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Abstract. In this paper, we derive a Mittag-Leffler function for real index and establish solutions
of special type of fractional order differential equations (FDEs). The same concept is exten-
ded to discrete case by replacing polynomials into factorial polynomials and differentiation into
`-difference operator. Moreover, numerical examples of our results are stated to validate our find-
ings. The acquired results here have the ability to generate a wide range of formulas in relation
to newer results.
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1. INTRODUCTION

Fractional calculus, like standard integer calculus, is one of the oldest branches
of mathematics. It is nowadays utilized in the vast areas of science, modelling, bio-
engineering, computational optimization, control analysis of systems. We have dif-
ferent structures of fractional differential equations (FDEs) containing various spe-
cial functions in their kernels which have main importance in analyzing mathematical
models. For instances, the application of these kernels can be seen in some works in-
cluding [1–3,5,10,18,21,22]. In addition to these papers, the Mittag-Leffler function
is used as the kernel of some new operators [6, 8, 11]. In fact, in last twenty years,
the use of Mittag-Leffler function has gained its momentum in the investigation and
solving different boundary problems and dynamical systems in life sciences [13].
The Mittag-Leffler function with two parameters is defined by [24] as

Eβ,γ(z) =
∞

∑
j=0

z j

Γ(γ+β j)
, R(β),R(γ)> 0,β,γ,z ∈ C. (1.1)

This function is applicable to solve the fractional Kinetic equations [13]. Regard-
ing Mittag-Leffler function and its properties, we can refer to Hilfer [14] and Saxena
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[23]. As exponential function naturally is appeared from solving ordinary differ-
ential equations, the Mittag-Leffler function plays a similar role in solving (FDEs)
fractional differential equations.

On the other hand, Diaz et al. [9] introduced the notion of the fractional difference
by the rather usual method which permits the index of difference, in the standard
representation of the n-th difference, to be each arbitrary real/complex number. After
that, by using Taylor’s series, Hirota [15] introduced the difference operator ∇q in the
fractional settings in which q ∈ R. Nagai [20] indicated another kind of this defini-
tion for the mentioned difference operator in view of the modification of the Hirota’s
definition. Accordingly, Deekshitulu et al. [7] changed the definition presented by
Nagai in [20] for q ∈ (0,1) so that the expression for ∇q does not possess any dif-
ference operator. Recently, in the field of discrete fractional calculus, delta (∆q) and
nabla (∇q) operators (q ∈ R) play a key role in the modelings [12, 19].

In this paper, we develop νth real order Mittag-Leffler function by replacing z by
(λκ)ν, γ = 1,β = ν and κ by r in (1.1). The motive of initiating this new type frac-
tional or real order Mittag-Leffler function is for solving the fractional or real order
differential and difference equations. The solution of fractional order differential
and difference equations helps us to obtain applications in the context of fractional
calculus. The applications related to this function clearly yield connection between
Binomial expansion and Mittag-Leffler Factorial Function.

2. MITTAG-LEFFLER FUNCTION IN THE FRACTIONAL SETTINGS

For this section, we go through some important definitions, concepts of factorial
polynomials, Extorial function, Mittag-Leffler function and also necessary theorems
can be exploit in the later sections. Here we use the domain set J` ⊂ R for which
t ∈ J` gives t± ` ∈ J` and N(a) = {a,a+1,a+2, · · ·}.

Definition 1. [4,17] The `-Delta operator and the inverse for a function u : J`→ `
are respectively defined as

∆`u(κ) = u(κ+ `)−u(κ), κ ∈ [0,∞), ` ∈ (0,∞), (2.1)

if ∆`v(κ) = u(κ), then v(κ) = ∆
−1
` u(κ)+ c, (2.2)

where the constant c is obtained by substituting suitable value for κ.

Definition 2. [17] Let ` > 0, ν ∈ (−∞,∞) and Γ(κ` +1) be the Gamma function.
Then, the ` - factorial polynomial in κ for real index ν is defined by

κ(ν)
` = `ν Γ(κ/`+1)

Γ(κ/`+1−ν)
, κ/`+1,(κ/`+1−ν) 6∈ −N(0) = {0,−1, · · ·}, (2.3)

where the Gamma function is defined by

Γ(z) =
∫

∞

0
sz−1e−sds, Re(z)> 0.
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Special Cases:

(i) when ` = −1, κ(n)
−1 = κ(κ+ 1)(κ+ 2) · · ·(κ+ n− 1) =

n
∏

r=1
(κ+ r− 1),n ∈

Z+.
(ii) when ` = 1, κ(n)

1 = κ(κ − 1)(κ − 2) · · ·(κ − n + 1) =
n
∏

r=1
(κ − r + 1) =

κ(n),n ∈ Z+.

Definition 3. The nth order Mittag-Leffler function en(λ,κ), with n ∈ Z+, κ ∈
(−∞,∞) is defined by

en(λ,κ) = 1+
λnκn

(n)!
+

λ2nκ2n

(2n)!
+

λ3nκ3n

(3n)!
+ · · ·+∞ =

∞

∑
r=0

λrnκrn

(rn)!
. (2.4)

Note that e1(λ,κ) = eλκ . Since the function defined in (2.4) is a sub series of eλκ

for fixed λ, which is finite.

Definition 4. The νth order Mittag-Leffler Function, for non integer real number
ν, with the condition rν+1 /∈ −N(0) define by,

eν(λ,κ) =
∞

∑
r=0

λ
rν κrν

Γ(rν+1)
. (2.5)

Lemma 1. [25] We have the identities for any r ∈ N(1) and ` > 0:

(i) ∆`κ
(r)
` = r`κ(r−1)

` ,
(ii) ∆`κ

(r)
−` = r`(κ+ `)

(r−1)
−` ,

(iii) ∆`κ
(−r)
` =−r`(κ+ `)

−(r+1)
` ,

and
(iv) ∆`κ

(−r)
−` =−r`(κ+ `)

(−(r+1))
−` .

We use our nth order Mittag-Leffler Function to solve certain type of linear differ-
ential equation.

Theorem 1. For λ 6= 0, the function defined by en(λ,κ) given in (2.4) is considered
as a solution of the (n−1)th-linear non homogeneous DE

1
λ(n−1)

dn−1

dκn−1 u(κ)+
1

λ(n−2)

dn−2

dκn−2 u(κ)+ · · ·+ 1
λ

d
dκ

u(κ)+u(κ) = eλκ.

Proof. From the Definition 4, we have

en(λ,κ) = 1+
λnκn

(n)!
+

λ2nκ2n

(2n)!
+

λ3nκ3n

(3n)!
+ · · ·+∞.

Differentiating successively w.r.t κ, we obtain

1
λ

d
dκ

en(λ,κ) =
λn−1κn−1

(n−1)!
+

λ2n−1κ2n−1

(2n−1)!
+

λ3n−1κ3n−1

(3n−1)!
+ · · ·+∞,
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1
λ2

d2

dκ2 en(λ,κ) =
λn−2κn−2

(n−2)!
+

λ2n−2κ2n−2

(2n−2)!
+

λ3n−2κ3n−2

(3n−2)!
· · ·+∞.

In general,

1
λr

dr

dκr en(λ,κ) =
λn−rκn−r

(n− r)!
+

λ2n−rκ2n−r

(2n− r)!
+

λ3n−rκ3n−r

(3n− r)!
· · ·+∞. (2.6)

Adding (2.6) for r = 0,1,2,3, · · · ,n−1,d0 = 1, we get
n−1

∑
r=0

1
λr

dr

dκr en(λ,κ) = e1(λ,κ),

and hence we get the proof by taking u(κ) = en(λ,κ). �

For the succeeding theorem, we use the notation lim
t→∞

∆
−1
` u(t) = ∆

−1
` u(−∞).

Theorem 2. Let `,ν > 0 and κ ∈R and u : R→R. If
∞

∑
r=0

(r+ν−1) is convergent,

then we have

∆
−ν

` u(κ) =
∞

∑
r=0

(r+ν−1)(ν−1)
1

Γ(ν+1)
u(κ− (r+ν−1)`). (2.7)

Proof. Since, ∆
−1
` u(κ) = v(κ), we have u(κ) = v(κ+ `)− v(κ).

Replacing κ by κ− `, it becomes

v(κ) = u(κ− `)+ v(κ− `). (2.8)

Again replacing κ by κ− `,κ−2`, κ−3`, · · · , κ− (n−1)` in (2.8), we arrive

v(κ) = u(κ− `)+u(κ−2`)+u(κ−3`)+ · · ·+u(κ−n`)+ v(κ−n`).

Taking lim
n→∞

in the above equation along with v(−∞) = 0,u(−∞) = 0, we obtain

∆
−1
` u(κ) =

∞

∑
r=0

u(κ− (r+1)`). (2.9)

Taking ∆
−1
` on both sides of (2.9), we obtain

∆
−2
` u(κ) = ∆

−1
` u(κ− `)+∆

−1
` u(κ−2`)+∆

−1
` u(κ−3`)+∆

−1
` u(κ−4`)+ · · · .

Expanding all the inverse function in above expression by the use of equation (2.9)
and then arranging the terms, we obtain

∆
−2
` u(κ) = u(κ−2`)+2u(κ−3`)+3u(κ−4`)+4u(κ−5`)+5u(κ−6`)+ · · · ,

which is similar to

∆
−2
` u(κ) =

∞

∑
r=0

(r+1)(1)

1!
u(κ− (r+2)`). (2.10)
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Proceeding like this, we get

∆
−m
` u(κ) =

∞

∑
r=0

(r+m−1)(ν−1)
1

(m−1)!
u(κ− (r+m−1)`),m ∈ N, ` ∈ R. (2.11)

For any ν > 0, we obtain the result by replacing m by ν. �

Theorem 3. If ∆
−1
` u(−∞) = 0 and

∞

∑
r=0

u(t + r`) is convergent, then

∆
−1
−`u(t)

∣∣∣∞
t
=

∞

∑
r=1

u(t + r`). (2.12)

Proof. Replacing κ by t, ` by −` in (2.9), we get the proof. �

Corollary 1. Keeping κ as a constant, t as a variable, taking ∆
−1
−1 with respect to

t, then

∆
−1
−1

(λκ)mt

T (mt)
−1

∣∣∣
t=0

=
(λκ)0

T (0)
−1

+
(λκ)m.1

T (m.1)
−1

+
(λκ)m.2

T (m.2)
−1

+ · · · , for T (mt)
−1 6= 0. (2.13)

Proof. Taking u(t) =
(λκ)mt

(T )(mt)
−1

gives the proof, where

T (m.t)
−1 = T (T +1) · · ·(T +(mt−1)) =

mt−1

∑
r=0

(T + r),

in (2.12). �

3. APPLICATION OF FRACTIONAL ORDER MITTAG-LEFFLER FUNCTION IN
NUMERICAL METHODS

This section describes about the relation among Fractional order Mittag-Leffler
Function, inverse of ∆−1 and raising factorial polynomials and some identities in
numerical methods.

Theorem 4. For mt ∈ N, by denoting (s+1)(mt)
−1 = (s+ 1)(s+ 2) · · ·(s+mt), we

have the identity

e1(λ,κ)− em(λ,κ) =
m−1

∑
s=1

(λκ)s

s!
∆
−1
−1

(λκ)mt

(s+1)(mt)
−1

∣∣∣
t=0

. (3.1)

Proof. From the Definition 3 and taking n = 1, we have

e1(λ,κ) = 1+
λκ
1!

+
λ2κ2

2!
+

λ3κ3

3!
+

λ4κ4

4!
+ · · ·+∞.
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Arranging the terms into m disjoint groups, since the series is absolutely convergent,
we obtain

e1(λ,κ) = 1+
λmκm

m!
+

λ2mκ2m

(2m)!
+

λ3mκ3m

(3m)!
+ · · ·+∞

+
λκ
1!

+
λm+1κm+1

(m+1)!
+

λ2m+1κ2m+1

(2m+1)!
+ · · ·+∞

+
λ2κ2

2!
+

λm+2κm+2

(m+2)!
+

λ2m+2κ2m+2

(2m+2)!
+ · · ·+∞

+ · · · · · · · · ·

+
λm−1κm−1

(m−1)!
+

λ2m−1κ2m−1

(2m−1)!
+

λ3m−1κ3m−1

(3m−1)!
+ · · ·+∞,

which is the same as, by taking n = m in (2.4),

e1(λ,κ) = em(λ,κ)+
λκ
1!

[
1+

(λκ)m.1

2(m)
−1

+
(λκ)m.2

2(m.2)
−1

+ · · ·

]

+
(λκ)2

2!

[
1+

(λκ)m.1

3(m)
−1

+
(λκ)m.2

3(m.2)
−1

+ · · ·

]

+
(λκ)3

3!

[
1+

(λκ)m.1

4(m)
−1

+
(λκ)m.2

4(m.2)
−1

+ · · ·
]
. (3.2)

Hence to obtain (3.1), apply (2.13) in (3.2), and this ends the proof. �

Theorem 5. Suppose that νm = 1, where m ∈ N. Then

eν(λ,κ)− e1(λ,κ) =
m−1

∑
s=1

(λκ)νs

Γ(1+νs)
∆
−1
−1

(λκ)νt

(1+νs)(νt)
−1

∣∣∣t = 0. (3.3)

Proof. By rearranging into four disjoint groups in Theorem 4, we get (3.3). �

The following example is for the demonstration of Theorem 5.

Example 1. From (2.4), by taking ν = 0.25,m = 4 we have,

e0.25(λ,κ) = 1+
λ0.25κ0.25

Γ(1.25)
+

λ0.5κ0.5

Γ(1.5)
+

λ0.75κ0.75

Γ(1.75)
+

λ1κ1

Γ(2)
+ · · ·+∞.

e0.25(λ,κ) =
λ0.25κ0.25

Γ1.25
+

λ1.25κ1.25

Γ2.25
+

λ2.25κ2.25

Γ3.25
+ · · ·+∞
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+
λ0.5κ0.5

Γ1.5
+

λ1.5κ1.5

Γ2.5
+

λ3.5κ3.5

Γ3.5
+ · · ·+∞

+
λ0.75κ0.75

Γ1.75
+

λ1.75κ1.75

Γ2.75
+

λ2.75κ2.75

Γ3.75
+ · · ·+∞

+
λ0κ0

Γ1
+

λ1κ1

Γ2
+

λ2κ2

Γ3
+ · · ·+∞

which is the same as

e0.25(λ,κ) =
λ0.25κ0.25

Γ1.25

[
1+

λκ
(1.25)

+
λ2κ2

(1.25)(2.25)
+ · · ·

]
+

λ0.5κ0.5

Γ1.5

[
1+

λκ
(1.5)

+
λ2κ2

(1.5)(2.5)
+ · · ·

]
+

λ0.75κ0.75

Γ1.75

[
1+

λκ
(1.75)

+
λ2κ2

(1.75)(2.75)
+ · · ·

]
+

λ0κ0

Γ1

[
1+

λκ
(1)

+
λ2κ2

(1)(2)
+

λ3κ3

(1)(2)(3)
+ · · ·

]
From the special cases of Definition 2 and taking ∆

−1
−1 with respect to t, we get

e0.25(λ,κ) =
λ0.25κ0.25

Γ1.25
∆
−1
−1

(λκ)t

(1.25)(t)−1

|t=0 +
λ0.5κ0.5

Γ1.5
∆
−1
−1

(λκ)t

(1.5)(t)−1

|t=0

+
λ0.75κ0.75

Γ1.75
∆
−1
−1

(λκ)t

(1.75)(t)−1

|t=0 +
λ0κ0

Γ1
∆
−1
−1

(λκ)t

(1)(t)−1

|t=0

which can be expressed as

e0.25(λ,κ)− e1(λ,κ) =
3

∑
s=1

+
(λκ)(0.25)s

Γ1+ s(0.25)
∆
−1
−1

(λκ)t

(1+0.25s)(t)−1

|t=0 .

Theorem 6. By defining s1(λ,κ) =
λκ
1!

+
(λκ)3

3!
+

(λκ)5

5!
+ · · · and

c1(λ,κ) = 1+
(λκ)2

2!
+

(λκ)4

4!
+ · · · , we get the following identities

(i) e1(λ,κ) = c1(λ,κ)+ s1(λ,κ).

(ii)
d

dκ
e2(λ,κ) = λs1(λ,κ).

(iii)
d2

dκ2 e2(λ,κ) = λ2c1(λ,κ).

Proof. Keeping λ as a constant and taking differentiation with respect to ′κ′ term-
wise,

d
dκ

e2(λ,κ) = λ

[
λκ
1!

+
(λκ)3

3!
+

(λκ)5

5!
+ · · ·

]
= λs1(λ,κ).
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Again taking derivative with respect to κ, we get,

d2

dκ2 e2(λ,κ) = λ

[
λ+

λ3κ2

2!
+

λ5κ4

4!
+ · · ·

]
= λ

2c1(λ,κ).

�

4. FRACTIONAL ORDER MITTAG-LEFFLER FACTORIAL FUNCTION

Here, we extend the Fractional order Mittag-Leffler Function into Fractional order
Mittag-Leffler Factorial Function by replacing the polynomials into factorial polyno-
mials in the Fractional order Mittag-Leffler Function.

Definition 5. [16] For |λ|, |`|< 1 and c ∈ [0,1], if κ− (a+`)+c j`ν is defined for
jν+1 /∈ N(0), κ ∈ R, then the extended Mittag-Leffler factorial (EMLF) function is
defined as

eν(λ,κ`,c) =
∞

∑
j=0

λ j

Γ( jν+1)

(
κ− (a+ `)+ c j`ν

)( jν)

`
. (4.1)

eν(λ,κ−`,1) is defined for |λ| ≥ 1, ` > 0 whenever κ− (a+ `)+c j`ν is positive and
a multiple of `.

Also, we have two special cases in the following form:
(i) e1(1,κ0,c) = eκ if `= 0, λ = ν = 1, a =−1.

(i’) eν(1,κ`,0) = 1+
κ(1ν)
`

Γ(1ν+1)
+

κ(2ν)
`

Γ(2ν+1)
+

κ(3ν)
`

Γ(3ν+1)
+ · · ·+

κ(nν)
`

Γ(nν+1)
+

· · · .
(It is the extorial function).

(i”) eν(λ,κ0,1) is the same Mittag-Leffler factorial function.

Theorem 7. The extorial function illustrated by eν(1,κ`,0) (special case of Mittag-
Leffler Factorial Function) is convergent if |`|< 1.

Proof. In view of the definition of extorial function, we have

e(1,κ`,0) = 1+
κ(1)
`

1!
+

κ(2)
`

2!
+

κ(3)
`

3!
+ · · ·+

κ(n)
`

n!
+ · · · .

Consider the term an =
κ(n)
`

n!
=

κ(κ− `) · · ·(κ− (n−1)`)
n!

. Then

|an| ≤
|κ|(|κ|+ |`|)(|κ|+2|`|) · · ·(|κ|+(n−1)|`|)

n!
.

Since |`|< 1, choose N such that |κ|(|κ|+ |`|) · · ·(|κ|+(n−1)|`|)< N! and hence

|aN | ≤
|κ|(|κ|+ |`|) · · ·(|κ|+(n−1)|`|)

N!
< ρN < 1,

which is possible, since in between two real numbers, there exists another real num-
ber.
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Since ρN > ρN+1 > · · · , limn→∞
n
√
|an| < N

√
ρN < 1, thus, by root test, e(κ`) is

convergent. �

Theorem 8. For rational κ > 0 and |λ`|< 1, we have (1+λ`)κ = e1(λ,(`κ)`,0),
where e1(λ,(`κ)`,0) is the Mittag-Leffler Factorial Function (MLFF).

Proof. From the binomial expansion for rational index,

(1+λ`)κ = 1+
(λ`)κ

1!
+

(λ`)2κ(κ−1)
2!

+
(λ`)3κ(κ−1)(κ−2)

3!
+ · · · ,

which can be expressed as

(1+λ`)κ = 1+λ
(`κ)

1!
+λ

2 (`κ)(`κ− `)

2!
+λ

3 (`κ)(`κ− `)(`κ−2`)
3!

+ · · · ,

and we get the identity from the definition of e1(λ,(`κ)`,0). �

Theorem 9. For positive integer m and for κ > 0, we have the identity

∆
−m
` e1(λ,(`κ)`,0) = (λ`)me1(λ,(`κ)`,0), if (λ`)−1 = 0. (4.2)

Proof. By Theorem 8, e1(λ,(`κ)`,0) = (1+λ`)κ . By taking ∆` on both sides, we
find

∆`e1(λ,(`κ)`,0) = (1+λ`)κ+1− (1+λ`)κ = (1+λ`)κ(1+λ`−1),

which yields

∆
−1
` (1+ `)κ =

e1(λ,(`κ)`,0)
λ`

.

By Definition 1 of inverse difference operator, we have

∆
−1
` (e1(λ,(`κ)`,0)) = (λ`)−1e1(λ,(`κ)`,0),

∆
−2
` (e1(λ,(`κ)`,0)) = (λ`)−2e1(λ,(`κ)`,0).

In general, by induction on m, ∆
−m
` e1(λ,(`κ)`,0) = (λ`)−me1(λ,(`κ)`,0).

Now (4.2) is followed by replacing m by −ν and the proof is ended. �

Corollary 2. For any ν > 0 and |`|< 1, if we take κ = m
` in (4.2), we have

∆
−ν

` e1(λ,(κ)`,0) = (λ`)−νe1(λ,(κ)`,0). (4.3)

Proof. Replacing κ by m
` in (4.2), then relabeling m as κ, we get (4.3). �

To illustrate Corollary 2, we give the following example.

Example 2. Consider

∆
−ν

` e1(λ,(`κ)`,0) = (λ`)−νe1(λ,(`κ)`,0). (4.4)
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Taking `= 0.2,ν = 0.5,a =−`,c = 0,κ = 20,λ = 2,ν = 1 and u(κ) = e(λ,κ`,0) in
(4.4) and by using Theorem 2 for ν = 1, we get

∞

∑
r=0

e1(λ,(`(κ− r`))`,0) = (λ`)−1e1(λ,(`κ)`,0),

where the generalized Mittag-Leffler factorial function eν(λ,κ`,0) is given in (4.1)
and so

∞

∑
r=0

e1(λ,(`(κ− r`))`,0) =
∞

∑
j=0

λ j(`κ− `)
( j)
0.2

j!
+

∞

∑
j=0

λ j(`κ−2`)( j)
0.2

j!

+
∞

∑
j=0

λ j(`κ−3`)( j)
0.2

j!
+

∞

∑
j=0

λ j(`κ−4`)( j)
0.2

j!
+

∞

∑
j=0

λ j(`κ−5`)( j)
0.2

j!

+
∞

∑
j=0

λ j(`κ−6`)( j)
0.2

j!
+ · · ·

= 597.61+426.82+304.79+217.75+155.55+111.10
+79.33+56.62+40.48+28.93+20.06+14.73+10.55+7.52
+5.38+3.85+2.74+1.96+1.4+1+1+ · · ·= 2089.16,

and

(λ`)−1e1(λ,(`κ)`,0) =
1

0.4

[ ∞

∑
j=0

(`κ)( j)
`

j!

]
= 1+8+30.40+72.96

+124.03+158.76+158.76+127.01+82.56+44.03

+19.37+7.04+2.11+0.52+ · · ·= 1
0.4

(836.55) = 2091.38.

Corollary 3. If |`|< 1, then ∆
−ν

` (1+λ`)
κ
` = (λ`)−ν(1+λ`)

κ
` = ∆

−ν

` e1(λ,κ`,0).

Proof. We know that

e1(λ,κ`,0) = 1+
λκ
1!

+
λ2κ(κ− `)

2!
+

λ3κ(κ− `)(κ−2`)
3!

+ · · · .

Replacing k by m`, we obtain

e1(λ,m``,0) = 1+
λm`

1!
+

λ2m`(m`− `)

2!
+

λ3m`(m`− `)(m`−2`)
3!

+ · · ·

= 1+
λm`

1!
+

λ2m(m−1)
2!

`2 +
λ3m(m−1)(m−2)

3!
`3 + · · ·

= (1+λ`)m = (1+λ`)
κ
` .

The proof is concluded by taking ∆
−ν

` on both sides and applying (4.3). �
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5. APPLICATION OF THE MITTAG-LEFFLER FACTORIAL FUNCTION

This section, revolves around the solution of a specific kind of higher–order linear
non-homogeneous difference equation.

Theorem 10. For a positive integer n, the Mittag-Leffler Factorial Function en(λ,κ`,0)
satisfies the (n−1)th-linear non homogeneous difference equation

∆
n−1
`

u(κ)
`n−1 +∆

n−2
`

u(κ)
`n−2 + · · ·+∆`

u(κ)
`

+u(κ) = e1(κ`) = (1+λ`)
κ
` . (5.1)

Proof. From the special case of Definition 5,

en(λ,κ`,0) = 1+
λnκ(n)

`

n!
+

λ2nκ(2n)
`

2n!
+

λ3nκ(3n)
`

3n!
+ · · ·+∞.

Since ∆`κ
(r)
` = r`κr−1

` , we have

1
λ`

∆
1
`en(λ,κ`,0) = 1+

λn−1`κ(n−1)
`

(n−1)!
+

λ2n−1`κ(2n−1)
`

(2n−1)!
+

λ3n−1`κ(3n−1)
`

(3n−1)!
+ · · ·+∞,

1
(λ`)2 ∆

2
`en(λ,κ`,0) = 1+

λn−2`2κ(n−2)
`

(n−2)!
+

λ2n−2`2κ(2n−2)
`

(2n−2)!
+

λ3n−2`2κ(3n−2)
`

(3n−2)!
+ · · ·+∞,

and in general, we find

1
(λ`)r ∆

r
`en(λ,κ`,0)= 1+

λn−r`rκ(n−r)
`

(n− r)!
+

λ2n−r`rκ(2n−r)
`

(2n− r)!
+

λ3n−r`rκ(3n−r)
`

(3n− r)!
+ · · ·+∞.

(5.2)
Adding (5.2) for r = 0,1,2,3, · · · ,n−1,∆0 = 1, we get

n−1

∑
r=0

1
(λ`)r ∆

r
`en(λ,κ`,0) = e1(λ,κ`,0),

and the proof follows u(κ) = en(λ,κ`,0). �

Example 3. For n= 2, the equation (5.1) becomes the extorial function e2(λ,κ`,0)

which satisfies the difference equation
1
λ`

∆`u(κ)+u(κ) = (1+λ`)
κ
` , |`λ|< 1.

Proof. By taking ∆` on e2(λ,κ`,0) = 1 +
λ2κ(2)

`

2!
+

λ4κ(4)
`

4!
+

λ6κ(6)
`

6!
+ · · · and

applying

∆`κ
(m)
` = n`κ(n−1)

` ,

we get

∆`e2(λ,κ`,0) =
λ22`κ(1)

`

1!
+

λ44`κ(3)
`

4!
+ · · · ,
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which is the same as

1
λ`

∆`e2(λ,κ`,0) =
λκ(1)

`

1!
+

λ3κ(3)
`

3!
+ · · · ,

and yields that e2(λ,κ`,0)+
1
λ`

∆`e2(λ,κ`,0) = e1(λ,κ`,0) = (1+λ`)
κ
` . �

6. CONCLUSION

Through this research, we derived a special kind of Mittag-Leffler function and
Mittag-Leffler Factorial Functions. These functions are applied to find solution of
higher order linear differential and difference equations. These solutions will gener-
ate a large number of relations in the vast area of fractional calculus.
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