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Abstract. In 1966, B. O’Neill [The fundamental equations of a submersion, Michigan Math. J.,
Volume 13, Issue 4 (1966), 459-469.] defined some fundamental equations and curvature rela-
tions between the total space, the base space and the fibres on a submersion. In the present paper,
we define new curvature tensors on Riemannian submersions such as Weyl projective curvature
tensor, concircular curvature tensor, conharmonic curvature tensor, conformal curvature tensor
and M−projective curvature tensor, respectively. Finally, we obtain some results in case of the
total space of Riemannian submersions has umbilical fibres for any curvature tensors mentioned
by the above.
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1. INTRODUCTION AND PRELIMINARIES

In differential geometry, an important tool to define the curvature of n− dimen-
sional spaces (such as Riemannian manifolds) is the Riemannian curvature tensor.
The tensor has played an important role both general relativty and gravity. In this
manner, Mishra in [13] defined some new curvature tensors on Riemannian mani-
folds such as concircular curvature tensor, conharmonic curvature tensor, conformal
curvature tensor, respectively. Taking into account the paper of Mishra, Pokhariyal
and Mishra defined the Wely projective curvature tensor on Riemannian manifolds
[17]. Afterwards, Ojha defined M− Projective curvature tensor [15].

Riemannian submersion appears to have been studied and its differential geometry
was first defined by O’Neill 1966 and Gray 1967. We note that Riemannian sub-
mersions have been studied widely not only in mathematics, but also in theoretical
pyhsics because of their applications in the Yang-Mills theory, Kaluza Klein theory,
super gravity, relativity and superstring theories (see [3, 4, 9, 10, 14, 18]). Most of
the studies related to Riemannian submersion can be found in the books ([5, 6]). In
1966, B. O’Neill has defined a paper related to some fundamental equations of a
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submersions. In that paper, he has given some curvature relations on Riemannian
submersions.

In this study, in addition to the curvature relations previously defined on Rieman-
nian submersion, we investigate new curvature tensors on a Riemannian submersion
and the curvature properties of these tensors. In the present paper, in the first part of
our study, the basic definitions and theorems that we will use throughout the paper
are given. In sections 2-6 include the Weyl projective curvature tensor, concircular
curvature tensor, conharmonic curvature tensor, conformal curvature tensor and M-
projective curvature tensor relations for a Riemannian submersion respectively. Also
various results are obtained by examining the conditions for having total umbilical
fibers.

Now, we will give the basic definitions and theorems without proofs that we will
use throughout the paper.

Definition 1. Let (M,g) and (N,gN) be Riemannian manifolds, where-dim(M)>
dim(N). A surjective mapping π : (M,g)→ (N,gN) is called a Riemannian submer-
sion [16] if:

(S1) The rank of π equals dim(N).
In this case, for each q ∈ N, π−1(q) = π−1

q is a k-dimensional submanifold
of M and called a fiber, where k = dim(M)−dim(N). A vector field on M is
called vertical (resp. horizontal) if it is always tangent (resp. orthogonal) to
fibers. A vector field X on M is called basic if X is horizontal and π-related to
a vector field X∗ on N, i.e. , π∗(Xp) = X∗π(p) for all p ∈M, where π∗ is deriv-
ative or differential map of π. We will denote by V and H the projections on
the vertical distribution kerπ∗, and the horizontal distribution kerπ⊥∗ , respect-
ively. As usual, the manifold (M,g) is called total manifold and the manifold
(N,gN) is called base manifold of the submersion π : (M,g)→ (N,gN).

(S2) π∗ preserves the lengths of the horizontal vectors.

These conditions are equivalent to say that the derivative map π∗ of π, restricted to
kerπ⊥∗ , is a linear isometry.

If X and Y are the basic vector fields, π-related to XN ,YN , we have the following
facts:

(1) g(X ,Y ) = gN(XN ,YN)◦π,
(2) h[X ,Y ] is the basic vectr field π-related to [XN ,YN ],
(3) h(∇XY ) is the basic vector field π-related to ∇N

XNYN ,

for any vertical vector field V , [X ,Y ] is the vertical.
The geometry of Riemannian submersions is characterized by O’Neill’s tensors T

and A , defined as follows:
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The geometry of Riemannian submersions is characterized by O’Neill’s tensors T
and A , defined as follows:

TEF = V ∇V EH F +H ∇V EV F, (1.1)

AEF = V ∇H EH F +H ∇H EV F (1.2)

for any vector fields E and F on M, where ∇ is the Levi-Civita connection, V and H
are orthogonal projections on vertical and horizontal spaces, respectively.

Now, we are going to give an example for a Riemannian submersion as follows:

Example 1. Let φ :
(
R4,gR4

)
−→

(
R2,gR2

)
be a submersion defined by

φ(u1,u2,u3,u4) =

(
1√
2
(u1−u2),

√
u2

3 +u2
4

)
.

Then, the Jacobian matrix of φ is:

φ∗ =

[ 1√
2
− 1√

2
0 0

0 0 u3
W

u4
W

]
where W =

√
u2

3 +u2
4. The rank of the map equal to 2. It means that the map is a

submersion. A straight computations yields

kerφ∗ = span
{

V1 =
∂

∂u1
+

∂

∂u2
, V2 = u4

∂

∂u3
−u3

∂

∂u4

}
and

(kerφ∗)
⊥ = span

{
X1 =

1√
2

(
∂

∂u1
− ∂

∂u2

)
, X2 =

u3

W
∂

∂u3
+

u4

W
∂

∂u4

}
.

Also by direct computations yields

φ∗ (X1) = ∂v1 and φ∗ (X2) = ∂v2

Thus, it is easy to see that

gR2 (φ∗ (Xi) ,φ∗ (Xi)) = gR4 (Xi,Xi) , i = 1,2

Hence φ is a Riemannian submersion.

Definition 2. Let (M,g) and (G,g′) Riemannian manifolds of n− dimensional and
the horizontal distribution of (M,g) is H . Let’s show (1,3)-order curvature tensor
field on Xh(M) with R∗. For any X ,Y,Z ∈ χh(M) and p ∈M

RG
π(p)(π∗pXp,π∗pYp,π∗pZp). (1.3)

We now recall the following curvature relations for a Riemannian submersion from
[6] and [16].
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Theorem 1. (M,g) and (G,g′) Riemannian manifolds,

π : (M,g)→ (G,g′)

a Riemannian submersion and RM, RG and R̂ be Riemannian curvature tensors of
M,G and (π−1(x), ĝx) fibre respectively. In this case, there are the following equa-
tions for any U,V,W,F ∈ χv(M) and X ,Y,Z,H ∈ χh(M)

g(RM(X ,Y )Z,H) = g(RG(X ,Y )Z,H)+2g(AXY,AZH)

−g(AY Z,AX H)+g(AX Z,AY H), (1.4)

g(RM(X ,Y )Z,V ) =−g((∇ZA)XY,V )−g(AXY,TV Z)

+g(AY Z,TV X)−g(AX Z,TVY ), (1.5)

g(RM(X ,Y )V,W ) = g((∇V A)XY,W )−g((∇W A)XY,V )

+g(AXVAYW )+g(AXW,AYV )

−g(TV X ,TWY )+g(TW X ,TVY ), (1.6)

g(RM(X ,V )Y,W ) = g((∇X T )VW,Y )−g((∇V A)XY,W )

−g(TV X ,TWY )+g(AXV,AYW ), (1.7)

g(RM(U,V )W,X) = g((∇U T )VW,X)−g((∇V T )UW,X) (1.8)

and

g(RM(U,V )W,F) = g(R̂(U,V )W,F)+g(TUW,TV F)−g(TVW,TU F). (1.9)

Definition 3. [6] Let (M,g) be a Riemannian manifold and a local orthonormal
frame of the vertical distribution ν is {U j}1≤ j≤r. Then N, the horizontal vector field
on (M,g) is locally defined by

N =
r

∑
j=1

TU jU j.

Proposition 1. Let (M,g) and (G,g′) Riemannian manifolds,

π : (M,g)→ (G,g′)

a Riemannian submersion and {Xi,U j} be a π-compatible frame.
In this case, for any U,V ∈ χv(M) and X ,Y ∈ χh(M), the Ricci tensor SM holds

the following equations [6]:

(i) SM(U,V ) = Ŝ(U,V )−g(N,TUV ) (1.10)

+∑
i
{g((∇XiT )UV,Xi)+g(AXiU,AXiV )},

(ii) SM(X ,Y ) = SG(X ′,Y ′)◦π+
1
2
{g(∇X N,Y )+g(∇Y N,X)} (1.11)

−2∑
i

g(AX Xi,AY Xi)−∑
j

g(TU j X ,TU jY ),
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(iii) SM(U,X) = g(∇U N,X)−∑
j

g(∇U j T )U jU,X) (1.12)

+∑
i
{g((∇XiA)XiX ,U)−2g(AX Xi,TU Xi)}.

Proposition 2. [6] Let’s take the scalar curvatures of (M,g),(G,g′) Riemannian
manifolds and x ∈ G,π−1(x) fibre with rM,rG and r̂, respectively. In a

π : (M,g)→ (G,g′)

Riemannian submersion, (M,g) depends on the scalar curvature of the Riemannian
manifold rG and the scalar curve of any lift r̂. In this case

rM = r̂+ rG ◦π−||N||2−||A||2−||T ||2 +2∑
i

g(∇XiN,Xi). (1.13)

2. WEYL PROJECTIVE CURVATURE TENSOR ALONG A RIEMANNIAN
SUBMERSION

In this section, we examine the Weyl projective curvature tensor relations between
the total space, the base space and fibres on a Riemannian submersion. We also give
a corollary in case of the Riemannian submersion has totally umbilical fibres case.

Definition 4. [13] Let take an n-dimensional differentiable manifold Mn with dif-
ferentiability class C∞. In the n−dimensional space Vn, the tensor

P∗(X ,Y )Z = RM(X ,Y )Z− 1
n−1

{SM(Y,Z)X−SM(X ,Z)Y}.

is called Weyl projective curvature tensor, where Ricci tensor of total space denoted
by SM.

Now, we have the following main theorem.

Theorem 2. Let, (M,g) and (G,g′) Riemannian manifolds,

π : (M,g)→ (G,g′)

a Riemannian submersion and RM, RG and R̂ be Riemannian curvature tensors, SM,
SG and Ŝ be Ricci tensors of M, G and the fibre respectively. Then for any U,V,W,F ∈
χv(M) and X ,Y,Z,H ∈ χh(M), we have the following relations for Weyl projective
curvature tensor:

g(P∗(X ,Y )Z,H) = g(RG(X ,Y )Z,H)+2g(AXY,AZH)

−g(AY Z,AX H)+g(AX Z,AY H)

− 1
n−1

{
g(X ,H)

[
SG(Y ′,Z′)◦π+

1
2
(g(∇Y N,Z)+g(∇ZN,Y ))

−2∑
i

g(AY Xi,AZXi)−∑
j

g(TU jY,TU j Z)
]
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−g(Y,H)

[
SG(X ′,Z′)◦π+

1
2
(g(∇X N,Z)+g(∇ZN,X))

−2∑
i

g(AX Xi,AZXi)−∑
j

g(TU j X ,TU j Z)
]}

,

g(P∗(X ,Y )Z,V ) =−g((∇ZA)XY,V )−g(AXY,TV Z)

+g(AY Z,TV X)−g(AX Z,TVY ),

g(P∗(X ,Y )V,W ) = g((∇V A)XY,W )−g((∇W A)XY,V )+g(AXV,AYW )

−g(AXW,AYV )−g(TV X ,TWY )+g(TW X ,TVY ),

g(P∗(X ,V )Y,W ) = g((∇X T )VW,Y )+g((∇V A)XY,W )

−g(TV X ,TWY )+g(AXV,AYW )

+
1

n−1

{
g(V,W )

[
SG(X ′,Y ′)◦π+

1
2
{g(∇X N,Y )

+g(∇Y N,X)}−2∑
i

g(AX Xi,AY Xi)−∑
j

g(TU j X ,TU jY )
]}

,

g(P∗(U,V )W,X) = g((∇U T )VW,X)−g((∇V T )UW,X)

and

g(P∗(U,V )W,F) = g(R̂(U,V )W,F)+g(TUW,TV F)

−g(TVW,TU F)− 1
n−1

{
g(F,U)

[
Ŝ(V,W )−g(N,TVW )

+∑
i
(g((∇XiT )VW,Xi)+g(AXiV,AXiW ))

]
−g(F,V )

[
Ŝ(U,W )−g(N,TUW )

+∑
i
(g((∇XiT )UW,Xi)+g(AXiU,AXiW ))

]}
.

Proof. We only give the proof of the 1st equation of this theorem. The following
equations are obtained inner production with H to P∗ and using (1.4) and (1.11)
equations.

g(RM(X ,Y )Z,H) = g(RG(X ,Y )Z,H)+2g(AXY,AZH)−g(AY Z,AX H)

+g(AX Z,AY H),
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SM(Y,Z) = SG(Y ′,Z′)◦π+
1
2
{g(∇Y N,Z)+g(∇ZN,Y )}

−2∑
i

g(AYYi,AZYi)−∑
j
(TU jY,TU j Z)

and

SM(X ,Z) = SG(Y ′,Z′)◦π+
1
2
{g(∇X N,Z)+g(∇ZN,X)}

−2∑
i

g(AX Xi,AZXi)−∑
j
(TU j X ,TU j Z).

When these equations are substituted in P∗, the given result is obtained. Other equa-
tions are similarly proved by using Theorem 1 and Proposition 1. �

Corollary 1. Let π : (M,g)→ (G,g′) be a Riemannian submersion, where (M,g)
and (G,g′) Riemannian manifolds. If the Riemannian submersion has total umbilical
fibres that is N = 0 and then the Weyl projective curvature tensor is given by

g(P∗(X ,Y )Z,H) = g(RG(X ,Y )Z,H)+2g(AXY,AZH)−g(AY Z,AX H)+g(AX Z,AY H)

− 1
n−1

{
g(X ,H)

[
SG(Y ′,Z′)◦π−2∑

i
g(AY Xi,AZXi)−∑

j
g(TU jY,TU j Z)

]

−g(Y,H)

[
SG(X ′,Z′)◦π−2∑

i
g(AX Xi,AZXi)−∑

j
g(TU j X ,TU j Z)

]}
,

and

g(P∗(U,V )W,F) = g(R̂(U,V )W,F)+g(TUW,TV F)−g(TVW,TU F)

− 1
n−1

{
g(F,U)

[
Ŝ(V,W )+∑

i
(g((∇XiT )VW,Xi)+g(AXiV,AXiW ))

]

−g(F,V )

[
Ŝ(U,W )+∑

i
(g((∇XiT )UW,Xi)+g(AXiU,AXiW ))

]}
.

for any U,V,W,F ∈ χv(M) and X ,Y,Z,H ∈ χh(M),

3. CONCIRCULAR CURVATURE TENSOR ALONG A RIEMANNIAN SUBMERSION

In this section, curvature relations of concircular curvature tensor in a Rieman-
nian submersion are examined and showing that the Riemannian submersion with
concircular curvature tensor has no the totally umbilical fibres.

Definition 5. In the n−dimensional space Vn, the tensor

C∗(X ,Y,Z,H) = RM(X ,Y,Z,H)− rM

n(n−1)
[g(X ,H)g(Y,Z)−g(Y,H)g(X ,Z)],
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is called concircular curvature tensor, where scalar tensor denoted by rM [13].

Now, we have the following main theorem.

Theorem 3. Let, (M,g) and (G,g′) Riemannian manifolds,

π : (M,g)→ (G,g′)

a Riemannian submersion and RM, RG and R̂ be Riemannian curvature tensors, rM,
rG and r̂ be scalar curvature tensors of M, G and the fibre respectively. Then for any
U,V,W,F ∈ χv(M) and X ,Y,Z,H ∈ χh(M), we have the following relations

g(C∗(X ,Y )Z,H) = g(RG(X ,Y )Z,H)+2g(AXY,AZH)

−g(AY Z,AX H)+g(AX Z,AY H)

− rM

n(n−1)

{
g(Y,Z)g(X ,H)−g(X ,Z)g(Y,H)

}
,

g(C∗(X ,Y )Z,V ) =−g((∇ZA)XY,V )−g(AX T,TV Z)

+g(AY Z,TV X)−g(AX Z,TVY ),

g(C∗(X ,Y )V,W ) = g((∇V A)XY,W )−g((∇W A)XY,V )+g(AXV,AYW )

−g(AXW,AYV )−g(TV X ,TWY )+g(TW X ,TVY ),

g(C∗(X ,V )Y,W ) = g((∇X T )VW,Y )+g((∇V A)XY,W )−g(TV X ,TWY )

+g(AXY,AYW )− rM

n(n−1)
{−g(X ,Y )g(V,W )},

g(C∗(U,V )W,X) = g((∇U T )VW,X)−g((∇V T )UW,X)

and

g(C∗(U,V )W,F) = g(R̂(U,V )W,F)+g(TUW,TV F)−g(TVW,TU F)

− rM

n(n−1)

{
g(V,W )g(U,F)−g(U,W )g(V,F)

}
where

rM = r̂+ rG ◦π−||A||2−||T ||2.

Proof. Let’s prove the 2nd equation of this theorem. Taking inner product C∗ with
V then we have

g(C∗(X ,Y )Z,V ) = g(R(X ,Y )Z,V )− rM

n(n−1)
{g(Y,Z)g(X ,V )−g(X ,Z)}.

Then using equation (1.5), we get

g(C∗(X ,Y )Z,V ) =−g((∇ZA)XY,V )−g(AX T,TV Z)

+g(AY Z,TV X)−g(AX Z,TVY ).
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which completes the proof of the second equation. Other equations are similarly
proved by using Theorem 1, Proposition 1 and Proposition 2. �

Corollary 2. Let π : (M,g)→ (G,g′) be a Riemannian submersion, where (M,g)
and (G,g′) Riemannian manifolds. Then the concircular curvature tensor of Rieman-
nian submersion has no total umbilical fibres.

4. CONHARMONIC CURVATURE TENSOR ALONG A RIEMANNIAN SUBMERSION

In this section, curvature relations of conharmonic curvature tensor in a Rieman-
nian submersion are examined.

Definition 6. In the n−dimensional space Vn, the tensor

L∗(X ,Y,Z,H) = RM(X ,Y,Z,H)− 1
n−2

[g(Y,Z)Ric(X ,H)−g(X ,Z)Ric(Y,H)

+g(Y,H)Ric(Y,Z)−g(Y,H)Ric(X ,Z)]

is called conharmonic curvature tensor, where Ricci tensor denoted by Ric [13].

In a similar way, we have the following main theorem.

Theorem 4. Let, (M,g) and (G,g′) Riemannian manifolds,

π : (M,g)→ (G,g′)

a Riemannian submersion and RM, RG and R̂ be Riemannian curvature tensors, SM,
SG and Ŝ be Ricci tensors of M, G and the fibre respectively. Then for any U,V,W,F ∈
χv(M) and X ,Y,Z,H ∈ χh(M), we have the following relations

g(L∗(X ,Y )Z,H) = g(RG(X ,Y )Z,H)+2g(AXY,AZH)−g(AY Z,AX H)

+g(AX Z,AY H)− 1
(n−2)

{
g(Y,Z)

[
SG(X ′,H ′)◦π

+
1
2
(g(∇X N,H)+g(∇HN,X))−2∑

i
g(AX Xi,AHXi)

−∑
j

g(TU j X ,TU j H)

]
−g(X ,Z)

[
SG(Y ′,H ′)◦π

+
1
2
(g(∇Y N,H)+g(∇HN,Y ))−2∑

i
g(AY Xi,AHXi)

−∑
j

g(TU jY,TU j H)

]
+g(X ,H)

[
SG(Y ′,Z′)◦π

+
1
2
(g(∇Y N,Z)+g(∇ZN,Y ))
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−2∑
i

g(AY Xi,AZXi)−∑
j

g(TU jY,TU j Z)

]

−g(Y,H)

[
SG(X ′,Z′)◦π+

1
2
(g(∇X N,Z)+g(∇ZN,X))

−2∑
i

g(AX Xi,AZXi)−∑
j

g(TU j X ,TU j Z)
]}

,

g(L∗(X ,Y )Z,V ) =−g((∇ZA)XY,V )−g(AX T,TV Z)+g(AY Z,TV X)

−g(AX Z,TVY )− 1
(n−2)

{
g(Y,Z)

[
g(∇X N,V )

−∑
j

g((∇U j T )U j X ,V )+∑
i
(g((∇XiA)XiX ,V )

−2g(AV Xi,TX Xi))

]
−g(X ,Z)

[
g(∇Y N,V )

−∑
j

g((∇U j T )U jY,V )+∑
i
(g((∇XiA)XiY,V )

−2g(AV Xi,TY Xi))

]}
,

g(L∗(X ,Y )V,W ) = g((∇V A)XY,W )−g((∇W A)XY,V )+g(AXV,AYW )

−g(AXW,AYV )−g(TV X ,TWY )+g(TW X ,TVY ),

g(L∗(X ,V )Y,W ) = g((∇X T )VW,Y )+g((∇V A)XY,W )−g(TV X ,TWY )

+g(AXY,AYW )− 1
(n−2)

{
−g(V,W )

[
SG(X ′,Y ′)◦π

+
1
2
(g(∇X N,Y )+g(∇Y N,X))−2∑

i
g(AX Xi,AY Xi)

−∑
j

g(TU j X ,TU jY )
]
−g(X ,Y )

[
Ŝ(V,W )−g(N,TVW )

+∑
i
(g((∇XiT )VW,Xi)+g(AXiV,AXiW ))

]}
,

g(L∗(U,V )W,X) = g((∇U T )VW,X)−g((∇V T )UW,X)

− 1
(n−2)

{
g(V,W )

[
g(∇U N,X)−∑

j
g(∇U j T )U jU,X)

+∑
i
{g((∇XiA)XiX ,U)−2g(AX Xi,TU Xi)}

]
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−g(U,W )
[
g(∇V N,X)−∑

j
g(∇U j T )U jV,X)

+∑
i
{g((∇XiA)XiX ,V )−2g(AX Xi,TV Xi)}

]}
and

g(L∗(U,V )W,F) = g(R̂(U,V )W,F)+g(TUW,TV F)−g(TVW,TU F)

− 1
(n−2)

{
g(V,W )

[
Ŝ(U,F)−g(N,TU F)

+∑
i
(g((∇XiT )U F,Xi)+g(AXiU,AXiF))

]
−g(U,W )

[
Ŝ(V,F)−g(N,TV F)

+∑
i
(g((∇XiT )V F,Xi)+g(AXiV,AXiF))

]
+g(F,U)

[
Ŝ(V,W )−g(N,TVW )

+∑
i
(g((∇XiT )VW,Xi)+g(AXiV,AXiW ))

]
−g(F,V )

[
Ŝ(U,W )−g(N,TUW )

+∑
i
(g((∇XiT )UW,Xi)+g(AXiU,AXiW ))

]}
.

Proof. Let’s prove the 3th equation of this theorem. The following equations are
obtained inner production with W to L∗ and by using equation (1.6)

g(L∗(X ,Y )V,W ) = g(RM(X ,Y )V,W )− 1
n−2

{g(X ,W )S(Y,V )

−g(Y,W )S(X ,V )+g(Y,V )S(X ,W )−g(X ,V )S(Y,W )}.
One can easily obtain the other equations by using Theorem 1 and Proposition 1. �

Corollary 3. Let π : (M,g)→ (G,g′) be a Riemannian submersion, where (M,g)
and (G,g′) Riemannian manifolds. If the Riemannian submersion has total umbilical
fibres that is N = 0 and then the conharmonic curvature tensor is given by

g(L∗(X ,Y )Z,H) = g(RG(X ,Y )Z,H)+2g(AXY,AZH)−g(AY Z,AX H)

+g(AX Z,AY H)− 1
(n−2)

{
g(Y,Z)

[
SG(X ′,H ′)◦π

−2∑
i

g(AX Xi,AHXi)−∑
j

g(TU j X ,TU j H)

]
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−g(X ,Z)
[

SG(Y ′,H ′)◦π−2∑
i

g(AY Xi,AHXi)

−∑
j

g(TU jY,TU j H)

]
+g(X ,H)

[
SG(Y ′,Z′)◦π

−2∑
i

g(AY Xi,AZXi)−∑
j

g(TU jY,TU j Z)

]

−g(Y,H)

[
SG(X ′,Z′)◦π−2∑

i
g(AX Xi,AZXi)

−∑
j

g(TU j X ,TU j Z)
]}

,

g(L∗(X ,Y )Z,V ) =−g((∇ZA)XY,V )−g(AX T,TV Z)+g(AY Z,TV X)

−g(AX Z,TVY )− 1
(n−2)

{
g(Y,Z)

[
−∑

j
g((∇U j T )U j X ,V )

+∑
i
(g((∇XiA)XiX ,V )−2g(AV Xi,TX Xi))

]
−g(X ,Z)

[
−∑

j
g((∇U j T )U jY,V )

+∑
i
(g((∇XiA)XiY,V )−2g(AV Xi,TY Xi))

]}
,

g(L∗(X ,V )Y,W ) = g((∇X T )VW,Y )+g((∇V A)XY,W )−g(TV X ,TWY )

+g(AXY,AYW )− 1
(n−2)

{
−g(V,W )

[
SG(X ′,Y ′)◦π

−2∑
i

g(AX Xi,AY Xi)−∑
j

g(TU j X ,TU jY )
]

−g(X ,Y )
[
Ŝ(V,W )+∑

i
(g((∇XiT )VW,Xi)+g(AXiV,AXiW ))

]}
,

g(L∗(U,V )W,X) = g((∇U T )VW,X)−g((∇V T )UW,X)

− 1
(n−2)

{
g(V,W )

[
∑

j
g(∇U j T )U jU,X)

+∑
i
{g((∇XiA)XiX ,U)−2g(AX Xi,TU Xi)}

]
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−g(U,W )
[
∑

j
g(∇U j T )U jV,X)

+∑
i
{g((∇XiA)XiX ,V )−2g(AX Xi,TV Xi)}

]}
and

g(L∗(U,V )W,F) = g(R̂(U,V )W,F)+g(TUW,TV F)

−g(TVW,TU F)− 1
(n−2)

{
g(V,W )

[
Ŝ(U,F)

+∑
i
(g((∇XiT )U F,Xi)+g(AXiU,AXiF))

]
−g(U,W )

[
Ŝ(V,F)+∑

i
(g((∇XiT )V F,Xi)+

g(AXiV,AXiF))
]
+g(F,U)

[
Ŝ(U,V )

+∑
i
(g((∇XiT )UV,Xi)+g(AXiU,AXiV ))

]
−g(F,V )

[
Ŝ(U,W )+∑

i
(g((∇XiT )UW,Xi)+g(AXiU,AXiW ))

]}
.

5. CONFORMAL CURVATURE TENSOR ALONG A RIEMANNIAN SUBMERSION

In this section, we find some curvature relations of conformal curvature tensor in
a Riemannian submersion and give a corollary in case of the Riemannian submersion
has totally umbilical fibres.

Definition 7. In the n−dimensional space Vn, the tensor

V ∗(X ,Y,Z,H) = RM(X ,Y,Z,H)− 1
n−2

[g(X ,H)Ric(Y,Z)−g(Y,H)Ric(X ,Z)

+g(Y,Z)Ric(X ,H)−g(X ,Z)Ric(Y,H)]

+
rM

(n−1)(n−2)
[g(X ,H)g(Y,Z)−g(Y,H)g(X ,Z)],

is called conformal curvature tensor, where Ricci tensor and scalar tensor denoted by
Ric and rM respectively [13].

Theorem 5. Let, (M,g) and (G,g′) Riemannian manifolds,

π : (M,g)→ (G,g′)

a Riemannian submersion and RM, RG and R̂ be Riemannian curvature tensors, SM,
SG and Ŝ be Ricci tensors and rM, rG and r̂ be scalar curvature tensors of M, G and
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the fibre respectively. Then for any U,V,W,F ∈ χv(M) and X ,Y,Z,H ∈ χh(M), we
have the following relations

g(V ∗(X ,Y )Z,H) = g(RG(X ,Y )Z,H)+2g(AXY,AZH)−g(AY Z,AX H)

+g(AX Z,AY H)− 1
(n−2)

{
g(X ,H)

[
SG(Y ′,Z′)◦π

+
1
2
(g(∇Y N,Z)+g(∇ZN,Y ))−2∑

i
g(AY Xi,AZXi)

−∑
j

g(TU jY,TU j Z)

]
−g(Y,H)

[
SG(X ′,Z′)◦π

+
1
2
(g(∇X N,Z)+g(∇ZN,X))−2∑

i
g(AX Xi,AZXi)

−∑
j

g(TU j X ,TU j Z)
]
+g(Y,Z)

[
SG(X ′,H ′)◦π

+
1
2
(g(∇X N,H)+g(∇HN,X))

−2∑
i

g(AX Xi,AHXi)−∑
j

g(TU j X ,TU j H)

]
−g(X ,Z)

[
SG(Y ′,H ′)◦π+

1
2
(g(∇Y N,H)+g(∇HN,Y ))

−2∑
i

g(AY Xi,AHXi)−∑
j

g(TU jY,TU j H)

]}

+
rM

(n−1)(n−2)
{g(Y,Z)g(X ,H)−g(X ,Z)g(Y,H)},

g(V ∗(X ,Y )Z,V ) =−g((∇ZA)XY,V )−g(AX T,TV Z)+g(AY Z,TV X)

−g(AX Z,TVY )− 1
(n−2)

{
g(Y,Z)

[
g(∇X N,V )

−∑
j

g((∇U j T )U j X ,V )+∑
i
(g((∇XiA)XiV,X)

−2g(AV Xi,TX Xi))

]
−g(X ,Z)

[
g(∇Y N,V )

−∑
j

g((∇U j T )U jY,V )+∑
i
(g((∇XiA)XiV,Y )
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−2g(AV Xi,TY Xi))

]}
,

g(V ∗(X ,Y )V,W ) = g((∇V A)XY,W )−g((∇W A)XY,V )+g(AXV,AYW )

−g(AXW,AYV )−g(TV X ,TWY )+g(TW X ,TVY ),

g(V ∗(X ,V )Y,W ) = g((∇X T )VW,Y )+g((∇V A)XY,W )−g(TV X ,TWY )

+g(AXY,AYW )− 1
(n−2)

{
−g(V,W )

[
SG(X ′,Y ′)◦π

+
1
2
(g(∇X N,Y )+g(∇Y N,X))−2∑

i
g(AX Xi,AY Xi)

−∑
j

g(TU j X ,TU jY )
]
−g(X ,Y )

[
Ŝ(V,W )−g(N,TVW )

+∑
i
(g((∇XiT )VW,Xi)+g(AXiV,AXiW ))

]}
+

rM

(n−1)(n−2)
{g(X ,Y )g(V,W )},

g(V ∗(U,V )W,X) = g((∇U T )VW,X)−g((∇V T )UW,X)

− 1
(n−2)

{
g(V,W )

[
g(∇U N,X)−∑

j
g(∇U j T )U jU,X)

+∑
i
{g((∇XiA)XiX ,U)−2g(AX Xi,TU Xi)}

]
−g(U,W )

[
g(∇V N,X)−∑

j
g(∇U j T )U jV,X)

+∑
i
{g((∇XiA)XiX ,V )−2g(AX Xi,TV Xi)}

]}
and

g(V ∗(U,V )W,F) = g(R̂(U,V )W,F)+g(TUW,TV F)−g(TVW,TU F)

− 1
(n−2)

{
g(F,U)

[
Ŝ(V,W )−g(N,TVW )

+∑
i
(g(∇XiT )VW,Xi +g(AXiV,AXiW ))

]
−g(F,V )

[
Ŝ(U,W )−g(N,TUW )+∑

i
(g((∇XiT )UW,Xi)

+g(AXiU,AXiW ))
]
+g(V,W )

[
Ŝ(U,F)−g(N,TU F)
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+∑
i
(g((∇XiT )U F,Xi)+g(AXiU,AXiF))

]
−g(U,W )

[
Ŝ(V,F)−g(N,TV F)+∑

i
(g((∇XiT )V F,Xi)

+ g(AXiV,AXiF))
]}

+
rM

(n−1)(n−2)
{g(V,W )g(U,F)−g(U,W )g(V,F)}

where
rM = r̂+ rG ◦π−||N||2−||A||2−||T ||2 +2∑

i
g(∇XiN,Xi).

Proof. Let’s prove the 4th equation of this theorem. The following equations are
obtained inner production with W to V ∗

g(V ∗(X ,V )Y,W ) = g(RM(X ,V )Y,W )− 1
n−2

{g(X ,W )SM(V,Y )

−g(V,W )SM(X ,Y )+g(V,Y )S(X ,W )−g(X ,Y )SM(V,W )}

+
rM

(n−1)(n−2)
{g(X ,W )g(Y,V )−g(X ,V )g(Y,W )}.

Then using equations (1.7)-(1.11), we have the desired result. From the Theorem 1,
Proposition 1 and Proposition 2 the above equations are obtained. �

Corollary 4. Let π : (M,g)→ (G,g′) be a Riemannian submersion, where (M,g)
and (G,g′) Riemannian manifolds. If the Riemannian submersion has total umbilical
fibres that is N = 0 and then the conformal curvature tensor is given by

g(V ∗(X ,Y )Z,H) = g(RG(X ,Y )Z,H)+2g(AXY,AZH)−g(AY Z,AX H)

+g(AX Z,AY H)− 1
(n−2)

{
g(X ,H)

[
SG(Y ′,Z′)◦π

−2∑
i

g(AY Xi,AZXi)−∑
j

g(TU jY,TU j Z)

]
−g(Y,H)

[
SG(X ′,Z′)

◦π−2∑
i

g(AX Xi,AZXi)−∑
j

g(TU j X ,TU j Z)
]

+g(Y,Z)
[

SG(X ′,H ′)◦π−2∑
i

g(AX Xi,AHXi)

−∑
j

g(TU j X ,TU j H)

]
−g(X ,Z)

[
SG(Y ′,H ′)◦π
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−2∑
i

g(AY Xi,AHXi)−∑
j

g(TU jY,TU j H)

]}

+
rM

(n−1)(n−2)
{g(Y,Z)g(X ,H)−g(X ,Z)g(Y,H)},

g(V ∗(X ,Y )Z,V ) =−g((∇ZA)XY,V )−g(AX T,TV Z)+g(AY Z,TV X)−g(AX Z,TVY )

− 1
(n−2)

{
g(Y,Z)

[
−∑

j
g((∇U j T )U j X ,V )

+∑
i
(g((∇XiA)XiX ,V )−2g(AV Xi,TX Xi))

]
−g(X ,Z)

[
−∑

j
g((∇U j T )U jY,V )

+∑
i
(g((∇XiA)XiY,V )−2g(AV Xi,TY Xi))

]}
,

g(V ∗(X ,V )Y,W ) = g((∇X T )VW,Y )+g((∇V A)XY,W )−g(TV X ,TWY )

+g(AXY,AYW )− 1
(n−2)

{
−g(V,W )

[
SG(X ′,Y ′)◦π

−2∑
i

g(AX Xi,AY Xi)−∑
j

g(TU j X ,TU jY )
]
−g(X ,Y )

×
[
Ŝ(V,W )+∑

i
(g((∇XiT )VW,Xi)+g(AXiV,AXiW ))

]}
,

g(V ∗(U,V )W,X) = g((∇U T )VW,X)−g((∇V T )UW,X)

− 1
(n−2)

{
g(V,W )

[
∑

j
g(∇U j T )U jU,X)

+∑
i
{g((∇XiA)XiX ,U)−2g(AX Xi,TU Xi)}

]
−g(U,W )

[
∑

j
g(∇U j T )U jV,X)

+∑
i
{g((∇XiA)XiX ,V )−2g(AX Xi,TV Xi)}

]}

and

g(V ∗(U,V )W,F) = g(R̂(U,V )W,F)+g(TUW,TV F)−g(TVW,TU F)− 1
(n−2)
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×
{

g(F,U)
[
Ŝ(V,W )+∑

i
(g(∇XiT )VW,Xi + g(AXiV,AXiW ))

]
−g(F,V )

[
Ŝ(U,W )+∑

i
(g((∇XiT )UW,Xi)+g(AXiU,AXiW ))

]
+g(V,W )

[
Ŝ(U,F)+∑

i
(g((∇XiT )U F,Xi)+g(AXiU,AXiF))

]
−g(U,W )

[
Ŝ(V,F)+∑

i
(g((∇XiT )V F,Xi)+g(AXiV,AXiF))

]}
+

rM

(n−1)(n−2)
{g(V,W )g(U,F)−g(U,W )g(V,F)}

where
rM = r̂+ rG ◦π−||A||2−||T ||2.

Finally, we investigate the M−projective curvature tenson on a Riemannian sub-
mersion and give a corollary in case of the totall umbilical fibres.

6. M-PROJECTIVE CURVATURE TENSOR ALONG A RIEMANNIAN SUBMERSION

In this section, curvature relations of M-projective curvature tensor in a Rieman-
nian submersion are examined and obtain a corollary using the curvature tensor.

Definition 8. Let take an n-dimensional differentiable manifold Mnwith differ-
entiability class C∞. In 1971 on a n -dimensional Riemannian manifold, ones [17]
defined a tensor field W ∗ as

W ∗(X ,Y )Z = RM(X ,Y )Z− 1
2(n−1)

[SM(Y,Z)X

−SM(X ,Z)Y +g(Y,Z)QX−g(X ,Z)QY ]

tensor W ∗ as M-projective curvature tensor.

In addition, on an n−dimensional Riemannian manifold Mn the Ricci operator Q
is defined by

SM(X ,Y ) = g(QX ,Y ).

Theorem 6. Let, (M,g) and (G,g′) Riemannian manifolds,

π : (M,g)→ (G,g′)

a Riemannian submersion and RM, RG and R̂ be Riemannian curvature tensors,
SM, SG and Ŝ be Ricci tensors of M, G and the fibre respectively. Then for any
U,V,W,F ∈ χv(M) and X ,Y,Z,H ∈ χh(M), we have the following relations for M-
projective curvature tensor:

g(W ∗(X ,Y )Z,H) = g(RG(X ,Y )Z,H)+2g(AXY,AZH)−g(AY Z,AX H)
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+g(AX Z,AY H)− 1
2(n−1)

{
g(X ,H)

[
SG(Y ′,Z′)◦π

+
1
2
(g(∇Y N,Z)+g(∇ZN,Y ))−2∑

i
g(AY Xi,AZXi)

−∑
j

g(TU jY,TU j Z)

]
−g(Y,H)

[
SG(X ′,Z′)◦π+

1
2
(g(∇X N,Z)

+g(∇ZN,X))−2∑
i

g(AX Xi,AZXi)−∑
j

g(TU j X ,TU j Z)
]

+g(Y,Z)
[

SG(X ′,H ′)◦π+
1
2
(g(∇X N,H)+g(∇HN,X))

−2∑
i

g(AX Xi,AHXi)−∑
j

g(TU j X ,TU j H)

]
−g(X ,Z)

[
SG(Y ′,H ′)◦π+

1
2
(g(∇Y N,H)+g(∇HN,Y ))

−2∑
i

g(AY Xi,AHXi)−∑
j

g(TU jY,TU j H)

]}
,

g(W ∗(X ,Y )Z,V ) =−g((∇ZA)XY,V )−g(AXY,TV Z)+g(AY Z,TV X)−g(AX Z,TVY )

− 1
2(n−1)

{
g(Y,Z)

[
g(∇X N,V )−∑

j
g((∇U j T )U j X ,V )

+∑
i
(g((∇XiA)XiX ,V )−2g(AV Xi,TX Xi))

]
−g(X ,Z)

[
g(∇Y N,V )−∑

j
g((∇U j T )U jY,V )

+∑
i
(g((∇XiA)XiY,V )−2g(AV Xi,TY Xi))

]}
,

g(W ∗(X ,Y )V,W ) = g((∇V A)XY,W )−g((∇W A)XY,V )+g(AXV,AYW )

−g(AXW,AYV )−g(TV X ,TWY )+g(TW X ,TVY ),

g(W ∗(X ,V )Y,W ) = g((∇X T )VW,Y )+g((∇V A)XY,W )−g(TV X ,TWY )

+g(AXY,AYW )− 1
2(n−1)

{
−g(V,W )

[
SG(X ′,Y ′)◦π

+
1
2
(g(∇X N,Y )+g(∇Y N,X))
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−2∑
i

g(AX Xi,AY Xi)−∑
j

g(TU j X ,TU jY )
]
−g(X ,Y )

[
Ŝ(V,W )

−g(N,TVW )+∑
i
(g((∇XiT )VW,Xi)+g(AXiV,AXiW ))

]}
,

g(W ∗(U,V )W,X) = g((∇U T )VW,X)−g((∇V T )UW,X)

− 1
2(n−1)

{
g(V,W )

[
g(∇U N,X)−∑

j
g(∇U j T )U jU,X)

+∑
i
{g((∇XiA)XiX ,U)−2g(AX Xi,TU Xi)}

]
−g(U,W )

[
g(∇V N,X)−∑

j
g(∇U j T )U jV,X)

+∑
i
{g((∇XiA)XiX ,V )−2g(AX Xi,TV Xi)}

]}
and

g(W ∗(U,V )W,F) = g(R̂(U,V )W,F)+g(TUW,TV F)−g(TVW,TU F)

− 1
2(n−1)

{
g(F,U)

[
Ŝ(V,W )−g(N,TVW )

+∑
i
(g(∇XiT )VW,Xi +g(AXiV,AXiW ))

]
−g(F,V )

[
Ŝ(U,W )−g(N,TUW )

+∑
i

g((∇XiT )UW,Xi)+g(AXiU,AXiW )
]

+g(V,W )
[
Ŝ(U,F)−g(N,TU F)

+∑
i
(g((∇XiT )U F,Xi)+g(AXiU,AXiF))

]
−g(U,W )

[
Ŝ(V,F)−g(N,TV F)

+∑
i
(g((∇XiT )V F,Xi)+g(AXiV,AXiF))

]}
.

Proof. Let’s prove the 6th equation of this theorem. The following equations are
obtained inner production with F to W ∗ and using (1.9) and (1.10) equations.

g(W ∗(U,V )W,F) = g(RM(U,V )W,F)− 1
2(n−1)

{
g(F,U)SM(U,V )
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−g(F,V )SM(U,W )+g(V,W )SM(U,F)−g(U,W )SM(V,F)

}
,

g(RM(U,V )W,F) = g(R̂(U,V )W,F)+g(TUW,TV F)−g(TVW,TU F)

and

SM(U,V ) = Ŝ(U,V )−g(N,TUV )+∑
i
{g((∇XiT )UV,Xi)+g(AXiU,AXiV )} .

When these equations are substituted in W ∗, the given result is obtained. Other equa-
tions are similarly proved by using Theorem 1 and Proposition 1. �

Corollary 5. Let π : (M,g)→ (G,g′) be a Riemannian submersion, where (M,g)
and (G,g′) Riemannian manifolds. If the Riemannian submersion has total umbilical
fibres that is N = 0 and then the M-projective curvature tensor is given by

g(W ∗(X ,Y )Z,H) = g(RG(X ,Y )Z,H)+2g(AXY,AZH)−g(AY Z,AX H)

+g(AX Z,AY H)− 1
2(n−1)

{
g(X ,H)

[
SG(Y ′,Z′)◦π

−2∑
i

g(AY Xi,AZXi)−∑
j

g(TU jY,TU j Z)
]

−g(Y,H)

[
SG(X ′,Z′)◦π−2∑

i
g(AX Xi,AZXi)

−∑
j

g(TU j X ,TU j Z)
]

+g(Y,Z)
[

SG(X ′,H ′)◦π−2∑
i

g(AX Xi,AHXi)

−∑
j

g(TU j X ,TU j H)

]
−g(X ,Z)

[
SG(Y ′,H ′)◦π−2∑

i
g(AY Xi,AHXi)

−∑
j

g(TU jY,TU j H)

]}
,

g(W ∗(X ,Y )Z,V ) =−g((∇ZA)XY,V )−g(AXY,TV Z)+g(AY Z,TV X)

−g(AX Z,TVY )− 1
2(n−1)

{
g(Y,Z)

[
−∑

j
g((∇U j T )U j X ,V )

+∑
i
(g((∇XiA)XiX ,V )−2g(AV Xi,TX Xi))

]
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−g(X ,Z)
[
−∑

j
g((∇U j T )U jY,V )

+∑
i
(g((∇XiA)XiY,V )−2g(AV Xi,TY Xi))

]}
,

g(W ∗(X ,V )Y,W ) = g((∇X T )VW,Y )+g((∇V A)XY,W )−g(TV X ,TWY )

+g(AXY,AYW )− 1
2(n−1)

{
−g(V,W )

[
SG(X ′,Y ′)◦π

−2∑
i

g(AX Xi,AY Xi)−∑
j

g(TU j X ,TU jY )
]

−g(X ,Y )
[
Ŝ(V,W )+∑

i
(g((∇XiT )VW,Xi)+g(AXiV,AXiW ))

]}
,

g(W ∗(U,V )W,X) = g((∇U T )VW,X)−g((∇V T )UW,X)

− 1
2(n−1)

{
g(V,W )

[
∑

j
g(∇U j T )U jU,X)

+∑
i
{g((∇XiA)XiX ,U)−2g(AX Xi,TU Xi)}

]
−g(U,W )

[
∑

j
g(∇U j T )U jV,X)

+∑
i
{g((∇XiA)XiX ,V )−2g(AX Xi,TV Xi)}

]}
and

g(W ∗(U,V )W,F) = g(R̂(U,V )W,F)+g(TUW,TV F)−g(TVW,TU F)− 1
2(n−1)

×
{

g(F,U)
[
Ŝ(V,W )+∑

i
(g(∇XiT )VW,Xi +g(AXiV,AXiW ))

]
−g(F,V )

[
Ŝ(U,W )+∑

i
g((∇XiT )UW,Xi)+g(AXiU,AXiW )

]
+g(V,W )

[
Ŝ(U,F)+∑

i
(g((∇XiT )U F,Xi)+g(AXiU,AXiF))

]
−g(U,W )

[
Ŝ(V,F)+∑

i
(g((∇XiT )V F,Xi)+g(AXiV,AXiF))

]}
.
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7. CONCLUSION

The authors investigate new curvature tensors along Riemannian submersions and
obtain some results by using totally umbilical fibres. Therefore, it will be worth
examining new curvature tensors along Riemannian submersions. Based on this
study, pseudo-projective curvature tensor and quasi-conformal curvature tensor for
a Riemannian submersion have been studied in [2]. Again other features such as
flatness, symmetry conditions, and a variety of specific conditions on these curvature
tensors can be investigated. A sequence of inequalities for Riemannian submersions
and various applications between Riemannian submersions and Riemannian mani-
folds can also be established using some special functions [7, 8].

Riemannian submersions have applications in theoretical pyhsics, too. Other ex-
ample is in robotic theory, for the modeling and control of certain types of redundant
robotic chains [1] (see: https://ieeexplore.ieee.org/document/1284418). Moreover,
tensor analysis performed in this work has potential applications in dynamics of rigid
bodies, electricity and magnetism, as well as in special theory of relativity, due to
the fact that the tensors new considered are of prime interest in the fields of research
[11, 12].
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