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Abstract. In this paper, we study the existence of entropy solutions for some generalized el-
liptic p(u)-Laplacian problem when p(u) is a local quantity. We get the results by assuming the
right-hand side function f to be an integrable function, and by using the regularization approach
combined with the theory of Sobolev spaces with variable exponents.
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1. INTRODUCTION

In this paper, we study the existence of entropy solutions for some generalized
elliptic equations with exponents p which may depends on the unknown solution u.
We consider the case where the dependency of p on u is a local quantity. Namely, we
study the following problem{

−div(|∇u−Θ(u)|p(u)−2 (∇u−Θ(u))) = f in Ω

u = 0 on ∂Ω,
(1.1)

where Ω is a bounded domain of RN ,N ≥ 2, f is a given data, p : R→ [p−, p+] is
a real continuous function, 1 < p− ≤ p+ < +∞ and p′(z) = p(z)

p(z)−1 is the conjugate
exponent of p(z), with

p− := ess inf
z∈R

p(z), p+ := esssup
z∈R

p(z).

The problem (1.1) models several natural phenomena which appear in area of ocean-
ography, turbulent fluid flows, induction heating and electrochemical problems. We
cite for example the following parabolic model:
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• Fluid flow through porous media. This model is governed by the following
equation

∂θ

∂t
−div

(
|∇ϕ(θ)−K(θ)e|p−2(∇ϕ(θ)−K(θ)e)

)
= 0,

where θ is the volumetric content of moisture, K(θ) the hydraulic conduct-
ivity, ϕ(θ) the hydrostatic potential and e is the unit vector in the vertical
direction.

In the classical cases, when p(u) = p(x) or p(u) = p many authors have studied
the problem (1.1) by proving the existence and the uniqueness of several types of
solutions, and by different approaches ([1, 7, 8, 15]).

The novelty of this work is to study some problems involving the generalized
p-Laplacian operator in the case when the variable exponents p depend on the un-
known solution u. The motivation to study these kind of problems relies in the fact
that, in reality the measurements of some physical quantities are not made point-
wise but through some local averages. The situation where the variable exponents
p depend on the unknown solution u is non-standard as in the classical case (see
[2–4, 7, 8, 10, 14, 15, 19]). This kind of problems appear in the applications of some
numerical techniques for the total variation image restoration method that have been
used in some restoration problems of mathematical image processing and computer
vision [11, 12, 18]. Türola, J. in [18] have presented several numerical examples
suggesting that the consideration of exponents p = p(u) preserves the edges and
reduces the noise of the restored images u. A numerical example suggesting a re-
duction of noise in the restored images u when the exponent of the regularization
term is p = p(|∇u|) is presented in [11]. Many authors have considered the problem
(1.1) in the case where Θ = 0 and especially the study of questions of existence and
uniqueness of weak or entropy solutions to the problem (1.1). In this case, M. Chipot
and H. B. de Oliveira in [13] have proved the existence of weak solutions for some
p(u)-Laplacian problems, the existence proofs of [13] are based on the Schauder
fixed-point theorem. C. Allalou, K. Hilal and S. A. Temghart in [5], extended the res-
ults established in [13] by proving some existence results for some local and nonlocal
problems. Andreianov et al. [6], have studied the following prototype problem{

−div(|∇u|p(u)−2∇u)+u = f in Ω,

u = 0 on ∂Ω.

C. Zhang and X. Zhang in [20] have proved the existence of entropy solutions to
problem (1.1) in the case where Θ = 0 and they have provided some positive answers
for the two questions proposed by Chipot and de Oliveira in [13]. S. Ouaro and
N. Sawadogo in [16] and [17] considered the following nonlinear Fourier boundary
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value problem {
b(u)−diva(x,u,∇u) = f in Ω

a(x,u,∇u) ·η+λu = g on ∂Ω.

The existence and uniqueness results of entropy and weak solutions are established
by an approximation method and convergent sequences in terms of Young measure.

In this paper, we first show that the approximated problems admits a sequence
of weak solutions by applying the variational method combined with a special type
of operators. In the second step, we will prove that the sequence of weak solutions
converges to some function u and by using some a priori estimates, we will show that
this function u is an entropy solution of elliptic problem (1.1).

This paper is organized as follow. In Section 2 we introduce the basic assumptions
and we recall some definitions, basic properties of generalised Sobolev spaces that
we will be used later. The Section 3 is devoted to show the existence of entropy
solutions to the local problem (1.1).

2. PRELIMINARIES

The exponent function p depends on the solution u and therefore it depends on the
space variable x. This allows us to look for the entropy solutions to the problem (1.1)
in a Sobolev space with variable exponents.

Let Ω be a bounded domain of RN , N ≥ 2, we say that a real-valued continuous
function h(.) is log-Hölder continuous in Ω if

∃C > 0 : |h(x)−h(y)| ≤ C

ln
(

1
|x−y|

) ∀x,y ∈Ω, |x− y|< 1
2
. (2.1)

For any Lebesgue-measurable function h : Ω→ [1, ∞), we define

h− := ess inf
x∈Ω

h(x) , h+ := esssup
x∈Ω

h(x),

and we introduce the variable exponent Lebesgue space by:

Lh(·)(Ω) = { u : Ω→ R / ρh(·)(u) :=
∫

Ω

|u(x)|h(x)dx < ∞}.

Equipped with the Luxembourg norm

‖u‖h(·) := inf
{

λ > 0 : ρh(·)

(u
λ

)
≤ 1
}
, (2.2)

Lh(·)(Ω) becomes a Banach space. If

1 < h− ≤ h+ < ∞, (2.3)
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Lh(·)(Ω) is separable and reflexive. The dual space of Lh(·)(Ω) is Lh′(·)(Ω), where
h′(x) is the generalised Hölder conjugate of h(x),

1
h(x)

+
1

h′(x)
= 1.

From the definitions of the modular ρh(·)(u) and the norm (2.2), it can be proved that
if (2.3) holds then

min
{
‖u‖h−

h(·), ‖u‖
h+
h(·)

}
≤ ρh(·)(u)≤max

{
‖u‖h−

h(·), ‖u‖
h+
h(·)

}
. (2.4)

A very useful consequence very useful of (2.4) is the following:

‖u‖h−
h(·)−1≤ ρh(·)(u)≤ ‖u‖

h+
h(·)+1.

For any functions u ∈ Lh(·)(Ω) and v ∈ Lh′(·)(Ω), the generalized Hölder inequality
hold:. ∫

Ω

uvdx
(

1
h−

+
1

h′−

)
‖u‖h(·)‖v‖h′(·) ≤ 2‖u‖h(·)‖v‖h′(·).

We define also the generalized Sobolev space by

W 1,h(·)(Ω) := {u ∈ Lh(·)(Ω) : ∇u ∈ Lh(·)(Ω)},

which is a Banach space with the norm

‖u‖1,h(·) := ‖u‖h(·)+‖∇u‖h(·).

The space W 1,h(·)(Ω) is separable and is reflexive when (2.3) is satisfied. We also
have

W 1,h(·)(Ω) ↪→W 1,r(·)(Ω) whenever h(x)≥ r(x) for a.e. x ∈Ω.

Now, we introduce the following function space

W 1,h(·)
0 (Ω) := {u ∈W1,1

0 (Ω) : ∇u ∈ Lh(·)(Ω)},

endowed with the following norm

‖u‖
W 1,h(·)

0 (Ω)
:= ‖u‖1 +‖∇u‖h(·).

If h ∈ C(Ω), then the norm in W 1,h(·)
0 (Ω) is equivalent to ‖∇u‖h(·). C∞

0 (Ω) is dense

in W 1,h(.)
0 (Ω), when h is log-Hölder continuous. If h is a measurable function in Ω

satisfying 1≤ h− ≤ h+ < d and the Log-Hölder continuity property (2.1), then

‖u‖h∗(·) ≤C‖∇u‖h(·) ∀u ∈W 1,h(·)
0 (Ω),

for some positive constant C, where

h∗(x) :=

{
Nh(x)

N−h(x) if h(x)< N,

∞ if h(x)≥ N.
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On the other hand, if h satisfies (2.1) and h− > N, then

‖u‖∞ ≤C‖∇u‖h(·) ∀u ∈W 1,h(·)
0 (Ω) ,

where C is another positive constant.
Let Tk denote the truncation function at height k > 0 :

Tk(r) = min{k,max{r,−k}}=


k if r > k
r if |r|< k,
−k if r 6−k.

Next, we define the very weak gradient of a measurable function u with Tk(u) ∈
W 1,p(u)

0 (Ω). The proof follows from [9, Lemma 2.1] due to the fact that W 1,p(·)
0 (Ω)

⊂W 1,p−
0 (Ω) (for more details we recommend readers see [6, Proposition 3.5]).

Proposition 1. For every measurable function u with Tk(u)∈W 1,p(u)
0 (Ω), there ex-

ists a unique measurable function v : Ω→ RN , which we call the very weak gradient
of u and denote v = ∇u, such that

∇Tk(u) = vχ{|u|<k} for a.e. x ∈Ω and for every k > 0,

where χE denotes the characteristic function of a measurable set E.
Moreover, if u belongs to W 1,1

0 (Ω), then v coincides with the weak gradient of u.

Lemma 1 ([7, Lemma 2.1]). For ξ,η ∈ RN and 1 < p < ∞, we have
1
p
|ξ|p− 1

p
|η|p ≤ |ξ|p−2

ξ(ξ−η).

Lemma 2. For a≥ 0,b≥ 0 and 1≤ p < ∞, we have

(a+b)p ≤ 2p−1 (ap +bp) .

3. MAIN RESULTS

In this section, we prove the existence of entropy solutions of problem (1.1).
Firstly, we state the following assumptions:
(H1) f ∈ L1(Ω).
(H2) Θ : R→RN is a continuous function such that Θ(0) = 0 and |Θ(x)−Θ(y)| ≤

λ|x−y| for all x,y ∈R, where λ is a positive constant such that λ <
1

2C0
, and

C0 is the constant given by the Poincaré inequality.
We define the set where we are going to look for the solutions to problem (1.1) as

W 1,p(u)
0 (Ω) :=

{
u ∈W 1,1

0 (Ω) :
∫

Ω

|∇u|p(u)dx < ∞

}
.

Now, we give a definition of entropy solutions for the elliptic problem (1.1).
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Definition 1. A measurable function u with Tk(u) ∈W 1,p(u)
0 (Ω) is said to be an

entropy solution for the problem (1.1), if∫
Ω

Φ(∇u−Θ(u))∇Tk(u−ϕ)dx6
∫

Ω

f Tk(u−ϕ)dx,

for all ϕ ∈C1
0(Ω) and for every k > 0 with

Φ(ξ) = |ξ|p(u)−2
ξ ∀ξ ∈ RN .

Theorem 1. Let (H1) and (H2) be satisfied. Then, there exists at least one entropy
solution of the problem (1.1).

Proof. The proof of Theorem 1 is divided into several steps.

Part 1: The approximate problem.
Let fn be a sequence of C∞

0 (Ω) functions strongly converging to f in L1 such that
‖ fn‖L1 ≤ ‖ f‖L1 .

We consider the following problem

(Pn)

{
−div(Φ(∇un−Θ(un))) = fn in Ω

un = 0 on ∂Ω,

where
Φ(ξ) = |ξ|p(un)−2

ξ ∀ξ ∈ RN .

We define the operator A by

〈Au,v〉=
∫

Ω

Φ(∇u−Θ(u))∇vdx with u,v ∈W 1,p(·)
0 (Ω).

We will prove that A is coercive. From Lemma 1, we obtain

〈Au,u〉=
∫

Ω

Φ(∇u−Θ(u))∇udx

=
∫

Ω

|∇u−Θ(u)|p(u)−2(∇u−Θ(u))∇udx

≥
∫ 1

Ω

1
p(u)
|∇u−Θ(u)|p(u)dx−

∫
Ω

1
p(u)
|Θ(u)|p(u)dx.

Since
(a+b)p ≤ 2p−1 (|a|p + |b|p) ,

we have
1

2p+−1 |∇u|p(u) = 1
2p+−1 |∇u−Θ(u)+Θ(u)|p(u) ≤ |∇u−Θ(u)|p(u)+ |Θ(u)|p(u),

then
1

2p+−1 |∇u|p(u)−|Θ(u)|p(u) ≤ |∇u−Θ(u)|p(u).
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Therefore, from Poincaré inequality we get

〈Au,u〉 ≥
∫

Ω

1
p(u)

[
1

2p+−1 |∇u|p(u)−|Θ(u)|p(u)
]

dx−
∫

Ω

1
p(u)
|Θ(u)|p(u)dx

≥
∫

Ω

1
p(u)

1
2p+−1 |∇u|p(u)dx−

∫
Ω

2
p(u)
|Θ(u)|p(u)dx

≥
∫

Ω

1
p(u)

1
2p+−1 |∇u|p(u)dx−

∫
Ω

2
p(u)

λ
p(u)|u|p(u)dx

≥
∫

Ω

1
p+

1
2p+−1 |∇u|p(u)dx−

∫
Ω

2λp(u)

p−
Cp(u)

0 |∇u|p(u)dx.

So the choice of the constant λ in (H2) implies that

〈Au,u〉 ≥
(

1
p+

1
2p+−1 −

1
p−

1
2p−−1

)∫
Ω

|∇u|p(u)dx.

Consequently
〈Au,u〉
‖u‖

W 1,p(·)
0 (Ω)

−→ ∞ as ‖u‖
W 1,p(·)

0 (Ω)
→ ∞.

We deduce that the operator A is coercive. Besides, that the operator A is bounded
and hemi-continuous. Then, the problem (Pn) admits at least one weak solution
un ∈W 1,p(·)

0 (Ω) in the following sense∫
Ω

|∇un−Θ(un)|p(un)−2 (∇un−Θ(un))) ·∇ϕdx =
∫

Ω

fnϕdx (3.1)

for all ϕ ∈W 1,p(·)
0 (Ω).

Our aim is to prove that a subsequence of these approximate solutions {un} con-
verges to a measurable function u, which is an entropy solution to (1.1).

Part 1: A priori estimate.
Lemma 3. (∇Tk(un))n∈N is bounded in Lp−(Ω).

Proof. We take ϕ = Tk(un) as a test function in (3.1), we obtain∫
Ω

Φ(∇un−Θ(un))∇Tk(un)dx6 k‖ f‖L1(Ω).

By the same way as in the proof of the coerciveness, we get

ρ1,p(un)(Tk(un))6Ck.

Therefore
‖Tk(un)‖W 1,p(un)

0
6 1+(Ck)

1
p− ,

we deduce that for any k > 0, the sequence (Tk(un))n∈N is uniformly bounded in
W 1,p(un(·))

0 (Ω) and also in W 1,p−
0 (Ω). Then, up to a subsequence still denoted Tk(un),
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we can assume that for any k > 0, Tk(un) weakly converges to νk in W 1,p−
0 (Ω) and

also Tk(un) strongly converges to νk in Lp−(Ω). �

Lemma 4. (un)n∈N converges in measure to some measurable function u.

Proof. Firstly we prove that (un)n∈N is a Cauchy sequence in measure. For every
fixed δ > 0 and every positive integer k > 0, we know that

meas{|un−um|> δ} ≤meas{|un|> k}+meas{|um|> k}
+meas{|Tk (un)−Tk (um)|> δ} .

Choosing Tk (un) as a test function in (3.1), we get

ρ1,p(un)(Tk(un))6 k‖ fn‖L1(Ω) 6 k‖ f‖L1(Ω).

It follows that ∫
{|un|>k}

kp(un)dx6 k‖ f‖L1(Ω).

Therefore
meas{|un|> k}6 k1−p−‖ f‖L1(Ω).

Let ε > 0, we choose k = k(ε) such that

meas{|un|> k}6 ε

3
and meas{|um|> k}6 ε

3
.

Since {Tk (un)} converges strongly in Lp−(Ω), then it is a Cauchy sequence. Thus

meas{|Tk(un)−Tk(um)|> δ}6 ε

3
,

for all n,m> n0(δ,ε).
Finally, we obtain

meas{|un−um|> δ}6 ε,

for all n,m> n0(δ,ε). Hence

limsup
n,m→∞

meas{|un−um|> δ}= 0,

which proves that the sequence (un)n∈N is a Cauchy sequence in measure and then
converges almost everywhere to some measurable function u.

un→ u a.e in Ω.

Therefore
Tk(un)⇀ Tk(u) in W 1,p−

0 (Ω)

Tk(un)−→ Tk(u) in Lp−(Ω) and a.e. in Ω.

�

Lemma 5. (∇un)n∈N converges almost everywhere in Ω to ∇u.
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Proof. We first prove that {∇un} is a Cauchy sequence in measure. Let δ,h,ε are
positive real numbers, obviously we have

{x ∈Ω : |∇un−∇um|> δ} ⊂ {x ∈Ω : |∇un|> h}∪{x ∈Ω : |∇um|> h}
∪{x ∈Ω : |un−um|> 1}∪E,

where

E := {x ∈Ω : |∇un|6 h, |∇um|6 h, |un−um|6 1, |∇un−∇um|> δ} .
For k > 0, we can write

{x ∈Ω : |∇un|> h} ⊂ {x ∈Ω : |un|> k}∪{x ∈Ω : |∇Tk (un)|> h} ,
then by using the same method as in Lemma 4, we obtain for k sufficiently large

meas{{x ∈Ω : |∇un|> h}∪{x ∈Ω : |∇um|> h}∪{x ∈Ω : |un−um|> 1}}6 ε

2
.

Notice that the application

G : (s, t,ξ1,ξ2) 7→ (Φ(ξ1−Θ(s))−Φ(ξ2−Θ(t)))(ξ1−ξ2)

is continuous and the set

H :=
{
(s, t,ξ1,ξ2) ∈ R×RN×RN , |s| ≤ h, |t| ≤ h, |ξ1| ≤ h, |ξ2| ≤ h, |ξ1−ξ2|> δ

}
is compact and

(Φ(ξ1−Θ(s))−Φ(ξ2−Θ(t)))(ξ1−ξ2)> 0 ∀ξ1 6= ξ2.

Then the application G has its minimum on H . Therefore, there exists a real valued
function β(h,δ)> 0 such that

β(h,δ)meas(E)≤
∫

E

[
|∇un−Θ(un)|p(un)−2 (∇un−Θ(un))

−|∇um−Θ(um)|p(un)−2 (∇um−Θ(um))
]
[∇un−∇um]dx,

=
∫

E

[
|∇um−Θ(um)|p(um)−2 (∇um−Θ(um))

−|∇um−Θ(um)|p(un)−2 (∇um−Θ(um))
]
[∇un−∇um]dx

+
∫

E

[
|∇un−Θ(un)|p(un)−2 (∇un−Θ(un))

−|∇um−Θ(um)|p(um)−2 (∇um−Θ(um))
]
[∇un−∇um]dx.

We take T1 (un−um) as a test function in (3.1) to get

β(h,δ)meas(E)6
∫

E

[
|∇um−Θ(um)|p(um)−2 (∇um−Θ(um))

−|∇um−Θ(um)|p(un)−2 (∇um−Θ(um))
]
[∇un−∇um]dx
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+
∫

E
[ fn− fm]T1 (un−um)dx.

By using the mean value theorem, there exists η taking values between p(un) and
p(um) such that

β(h,δ)meas(E)6
∫

E
|∇um−Θ(um)|η−1 ·

∣∣ log |∇um−Θ(um)|
∣∣ · |∇un−∇um|

· |p(um)− p(un)|dx+‖ fn− fm‖L1(Ω) .

By using Lemma 2, (H2), the facts that h� 1 and the definition of E, we get

β(h,δ)meas(E)6 2p+hp+ (1+λ
η−1) log((1+λ)h) ·

∫
Ω

|p(um)− p(un)|dx

+‖ fn− fm‖L1(Ω) := αn,m.

From Lebesgue dominated convergence theorem, we obtain

meas(E)6
αn,m

β(h,δ)
6

ε

2
,

for all n,m> N2(ε,δ). Consequently combining the previous results we get

meas{x ∈Ω : |∇un−∇um|> δ}6 ε for all n,m>max{N1,N2} .
Hence {∇un} is a Cauchy sequence in measure. Then we can choose a subsequence
(denoted it by the original sequence) such that

∇un→ v a.e. in Ω.

Thus, using Proposition 1 and the fact that ∇Tk (un)→ ∇Tk(u) in (Lp−(Ω))N , we de-
duce that v coincides with the very weak gradient of u almost everywhere. Therefore,
we have

∇un→ ∇u a.e. in Ω.

�

Part 3: Passing to the limit.
We choose Tk (un−φ) as a test function in (3.1) for φ ∈C1

0(Ω). Then∫
Ω

|∇un−Θ(un)|p(un)−2 (∇un−Θ(un)) ·∇Tk (un−φ)dx =∫
Ω

fnTk (un−φ)dx. (3.2)

We now focus our attention on the left-hand side of (3.2).
We note that, if L = k+‖φ‖L∞(Ω)∫

Ω

|∇un−Θ(un)|p(un)−2 (∇un−Θ(un)) ·∇Tk (un−φ)dx

=
∫

Ω

|∇TL (un)−Θ(TL (un))|p(un)−2



ENTROPY SOLUTIONS FOR SOME ELLIPTIC 999

(∇TL (un)−Θ(TL (un))) ·∇Tk (TL (un)−φ)dx

=
∫

Ω

|∇TL (un)−Θ(TL (un))|p(un)−2

(∇TL (un)−Θ(TL (un))) ·∇TL (un)χ{|TL(un)−φ|6k}dx

−
∫

Ω

|∇TL (un)−Θ(TL (un))|p(un)−2

(∇TL (un)−Θ(TL (un))) ·∇ϕχ{|TL(un)−φ|6k}dx.

From (3.2), we have∫
Ω

[
|∇TL (un)−Θ(TL (un))|p(un)−2 (∇TL (un)−Θ(TL (un))) ·∇TL (un)

+
1

p−
|Θ(TL (un) |γ

]
·χ{|TL(un)−φ|6k}dx

−
∫

Ω

|∇TL (un)−Θ(TL (un))|p(un)−2 (∇TL (un)−Θ(TL (un)))∇ϕχ{|TL(un)−φ|6k}dx

=
∫

Ω

fnTk (un−φ)dx+
∫

Ω

1
p−
|Θ(TL (un) |γχ{|TL(un)−φ|6k}dx,

(3.3)

where

γ =

{
p+ if |Θ(TL (un) | ≤ 1,
p− if |Θ(TL (un) |> 1.

Since {∇TL (un)} is bounded in
(

Lp′(un)(Ω)
)N
⊂
(

Lp′+(Ω)
)N

, then from the hypo-

thesis (H3), the sequence {Θ(TL (un)} is also bounded in
(
Lp(un)(Ω)

)N ⊂ (Lp−(Ω))N ,

which implies that
{
|∇TL (un)−Θ(TL (un))|p(un)−2 (∇TL (un)−Θ(TL (un)))

}
is

bounded in
(

Lp′(un)(Ω)
)N
⊂
(

Lp′+(Ω)
)N

.

As un→ u a.e. in Ω and ∇un→ ∇u a.e. in Ω, it follows that

Θ(TL (un))−→Θ(TL(u)) a.e. in Ω (3.4)

and
∇TL (un)−→ ∇TL(u) a.e. in Ω.

Hence,

|∇TL (un)−Θ(TL (un))|p(un)−2 (∇TL (un)−Θ(TL (un)))

⇀ |∇TL (u)−Θ(TL (u))|p(u)−2 (∇TL (u)−Θ(TL (u))) in
(

Lp′+(Ω)
)N

.

As φ ∈C1
0(Ω), we get that∫

Ω

|∇TL (un)−Θ(TL (un))|p(un)−2 (∇TL (un)−Θ(TL (un))) ·∇ϕχ{|TL(un)−φ|6k}dx
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−→
n→+∞

∫
Ω

|∇TL (u)−Θ(TL (u))|p(u)−2 (∇TL (u)−Θ(TL (u))) ·∇ϕχ{|TL(u)−φ|6k}dx.

From (3.4) and the Lebesgue dominated convergence theorem, we obtain∫
Ω

1
p−
|Θ(TL (un) |γχ{|TL(un)−φ|6k}dx→

∫
Ω

1
p−
|Θ(TL (u) |γχ{|TL(u)−φ|6k}dx.

On the other hand, by using Lemma 1, we have[
|∇TL (un)−Θ(TL (un))|p(un)−2 (∇TL (un)−Θ(TL (un))) ·∇TL (un)

+
1

p−
|Θ(TL (un) |γ

]
·χ{|TL(un)−φ|6k} > 0 a.e. in Ω.

By using Fatou’s Lemma, we get∫
Ω

[
|∇TL (u)−Θ(TL (u))|p(u)−2 (∇TL (u)−Θ(TL (u))) ·∇TL (u)

+
1

p−
|Θ(TL (u) |γ

]
χ{|TL(u)−φ|6k}dx

≤ liminf
n→∞

∫
Ω

[
|∇TL (un)−Θ(TL (un))|p(un)−2 (∇TL (un)−Θ(TL (un))) ·∇TL (un)

+
1

p−
|Θ(TL (un) |γ

]
·χ{|TL(un)−φ|6k}dx.

Now, we consider the first term in the right hand side of (3.3). Since fn→ f in L1(Ω),
then

lim
n→∞

∫
Ω

fnTk (un−φ)dx =
∫

Ω

f Tk (u−φ)dx.

Finally, by using the above results we can pass to the limit as n→ ∞ in the equality
(3.3) to concludes that u is an entropy solution to the problem (1.1). �
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