
Miskolc Mathematical Notes HU e-ISSN 1787-2413
Vol. 24 (2023), No. 2, pp. 965–979 DOI: 10.18514/MMN.2023.4119

EXISTENCE OF WEAK SOLUTIONS FOR A DOUBLE PHASE
VARIABLE EXPONENT PROBLEM WITH A GRADIENT

DEPENDENT REACTION TERM

MOHAMED EL OUAARABI, CHAKIR ALLALOU, AND SAID MELLIANI

Received 09 February, 2022

Abstract. In the present paper, we study the existence of at least one weak solution for a class
of double phase variable exponent problem with a reaction term depending on the gradient and
on two real parameters. By using the topological degree theory for a class of demicontinuous
operators of generalized (S+) and the theory of the variable exponent Sobolev spaces, we obtain
the existence of at least one weak solution of this problem.

2010 Mathematics Subject Classification: 35J60; 35J70; 35D30; 47H11

Keywords: double phase variable exponent problem, (p(x),q(x))-Laplacian operators, topolo-
gical degree theory, variable exponent Sobolev spaces

1. INTRODUCTION AND MOTIVATION

The study of differential equations with with nonstandard p(x)-Laplacian oper-
ator

(
(p(x),q(x))-Laplacian operator

)
is an attractive topic and has been the object

of considerable attention in recent years. Perhaps the impulse for this comes from
the new search field that reflects a new type of physical phenomenon is a class of
nonlinear problems with variable exponents. In the subject of fluid mechanics, for
example, Rajagopal and M. Ruzicka recently developed a very interesting model for
these fluids in [21] (see also [22]). Other applications relate to image processing [1],
elasticity problems [18–20,24,26], the flow in porous media [3], and problems in the
calculus of variations involving variational integrals with nonstandard growth [2].

Here and in the sequel, we will assume that Ω is a bounded domain in Rn(n > 1),
with a Lipschitz boundary denoted by ∂Ω, and let µ and λ be two real parameters.

In this paper, we consider the following double phase variable exponent problem:{
−∆p(x),q(x)(u) = µg(x,u)+λ f (x,u,∇u) in Ω,

u = 0 on ∂Ω,
(1.1)

where
∆p(x),q(x)(u) := div

(
|∇u|p(x)−2

∇u+a(x)|∇u|q(x)−2
∇u
)
.
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In this problem, the coefficient a : Ω→ R+ is Lipschitz continuous function, g : Ω×
R→ R and f : Ω×R×Rn→ R are Carathéodory functions that satisfy the assump-
tion of growth, and the variables exponents p(·),q(·) ∈C+(Ω) are assumed to satisfy
the following assumption:

1 < q− ≤ q≤ q+ < p− ≤ p≤ p+ <+∞.

The double phase operator has been used in the modelling of strongly anisotropic
materials [26] and in Lavrentiev’s phenomenon [27]. In the one hand, we have the
physical motivation; since the double phase operator has been used to model the
steady-state solutions of reaction-diffusion problems, that arise in biophysic, plasma-
physic and in the study of chemical reactions. In the other hand, these operators
provide a useful paradigm for describing the behaviour of strongly anisotropic ma-
terials, whose hardening properties are linked to the exponent governing the growth
of the gradient change radically with the point, where the coefficient a(·) determ-
ines the geometry of a composite made of two different materials (see [4,28] and the
references given there).

Let us recall some known results on problem (1.1). For example, Fan and Zhang
[12], based on the theory of the spaces Lp(x)(Ω) and W 1,p(x)

0 (Ω), present several suf-
ficient conditions for the existence of solutions for the problem (1.1) with µ = 1 and
a = λ = 0.

R. Alsaedi [9] establishes sufficient conditions for the existence of nontrivial weak
solutions for the problem (1.1) when µ = 1, a = 0, g(x,u) = |u|q(x)−2u, λ > 0 and
f (x,u) = |u|p(x)−2u.

Problems related to (1.1) in case p(x)≡ p and q(x)≡ q have been studied by many
scholars, for example, Liu et al. [17] study the problem (1.1) when λ = 0 and µ = 1,
and Wang et al. [23] showed, by using the topological degree theory for a class of
demicontinuous operators, the existence of at least one weak solution of (1.1) with
µ = 0 and λ = 1.

We would like to draw attention to the fact that the p(x)-laplacian operator has
more complicated nonlinearity than the p-laplacian operator. For example, they are
non-homogeneous, which prove that our problem is more difficult than the operators
p-Laplacian type.

Motivated by the aforementioned works, in the present paper, we will generalize
these works. By using a topological degree for a class of demicontinuous operators
of generalized (S+) type of [5] and the theory of the generalized Sobolev spaces, we
establish the existence of weak solutions u in W 1,p(x)

0 (Ω) for the problem (1.1).
The paper is designed as follows: in Section 2, we review some fundamental pre-

liminaries about the functional framework where we will treat our problems. In Sec-
tion 3, we introduce some classes of operators, as well as the topological degree the-
ory for a class of demicontinuous operators of generalized (S+). Finally, Section 4 is
devoted to discussing the existence of weak solutions to (1.1).
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2. PRELIMINARIES

In this section, we recall the most important and relevant properties and notations
about generalized Sobolev spaces W 1,p(x)(Ω), that we will need in our analysis of the
problem (1.1), by that, referring to [6–8, 10, 11, 13, 16] for more details.

Let Ω be a smooth bounded domain in Rn(n > 1), with a Lipschitz boundary
denoted by ∂Ω. Set

C+(Ω) =
{

p : p ∈C(Ω) such that p(x)> 1 for any x ∈Ω

}
.

For each p ∈C+(Ω), we define

p+ := max
{

p(x), x ∈Ω

}
and p− := min

{
p(x), x ∈Ω

}
.

For every p ∈C+(Ω), we define

Lp(x)(Ω) =
{

u : Ω→ R is measurable such that
∫

Ω

|u(x)|p(x)dx <+∞

}
,

equipped with the Luxemburg norm

|u|p(x) = inf
{

λ > 0 : ρp(x)

(u
λ

)
≤ 1
}
,

where

ρp(x)(u) =
∫

Ω

|u(x)|p(x)dx, ∀ u ∈ Lp(x)(Ω).

Proposition 1 ([13, Theorem 1.3 and Theorem 1.4]). Let (un) and u ∈ Lp(·)(Ω),
then

|u|p(x) < 1
(
resp.= 1;> 1

)
⇔ ρp(x)(u)< 1

(
resp.= 1;> 1

)
|u|p(x) > 1 ⇒ |u|p

−

p(x) ≤ ρp(x)(u)≤ |u|
p+

p(x), (2.1)

|u|p(x) < 1 ⇒ |u|p
+

p(x) ≤ ρp(x)(u)≤ |u|
p−

p(x), (2.2)

lim
n→∞
|un−u|p(x) = 0 ⇔ lim

n→∞
ρp(x)

(
un−u

)
= 0. (2.3)

Remark 1. According to (2.1) and (2.2), we have

|u|p(x) ≤ ρp(x)(u)+1, (2.4)

ρp(x)(u)≤ |u|
p−

p(x)+ |u|
p+

p(x). (2.5)

Proposition 2 ([16, Theorem 2.5 and Corollary 2.7]). The spaces Lp(x)(Ω) is a
separable and reflexive Banach spaces.
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Proposition 3 ([16, Theorem 2.1]). The conjugate space of Lp(x)(Ω) is Lp′(x)(Ω)

where 1
p(x) +

1
p′(x) = 1 for all x ∈Ω. For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), we have

the following Hölder-type inequality∣∣∣∫
Ω

uv dx
∣∣∣≤ ( 1

p−
+

1
p′−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x). (2.6)

Remark 2 ([13, Theorem 1.11]). If p1, p2 ∈ C+(Ω) with p1(x) ≤ p2(x) for any
x ∈Ω, then there exists the continuous embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω).

Now, let p ∈C+(Ω) and we define W 1,p(x)(Ω) as

W 1,p(x)(Ω) =
{

u ∈ Lp(x)(Ω) such that |∇u| ∈ Lp(x)(Ω)
}
,

equipped with the norm

||u||= |u|p(x)+ |∇u|p(x).

We also define W 1,p(·)
0 (Ω) as the subspace of W 1,p(·)(Ω), which is the closure of

C∞
0 (Ω) with respect to the norm || · ||.

Proposition 4 ([14, Theorem 4.3]). If the exponent p(·) satisfies the log-Hölder
continuity condition, i.e. there is a constant b > 0 such that for every x, y ∈Ω, x 6= y

with |x− y| ≤ 1
2

one has

|p(x)− p(y)| ≤ b
− log |x− y|

, (2.7)

then we have the Poincaré inequality, i.e. the exists a constant C > 0 depending only
on Ω and the function p such that

|u|p(x) ≤C|∇u|p(x), ∀ u ∈W 1,p(·)
0 (Ω). (2.8)

In this paper we will use the following equivalent norm on W 1,p(·)
0 (Ω)

|u|1,p(x) = |∇u|p(x),
which is equivalent to || · ||.

Furthermore, we have the compact embedding W 1,p(·)
0 (Ω) ↪→↪→ Lp(·)(Ω)(see [16]).

Proposition 5 ([16, Theorem 3.1]). The spaces
(

W 1,p(x)(Ω), || · ||
)

and(
W 1,p(x)

0 (Ω), | · |1,p(x)
)

are separable and reflexive Banach spaces.

Remark 3. The dual space of W 1,p(x)
0 (Ω) denoted W−1,p′(x)(Ω), is equipped with

the norm

|u|−1,p′(x) = inf
{
|u0|p′(x)+

N

∑
i=1
|ui|p′(x)

}
,
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where the infinimum is taken on all possible decompositions u = u0 − divF with
u0 ∈ Lp′(x)(Ω) and F = (u1, . . . ,uN) ∈ (Lp′(x)(Ω))N .

3. A REVIEW ON SOME CLASSES OF MAPPINGS AND TOPOLOGICAL DEGREE
THEORY

We start by defining some classes of mappings. In what follows, let X be a real
separable reflexive Banach space and X∗ be its dual space with dual pairing 〈 · , · 〉 and
given a nonempty subset Ω of X . Strong (weak) convergence is represented by the
symbol→ (⇀).

Definition 1. Let Y be another real Banach space. A operator F : Ω ⊂ X → Y is
said to be :

(1) bounded, if it takes any bounded set into a bounded set.
(2) demicontinuous, if for any sequence (un)⊂Ω, un→ u implies that F(un)⇀

F(u).
(3) compact, if it is continuous and the image of any bounded set is relatively

compact.

Definition 2. A mapping F : Ω⊂ X → X∗ is said to be :
(1) of class (S+), if for any sequence (un)⊂Ω with un ⇀ u and

limsup
n→∞

〈Fun,un−u〉 ≤ 0, we have un→ u.

(2) quasimonotone, if for any sequence (un)⊂Ω with un ⇀ u, we have
limsup

n→∞

〈Fun, un−u〉 ≥ 0.

Definition 3. Let T : Ω1 ⊂ X → X∗ be a bounded operator such that Ω⊂Ω1. For
any operator F : Ω⊂ X → X , we say that

(1) F is of class (S+)T , if for any sequence (un)⊂Ω with un ⇀ u,
yn := Tun ⇀ y and limsup

n→∞

〈Fun, yn− y〉 ≤ 0, we have un→ u.

(2) F has the property (QM)T , if for any sequence (un)⊂Ω with
un ⇀ u, yn := Tun ⇀ y, we have limsup

n→∞

〈Fun,y− yn〉 ≥ 0.

In the sequel, we consider the following classes of operators:

F1(Ω) :=
{

F : Ω→ X∗ : F is bounded, demicontinuous and of class (S+)
}
,

FT (Ω) :=
{

F : Ω→ X : F is demicontinuous and of class (S+)T

}
,

FT,B(Ω) :=
{

F ∈ FT (Ω) : F is bounded
}
,

for any Ω⊂ D(F), where D(F) denotes the domain of F , and any T ∈ F1(Ω).
Now, let O be the collection of all bounded open sets in X and we define

F (X) :=
{

F ∈ FT (E) : E ∈ O, T ∈ F1(E)
}
,
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where, T ∈ F1(E) is called an essential inner map to F .

Lemma 1 ([15, Lemma 2.3]). Let T ∈ F1(E) be continuous and S : D(S)⊂ X∗→
X be demicontinuous such that T (E) ⊂ D(S), where E is a bounded open set in a
real reflexive Banach space X. Then the following statements are true :

(1) If S is quasimonotone, then I + S ◦T ∈ FT (E), where I denotes the identity
operator.

(2) If S is of class (S+), then S◦T ∈ FT (E).

Definition 4. Suppose that E is bounded open subset of a real reflexive Banach
space X , T ∈ F1(E) is continuous and F,S ∈ FT (E). Then the affine homotopy
H : [0,1]×E→ X defined by

H (t,u) := (1− t)Fu+ tSu, for (t,u) ∈ [0,1]×E

is called an admissible affine homotopy with the common continuous essential inner
map T .

Remark 4 ([15, Lemma 2.5]). The above affine homotopy is of class (S+)T .

As in [15] we give the topological degree for the class F (X).

Theorem 1. Let

M =
{
(F,E,h) : E ∈ O, T ∈ F1(E), F ∈ FT,B(E), h 6∈ F(∂E)

}
.

Then, there exists a unique degree function d : M → Z that satisfies the following
properties:

(1) (Normalization.) For any h ∈ F(E), we have

d(I,E,h) = 1.

(2) (Additivity.) Let F ∈ FT,B(E). If E1 and E2 are two disjoint open subsets of
E such that h 6∈ F(E\(E1∪E2)), then we have

d(F,E,h) = d(F,E1,h)+d(F,E2,h).

(3) (Homotopy invariance). If H : [0,1]×E→ X is a bounded admissible affine
homotopy with a common continuous essential inner map and h : [0,1]→ X
is a continuous path in X such that h(t) 6∈H (t,∂E) for all t ∈ [0,1], then

d(H (t, ·),E,h(t)) = const for all t ∈ [0,1].

(4) (Existence.) If d(F,E,h) 6= 0, then the equation Fu = h has a solution in E.

Definition 5 ([15, Definition 3.3]). The above degree is defined as follows:

d(F,E,h) := dB(F |E0
,E0,h),

where dB is the Berkovits degree [5] and E0 is any open subset of E with F−1(h)⊂ E0
and F is bounded on E0.
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4. EXISTENCE OF WEAK SOLUTIONS

In this section, we will discuss the existence of weak solutions of (1.1). For this,
we list our assumptions associated with our problem to show the existence result.

From new on, we always assume that Ω⊂ Rn(n > 1) is a bounded domain with a
Lipschitz boundary ∂Ω, p ∈C+(Ω) satisfy the log-Hölder continuity condition (2.7),
g : Ω×R→ R and f : Ω×R×Rn→ R are functions such that :

(A1): f is a Carathéodory function.
(A2): There exists ρ > 0 and γ ∈ Lp′(x)(Ω) such that

| f (x,ζ,ξ)| ≤ ρ(γ(x)+ |ζ|q(x)−1 + |ξ|q(x)−1).

(A3): g is a Carathéodory function.
(A4): There are σ > 0 and ν ∈ Lp′(x)(Ω) such that

|g(x,ζ)| ≤ σ(ν(x)+ |ζ|s(x)−1),

for a.e. x ∈ Ω and all (ζ,ξ) ∈ R×Rn, where k,s ∈ C+(Ω) with 2 ≤ s− ≤
s(x)≤ s+ < p−.

Remark 5.

• Note that for all ϕ ∈W 1,p(x)
0 (Ω)∫

Ω

(
|∇u|p(x)−2

∇u∇ϕ+a(x)|∇u|q(x)−2
∇u∇ϕ

)
dx

is well defined (see [12, 17]).
• µg(x,u) and λ f (x,u,∇u) are belongs to Lp′(x)(Ω) under u ∈W 1,p(x)

0 (Ω), the
assumptions (A2) and (A4) and the given hypotheses about the exponents
p,α,q and s because: r(x) = (q(x)−1)p′(x) ∈C+(Ω) with r(x)< p(x), and
κ(x) = (s(x)−1)p′(x) ∈C+(Ω) with κ(x)< p(x).

Then, by Remark 2 we can conclude that

Lp(x) ↪→ Lr(x) and Lp(x) ↪→ Lκ(x).

Hence, since ϕ ∈ Lp(x)(Ω), we have(
µg(x,u)+λ f (x,u,∇u)

)
ϕ ∈ L1(Ω).

This implies that, the integral∫
Ω

(
µg(x,u)+λ f (x,u,∇u)

)
ϕdx

exist.

Then, we shall use the definition of weak solution for (1.1) in the following sense:
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Definition 6. We say that a function u ∈W 1,p(x)
0 (Ω) is a weak solution of (1.1), if

for any ϕ ∈W 1,p(x)
0 (Ω), it satisfies the following:∫

Ω

(
|∇u|p(x)−2

∇u∇ϕ+a(x)|∇u|q(x)−2
∇u∇ϕ

)
dx =∫

Ω

(
µg(x,u)+λ f (x,u,∇u)

)
ϕdx.

Before giving the existence result for the problem (1.1), we first give two lemmas
that will be used in the proof of this result.

Let us consider the following functional:

J (u) :=
∫

Ω

1
p(x)
|∇u|p(x)dx+

∫
Ω

a(x)
q(x)
|∇u|q(x)dx.

From [12,17], it is obvious that the derivative operator of the functional J in the weak
sense at the point u ∈W 1,p(x)

0 (Ω) is the functional T (u) := J ′(u) ∈W−1,p′(x)(Ω),
given by

〈T u,ϕ〉=
∫

Ω

(
|∇u|p(x)−2

∇u∇ϕ+a(x)|∇u|q(x)−2
∇u∇ϕ

)
dx,

for all u,ϕ ∈W 1,p(x)
0 (Ω) where 〈·, ·〉 means the duality pairing between W−1,p′(x)(Ω)

and W 1,p(x)
0 (Ω). Furthermore, the properties of the operator T are summarized in the

following lemma (see [12, Theorem 3.1] and [17, Proposition 3.1]).

Lemma 2. The operator T : W 1,p(x)
0 (Ω)→W−1,p′(x)(Ω) defined by

〈T u,ϕ〉=
∫

Ω

(
|∇u|p(x)−2

∇u∇ϕ+a(x)|∇u|q(x)−2
∇u∇ϕ

)
dx, (4.1)

is a continuous, bounded, strictly monotone operator, and is of class (S+).

Lemma 3. If (A1)− (A4) hold, then the operator S : W 1,p(x)
0 (Ω)→W−1,p′(x)(Ω)

defined by

〈Su,ϕ〉=−
∫

Ω

(
µg(x,u)+λ f (x,u,∇u)

)
ϕdx, (4.2)

for all u,ϕ ∈W 1,p(x)
0 (Ω), is compact.

Proof. In order to prove this lemma, we proceed in three steps.

Step 1 : Let Ψ1 : W 1,p(x)(Ω)→ Lp′(x)(Ω) be an operator defined by

Ψ1u(x) :=−µg(x,u).

In this step, we prove that the operator Ψ1 is bounded and continuous.
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First, let u ∈W 1,p(x)(Ω), bearing (A4) in mind and using (2.4) and (2.5),
we infer
|Ψ1u|p′(x) ≤ ρp′(x)(Ψ1u)+1

=
∫

Ω

|µg(x,u(x))|p′(x)dx+1

=
∫

Ω

|µ|p′(x)|g(x,u(x)|p′(x)dx+1

≤
(
|µ|p′−+ |µ|p′+

)∫
Ω

|σ
(

ν(x)+ |u|s(x)−1
)
|p′(x)dx+1

≤ const
(
|µ|p′−+ |µ|p′+

)∫
Ω

(
|ν(x)|p′(x)+ |u|κ(x)

)
dx+1

≤ const
(
|µ|p′−+ |µ|p′+

)(
ρp′(x)(ν)+ρκ(x)(u)

)
+1

≤ const
(
|ν|p

′+

p(x)+ |u|
κ+

κ(x)+ |u|
κ−

κ(x)

)
+1.

Then, we deduce from (2.8) and Lp(x) ↪→ Lκ(x), that

|Ψ1u|p′(x) ≤ const
(
|ν|p

′+

p(x)+ |u|
κ+

1,p(x)+ |u|
κ−

1,p(x)

)
+1,

that means Ψ1 is bounded on W 1,p(x)(Ω).
Second, we show that the operator Ψ1 is continuous. To this purpose let

un→ u in W 1,p(x)(Ω). We need to show that Ψ1un→ Ψ1u in Lp′(x)(Ω). We
will apply the Lebesgue’s theorem. Note that if un→ u in W 1,p(x)(Ω), then
un → u in Lp(x)(Ω). Hence there exist a subsequence (uk) of (un) and φ in
Lp(x)(Ω) such that

uk(x)→ u(x) and |uk(x)| ≤ φ(x), (4.3)

for a.e. x ∈Ω and all k ∈ N.
Hence, from (A2) and (4.3), we have

|g(x,uk(x))| ≤ σ(ν(x)+ |φ(x)|s(x)−1),

for a.e. x ∈Ω and for all k ∈ N.
On the other hand, thanks to (A3) and (4.3), we get, as k −→ ∞

g(x,uk(x))→ g(x,u(x)) a.e. x ∈Ω.

Seeing that ν+ |φ|s(x)−1 ∈ Lp′(x)(Ω) and

ρp′(x)(Ψ1uk−Ψ1u) =
∫

Ω

|g(x,uk(x))−g(x,u(x))|p′(x)dx,

then, from the Lebesgue’s theorem and the equivalence (2.3), we have

Ψ1uk→Ψ1u in Lp′(x)(Ω),
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and consequently

Ψ1un→Ψ1u in Lp′(x)(Ω),

that is, Ψ1 is continuous.
Step 2 :: Let us define the operator Ψ2 : W 1,p(x)(Ω)→ Lp′(x)(Ω) by

Ψ2u(x) :=−λ f (x,u(x),∇u(x)).

We will show that Ψ2 is bounded and continuous. Let u ∈W 1,p(x)(Ω). Ac-
cording to (A2) and the inequalities (2.4) and (2.5), we obtain

|Ψ2u|p′(x) ≤ ρp′(x)(Ψ2u)+1

=
∫

Ω

|λ f (x,u(x),∇u(x))|p′(x)dx+1

=
∫

Ω

|λ|p′(x)| f (x,u(x),∇u(x))|p′(x)dx+1

≤
(
|λ|p′−+ |λ|p′+

)∫
Ω

|ρ
(

γ(x)+ |u|q(x)−1 + |∇u|q(x)−1
)
|p′(x)dx+1

≤ const
(
|λ|p′−+ |λ|p′+

)∫
Ω

(
|γ(x)|p′(x)+ |u|r(x)+ |∇u|r(x)

)
dx+1

≤ const
(
|λ|p′−+ |λ|p′+

)(
ρp′(x)(γ)+ρr(x)(u)+ρr(x)(∇u)

)
+1

≤ const
(
|γ|p

′+

p(x)+ |u|
r+
r(x)+ |u|

r−
r(x)+ |∇u|r+r(x)+ |∇u|r−r(x)

)
+1.

Taking into account that Lp(x) ↪→ Lr(x) and (2.8), we have then

|Ψ2u|p′(x) ≤ const
(
|γ|p

′+

p(x)+ |u|
r+
1,p(x)+ |u|

r−
1,p(x)

)
+1,

and consequently Ψ2 is bounded on W 1,p(x)(Ω).
It remains to show that Ψ2 is continuous. Let un → u in W 1,p(x)(Ω), we

need to show that Ψ2un → Ψ2u in Lp′(x)(Ω). We will apply the Lebesgue’s
theorem.

Note that if un→ u in W 1,p(x)(Ω), then un→ u in Lp(x)(Ω) and ∇un→ ∇u
in (Lp(x)(Ω))N . Hence, there exist a subsequence (uk) and φ in Lp(x)(Ω) and
ψ in (Lp(x)(Ω))N such that

uk(x)→ u(x) and ∇uk(x)→ ∇u(x), (4.4)

|uk(x)| ≤ φ(x) and |∇uk(x)| ≤ |ψ(x)|, (4.5)
for a.e. x ∈Ω and all k ∈ N.
Hence, thanks to (A1) and (4.4), we get, as k −→ ∞

f (x,uk(x),∇uk(x))→ f (x,u(x),∇u(x)) a.e. x ∈Ω.

On the other hand, from (A2) and (4.5), we can deduce the estimate

| f (x,uk(x),∇uk(x))| ≤ ρ(γ(x)+ |φ(x)|q(x)−1 + |ψ(x)|q(x)−1),
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for a.e. x ∈Ω and for all k ∈ N.
Seeing that

γ+ |φ|q(x)−1 + |ψ(x)|q(x)−1 ∈ Lp′(x)(Ω),

and taking into account the equality

ρp′(x)(Ψ2uk−Ψ2u) =
∫

Ω

| f (x,uk(x),∇uk(x))− f (x,u(x),∇u(x))|p′(x)dx,

then, we conclude from the Lebesgue’s theorem and (2.3) that

Ψ2uk→Ψ2u in Lp′(x)(Ω),

and consequently

Ψ2un→Ψ2u in Lp′(x)(Ω),

and then Ψ2 is continuous.
Step 3: Let I∗ : Lp′(x)(Ω)→W−1,p′(x)(Ω) be the adjoint operator of the operator

I : W 1,p(x)(Ω)→ Lp(x)(Ω).
We then define

I∗ ◦Ψ1 : W 1,p(x)(Ω)→W−1,p′(x)(Ω),

and
I∗ ◦Ψ2 : W 1,p(x)(Ω)→W−1,p′(x)(Ω).

On another side, taking into account that I is compact, then I∗ is compact.
Thus, the compositions I∗ ◦Ψ1 and I∗ ◦Ψ2 are compact, that means S =
I∗ ◦Ψ1 + I∗ ◦Ψ2 is compact. With this last step the proof of Lemma 3 is
completed.

�

We are now in the position to get the existence result of weak solution for (1.1).

Theorem 2. Assume that the assumptions (A1)−(A4) hold, then the problem (1.1)
possesses at least one weak solution u in W 1,p(x)

0 (Ω).

Proof. The basic idea of our proof is to reduce the problem (1.1) to a new one
governed by a Hammerstein equation, and apply the theory of topological degree
introduced in Section 3 to show the existence of weak solutions to the state problem.

First, for all u,ϕ∈W 1,p(x)
0 (Ω), we define the operators T and S , as defined in (4.1)

and (4.2) respectively. Consequently, the problem (1.1) is equivalent to the equation

T u+Su = 0, u ∈W 1,p(x)
0 (Ω). (4.6)

Taking into account that, by Lemma 2, the operator T is a continuous, bounded,
strictly monotone and of class (S+), then, by [25, Theorem 26 A], the inverse operator

L := T −1 : W−1,p′(x)(Ω)→W 1,p(x)
0 (Ω),
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is also bounded, continuous, strictly monotone and of class (S+).
On another side, according to Lemma 3, we have that the operator S is bounded,

continuous and quasimonotone. Consequently, following Zeidler’s terminology [25],
the equation (4.6) is equivalent to the following abstract Hammerstein equation

u = Lϕ and ϕ+S ◦Lϕ = 0, u ∈W 1,p(x)
0 (Ω) and ϕ ∈W−1,p′(x)(Ω). (4.7)

Seeing that (4.6) is equivalent to (4.7), then to solve (4.6) it is thus enough to solve
(4.7). In order to solve (4.7), we will apply the Berkovits topological degree introdu-
cing in Section 3. First, let us set

B :=
{

ϕ ∈W−1,p′(x)(Ω) : ∃ t ∈ [0,1] such that ϕ+ tS ◦Lϕ = 0
}
.

Next, we show that B is bounded in ∈W−1,p′(x)(Ω). Let us put u := Lϕ for all ϕ∈B .
Taking into account that |Lϕ|1,p(x) = |∇u|p(x), then we have the following two cases:

First case: If |∇u|p(x) ≤ 1, then |Lϕ|1,p(x) ≤ 1, that means
{

Lϕ : ϕ ∈ B
}

is
bounded.

Second case: If |∇u|p(x) > 1, then, we deduce from (2.1), (A2) and (A4), the
inequalities (2.6) and (2.5) and the Young’s inequality that

|Lϕ|p
−

1,p(x) = |∇u|p−p(x)
≤ ρp(x)(∇u)

≤ 〈T u, u〉
≤ 〈ϕ, Lϕ〉
=−t〈S ◦Lϕ, Lϕ〉

= t
∫

Ω

(
µg(x,u)+λ f (x,u,∇u)

)
udx

≤ const
(∫

Ω

|ν(x)u(x)|dx+
∫

Ω

|u(x)|s(x)dx+
∫

Ω

|γ(x)u(x)|dx

+
∫

Ω

|u(x)|q(x)dx+
∫

Ω

|∇u|q(x)−1|u|dx
)

≤ const
(∫

Ω

|ν(x)u(x)|dx+
∫

Ω

|γ(x)u(x)|dx+ρs(x)(u)+ρq(x)(u)

+
∫

Ω

|∇u|q(x)−1|u|dx
)

≤ const
(
|ν|p′(x)|u|p(x)+ |γ|p′(x)|u|p(x)+ |u|s

+

s(x)+ |u|
s−
s(x)+ |u|

q+

q(x)+ |u|
q−

q(x)

+
1

q′−
ρq(x)(∇u)+

1
q−

ρq(x)(u)
)

≤ const
(
|u|p(x)+ |u|s

+

s(x)+ |u|
s−
s(x)+ |u|

q+

q(x)+ |u|
q−

q(x)+ |∇u|q
+

q(x)

)
,
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then, according to Lp(x) ↪→ Ls(x) and Lp(x) ↪→ Lq(x), we get

|Lϕ|p
−

1,p(x) ≤ const
(
|Lϕ|1,p(x)+ |Lϕ|s+1,p(x)+ |Lϕ|q

+

1,p(x)

)
,

what implies that
{

Lϕ : ϕ ∈ B
}

is bounded.
On the other hand, we have that the operator is S is bounded, then SoLϕ is

bounded. Thus, thanks to (4.7), we have that B is bounded in W−1,p′(x)(Ω).
However, ∃ R > 0 such that

|ϕ|−1,p′(x) < R for all ϕ ∈ B,

which leads to

ϕ+ tS ◦Lϕ 6= 0, ϕ ∈ ∂BR(0) and t ∈ [0,1],

where BR(0) is the ball of center 0 and radius R in W−1,p′(x)(Ω). Moreover,
by Lemma 1, we conclude that

I +S ◦L ∈ FL(BR(0)) and I = T ◦L ∈ FL(BR(0)).

On another side, taking into account that I, S and L are bounded, then I +
SoL is bounded. Hence, we infer that

I +S ◦L ∈ FL ,B(BR(0)) and I = T ◦L ∈ FL ,B(BR(0)).

Next, we define the homotopy

H : [0,1]×BR(0)→W−1,p′(x)(Ω) (4.8)

(t,ϕ) 7→H (t,ϕ) := ϕ+ tS ◦Lϕ. (4.9)

Applying the homotopy invariance and normalization property of the degree
d seen in Theorem 1, we obtain

d(I +S ◦L ,BR(0),0) = d(I,BR(0), 0) = 1 6= 0.

Since d(I+S ◦L ,BR(0),0) 6= 0, then by the existence property of the degree
d stated in Theorem 1, we conclude that there exists ϕ∈BR(0) which verifies(

I +S ◦L
)
(ϕ) = 0⇔ ϕ+S ◦Lϕ = 0⇔ T ◦Lϕ+S ◦Lϕ = 0.

Finally, we infer that u = Lϕ is a weak solution of (1.1). The proof is com-
pleted.

�
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