any
further graph and consequently it will not get any new neighbor. 2

Proposition 13. Let j ≤ ι≤ N−1 . Then

θ(ι, j) = (1− p)(
ι

2)((1− p)− (1− p)ι))

Proof. The new vertex is not adjacent to v j but it has to be adjacent to some other
vertex. 2

We will present a recursion formula for κ.
Let us add one vertex to a graph in the process. The number of hubs may increase,

namely, when the original graph is a specific primitive one. This is the reason that
the recursion formula for κ is in connection also with primitive graphs.

Proposition 14.

κ(i,h) = P(Gi−1 is (h−1, t−h)-primitive)ph−1 +
N

∑
z=h

κ(i−1,z)
(

z
h

)
ph(1− p)z−h

To obtain the probability of being primitive, a recursion formula is needed. This
can be obtained by finding a recursion for the probability of being (γ,ε)- primitive.
Let the underlying graph have t vertices. Thus γ+ ε = t.

For γ = 0 we have an empty graph and for ε = 0 we have a clique. The calculation
of the probabilities in these cases is straightforward. We consider them as starting
values. In most of the cases, the following recursion can be used.

Proposition 15. For γ≥ 3 and ε≥ 1

P(Gt is (γ,ε)-primitive) = P(Gt−1 is (γ−1,ε)-primitive)pγ−1

+P(Gt−1 is (γ,ε−1)-primitive)(1− p)γ

Proof. We can obtain the large graph in two ways: by increasing the clique or the
empty part. The two addends here represent exclusive events. 2

Instead of (1,ε)-primitiveness, (0,ε + 1)-primitiveness will be used. But this
means that the recursion formula for γ = 2 must have an exceptional form:
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Proposition 16.
P(Gt is (2,ε)-primitive) = (t−1)P(Gt−1 is (0, t−1)-primitive)p(1− p)t−2

+P(Gt−1 is (2, t−3)-primitive)(1− p)2

Proof. In the first graph at the right hand side, we have to choose exactly one
neighbor for vt . 2

Summarising, we expressed the S j’s by two quantities, θ and κ. An explicit for-
mula for θ has been found, while for κ a recursion only, moreover, we needed another
auxiliary parameter, not explicitly known but using a recursion again.

5. CONCLUDING REMARKS

In the subject, the most frequent question is the degree distribution of the network.
For general degrees, to obtain exact formulae like here for Π(0) and Π(N−1) is not
hopeful. Inspite of that, we ask:

Open problem How does the degree distribution depend on the initial graph G1?
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