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Abstract. In this paper, we prove coincidence point results for a pair of self mappings defined on
a metric space employing a comparison function and a locally T -transitive binary relation. Our
results extend and generalize several known results especially those are contained in Alam and
Imdad [Filomat 31 (14) (2017) 4421-4439] and Arif et al. [Miskolc Math. Notes 23 (1) (2022)
71-83]. Finally, we construct some examples to demonstrate the accomplished improvements in
our newly proved results in this paper.
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1. INTRODUCTION AND PRELIMINARIES

Banach contraction principle [or, in short BCP] (c f . [7]) is a pioneer and noted res-
ult of metric fixed point theory. In the course of last several years, numerous research-
ers extended this result by weakening the contraction conditions besides enlarging the
class of underlying metric spaces. In the existing literature, one of the weaker form of
contraction conditions is nonlinear contraction. A self-mapping ϕ defined on [0,∞)
satisfying ϕ(s)< s for each s > 0 is control function. A self-mapping T defined on a
metric space (X ,d) is said to be a nonlinear contraction with respect to control func-
tion ϕ (or, in short, ϕ-contraction) if d(T x,Ty)≤ ϕ(d(x,y)) for all x,y ∈ X . In 1968,
Browder [10] established a nonlinear version of BCP, wherein author assumed ϕ to
be increasing control function and right continuous. Thereafter, numerous mathem-
aticians generalized the BCP by utilizing different types of control functions such as:
Boyd-Wong [9] and Matkowski [16] contractions. In 1986, Turinici [24] discovered
the idea of order-theoretic fixed points results. In 2004, Ran and Reurings [20] re-
formulated a comparatively more natural order-theoretic version of classical BCP.
There exists a vast literature on relation-theoretic results on fixed, coincidence and
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common fixed point (e.g., Ran and Reurings [20] and Nieto and Rodrı́guez-López
[18], Agarwal et al. [1], Alam et al. [2], O’Regan and Petruşel [19], Turinici [25],
Ghods et al. [11], Ben-El-Mechaiekh [8], etc). Later, Alam and Imdad [3, 4] estab-
lished relation-theoretic analogues of BCP employing amorphous relation which in
turn unify the several well known relevant order-theoretic fixed point theorems. Re-
cently, Arif et al. [6] proved a Matkowski type nonlinear fixed point result using a
locally T -transitive binary relation.

Our aim in this article is to establish some coincidence and common fixed point
results for Matkowski type nonlinear contractions on a metric space endowed with
locally T -transitive binary relation. Newly proved results generalize and extend the
main results of Arif et al. [6], Alam and Imdad [4] and several others. Moreover, a
corollary to one of our main results remains a sharpened version of a corresponding
earlier known result of the existing literature. In order to demonstrate the validity
of the hypotheses and degree of generality of our results, we also furnish some ex-
amples.

2. PRELIMINARIES

For the sake of simplicity, we collect some basic notions and propositions for our
subsequent discussion.

Definition 1 ([12,14]). Let (T,g) be a pair of self-mappings defined on a nonempty
set X . Then

(i) a point x ∈ X is said to be a coincidence point of the pair (T,g) if T x = gx,
(ii) a point y ∈ X is said to be a point of coincidence of the pair (T,g) if there

exists x ∈ X such that y = T x = gx,
(iii) a coincidence point x ∈ X of the pair (T,g) is said to be a common fixed point

if x = T x = gx,
(iv) a pair (T,g) is called commuting if T (gx) = g(T x),∀ x ∈ X ,
(v) a pair (T,g) is called weakly compatible if T and g commutes at their coin-

cidence point.

Definition 2 ([13,22,23]). Let (T,g) be a pair of self-mappings defined on a metric
space (X ,d). Then

(i) (T,g) is said to be weakly commuting if for all x ∈ X , d(T (gx),g(T x)) ≤
d(T x,gx),

(ii) (T,g) is said to be compatible if limn→∞ d(T (gxn),g(T xn)) = 0 whenever
{xn} ⊂ X is a sequence such that limn→∞ gxn = limn→∞ T xn,

(iii) T is said to be g-continuous at x ∈ X if gxn
d−→ gx, for all sequence {xn}⊂ X ,

we have T xn
d−→ T x. Moreover, T is said to be g-continuous if it is continu-

ous at every point of X .
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Definition 3 ([15]). A subset R of X ×X is called a binary relation on X. We say
that “x relates y under R ” if and only if (x,y) ∈ R .

Throughout this paper, R stands for a ‘non-empty binary relation’ (i.e., R ̸= ∅)
instead of ‘binary relation’ while N, the set of natural numbers (also, N0 = N∪{0}),
R s := R ∪ R −1, (where R −1 := {(y,x) ∈ X2 : (x,y) ∈ R }) and R |Z := R ∩ Z2,
Z ⊆ X . Indeed, R |Z is a relation on Z induced by R . Although, R =∅ denotes the
null relation, while R = X2 the universal relation.

Definition 4. [5] Let X be a non-empty set endowed with a binary relation R and
let T be a self-mapping defined on X . Then R is called “T -transitive” if for any
x,y,z ∈ X ,

(T x,Ty),(Ty,T z) ∈ R ⇒ (T x,T z) ∈ R .

Definition 5 ([3]). Let X be a non-empty set X endowed with a binary relation R .
Then a sequence {xn} ⊂ X is said to be R -preserving if (xn,xn+1) ∈ R , ∀ n ∈ N0.

Definition 6 ([5]). Let X be a non-empty set endowed with a binary relation R .
Then R is called “locally transitive” if for each (effectively) R -preserving sequence
{xn} ⊂ X (with range D = {xn : n ∈ N}), such that R |D is transitive.

Definition 7 ([5]). Let X be a non-empty set endowed with a binary relation R and
let T be a self-mapping defined X . Then R is called locally T -transitive if for each
(effectively) R -preserving sequence {xn} ⊂ T (X) (with range D = {xn : n ∈ N}),
such that R |D is transitive.

Proposition 1. Let X be a non-empty set endowed with a binary relation R and
let (T,g) be a pair of self-mappings defined on X. Then

(i) R is T -transitive ⇔ R |T (X) is transitive,
(ii) R is locally T -transitive ⇔ R |T (X) is locally transitive,
(iii) R is transitive ⇒ R is locally transitive ⇒ R is locally T -transitive,
(iv) R is transitive ⇒ R is T -transitive ⇒ R is locally T -transitive,
(iv) if T (X) ⊆ g(X), then g-transitivity of R ⇒ R is T -transitive and locally

g-transitivity of R ⇒ R is locally T -transitive but not conversely.

Definition 8 ([15]). Let X be a non-empty set endowed with a binary relation R .
Then R is called complete if for all x,y in X , either (x,y) ∈ R or (y,x) ∈ R which is
denoted by [x,y] ∈ R .

Proposition 2 ([3]). Let X be a non-empty set endowed with a binary relation R .
Then (x,y) ∈ R s if and only if [x,y] ∈ R .

Definition 9 ([3]). Let X be a non-empty set endowed with a binary relation R
and let T be a self-mapping defined X . Then R is called T -closed if for all x,y ∈
X , (x,y) ∈ R ⇒ (T x,Ty) ∈ R .
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Definition 10 ([4]). Let X be a non-empty set endowed with a binary relation R
and let (T,g) be a pair of self-mappings defined on X . Then R is called (T,g)-closed
if for all x,y ∈ X , (gx,gy) ∈ R ⇒ (T x,Ty) ∈ R .

Definition 11 ([4]). Let (X ,d) be a metric space endowed with a binary relation
R . Then (X ,d) is said to be R -complete if every R -preserving Cauchy sequence in
X converges to a point in X .

Remark 1 ([4]). Every complete metric space is R -complete, where R denotes
a binary relation. Moreover, if R = X2, then notions of R -completeness and com-
pleteness are the same.

Definition 12 ([4]). Let (X ,d) be a metric space endowed with a binary relation R
and let T be a self-mapping defined on X . Then T is said to be R -continuous at x if
xn

d−→ x, for any R -preserving sequence {xn} ⊂ X , we have T xn
d−→ T x. Moreover,

T is said to be R -continuous if it is R -continuous at every point of X .

Definition 13 ([4]). Let (X ,d) be a metric space endowed with a binary relation
R and let (T,g) be a pair of self-mappings defined on X . Then T is said to be (g,R )-

continuous at x if gxn
d−→ gx, for any R -preserving sequence {gxn} ⊂ X , we have

T xn
d−→ T x. Moreover, T is called (g,R )-continuous if it is (g,R )-continuous at

every point of X .

Remark 2. Every continuous mapping is R -continuous, where R denotes a binary
relation. Moreover, if R = X2, then notions of continuity and R -continuity are the
same.

Definition 14 ([3]). Let (X ,d) be a metric space endowed with a binary relation
R . Then R is said to be d-self-closed if for any R -preserving sequence {xn} with

xn
d−→ x, there is a subsequence {xnk} of {xn} such that [xnk ,x] ∈ R , for all k ∈ N.

Definition 15 ([4]). Let (X ,d) be a metric space endowed with a binary relation R
an let g be a self-mapping defined on X . Then R is said to be (g,d)-self-closed if for

any R -preserving sequence {xn} with xn
d−→ x, there is a subsequence {xnk} of {xn}

such that [gxnk ,gx] ∈ R , for all k ∈ N.

Definition 16 ([21]). Let X be a non-empty set endowed with a binary relation R .
Then a subset D of X is said to be R -directed if for every pair of points x,y in D,
there is w in X such that (x,w) ∈ R and (y,w) ∈ R .

Definition 17 ([4]). Let X be a non-empty set endowed with a binary relation R
and let g be a self-mapping defined on X . Then a subset D of X is said to be (g,R )-
directed if all x,y in D, there is ‘w’ in X such that (x,gw) ∈ R and (y,gw) ∈ R .

Remark 3. On setting g = I, (the identity mapping on X) in Definitions 10, 13, 15
and 17 reduces to Definitions 9, 12, 14 and 16, respectively.
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Definition 18 ([15]). Let X be a non-empty set endowed with a binary relation R .
Given x,y ∈ X , a path of length k (where k is a natural number) in R from x to y is a
finite sequence {w0,w1,w2, ...,wk} ⊂ X satisfying the following:

(i) w0 = x and wk = y,
(ii) (wi,wi+1) ∈ R for each i (0 ≤ i ≤ k−1).

Moreover, a path of length k involves k+ 1 points of X , although they may or may
not be distinct.

Definition 19 ([4]). Let X be a non-empty set endowed with a binary relation R .
Then a subset D of X is called R -connected if for each pair x,y ∈ D, there exists a
path in R from x to y.

Definition 20 ([4]). Let (X ,d) be a metric space endowed with a binary relation
R and let (T,g) be a pair of self-mappings defined on X . Then (T,g) is said to be
R -compatible if lim

n→∞
d(g(T xn),T (gxn)) = 0, whenever lim

n→∞
g(xn) = lim

n→∞
T (xn), for

any sequence {xn} ⊂ X such that {T xn} and {gxn} are R -preserving.

For a given non-empty set X together with a binary relation R on X and a pair of
self-mappings (T,g) on X , we use the following notations:

• X(T,g,R ) := {x ∈ X : (gx,T x) ∈ R };
• C(T,g): the collection of all coincidence points of (T,g);
• C(T,g): the collection of all points of coincidence of (T,g);
• F(T,g): the collection of all common fixed points of (T,g);
• F(T ): the collection of all fixed points of T ;
• X(T,R ) := {x ∈ X : (x,T x) ∈ R }.

In fact, the idea of a comparison function was initiated by Matkowski [16] in 1975,
we denote the set of all comparison functions by Φ. A mapping ϕ : [0,∞)→ [0,∞) is
said to be a comparison function if ϕ satisfies the following properties:
(Φ1) ϕ is increasing;
(Φ2) lim

n→∞
ϕ

n(s) = 0 for each s > 0, where, for each n, ϕn is the n-th iterate of ϕ.

Now, we propose the two main properties of the comparison function:

Proposition 3 ([17]). If ϕ is a comparison function, then ϕ(s)< s, for each s > 0.

Proof. On contrary suppose that exists s0 > 0 such that s0 ≤ ϕ(s0). Since ϕ is
increasing, φ(s0)≤ ϕ2(s0), it follows that s0 ≤ ϕ(s0)≤ ϕ2(s0). Thus, inductively for
all n ∈ N, we obtain s0 ≤ ϕn(s0) which on letting n → ∞, gives rise, s0 ≤ 0, which is
a contradiction. Hence ϕ(s)< s. □

Proposition 4 ([17]). If ϕ is a comparison function, then ϕ(0) = 0.

Proof. On contrary suppose that ϕ(0) = s for some s > 0. Since 0 < s and ϕ is
increasing, ϕ(0) ≤ ϕ(s), it follows that s ≤ ϕ(s) < s, which is contradiction, hence
ϕ(0) = 0. □
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Proposition 5. Let (X ,d) be a metric space endowed with a binary relation R
and let (T,g) be a pair of self-mappings defined on X and also let ϕ ∈ Φ. Then the
following conditions are equivalent:

(I) d(T x,Ty)≤ ϕ(d(gx,gy)) with (gx,gy) ∈ R ;
(II) d(T x,Ty)≤ ϕ(d(gx,gy)) with [gx,gy] ∈ R .

Proof. Obviously (II)⇒ (I). We claim that (I)⇒ (II), choose x,y ∈ X such that
[gx,gy] ∈ R . If (gx,gy) ∈ R , then (II) immediately follows from (I). Otherwise, if
(gy,gx) ∈ R , then by (I) and owing to the symmetry of d (metric), we conclude the
claim. □

For the sake of completeness, we state the main results of Arif et al., [6] and Alam
Imdad [5] respectively, which are given under:

Theorem 1 ([6]). Let (X ,d) be a metric space endowed with a binary relation
R and let T be a self-mapping defined on X. Suppose that the following conditions
hold:

(i) (X ,d) is R -complete;
(ii) R is T -closed and locally T -transitive;
(iii) either T is R -continuous or R is d-self-closed;
(iv) X(T,R ) is non-empty;
(v) there exists a comparison function ϕ such that

d(T x,Ty)≤ ϕ(d(x,y)) ∀ x,y ∈ Xwith(x,y) ∈ R .

Then F(T ) ̸=∅. Moreover, if T (X) is R s-connected, then F(T ) is singleton.

Theorem 2 ([4], Theorem 2). Let (X ,d) be a metric space endowed with a binary
relation R , let (T,g) be a pair of self-mappings defined on X and Z be an R -complete
subspace of X. Assume that the following conditions hold:

(a) T (X)⊆ Z ∩g(X);
(b) X(T,g,R ) is non-empty:
(c) R is (T,g)-closed;
(d) there exists α ∈ [0,1) such that d(T x,Ty)≤ αd(gx,gy) for all x,y ∈ X with

(gx,gy) ∈ R ;
(e) (e1) (T,g) is R -compatible;

(e2) g is R -continuous;
(e3) T is R -continuous or R is (g,d)-self-closed;

or, alternatively
(e′) (e′1) Z ⊆ g(X);

(e′2) either T is (g,R )-continuous or T and g are continuous or R |Z is d-
self-closed.

Then C(T,g) ̸=∅.
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Indeed, the main results of this paper are based on the following points:

• Theorem 1 is extended for a pair of self-mappings (T,g) defined on a non-
empty set X ,

• Theorem 2 is improved by replacing relatively weaker contraction condition,
• Theorem 1 is generalized by replacing comparatively weaker notions namely

R -completeness of any subspace Z ⊆ X , with T (X)⊆ Z rather than R com-
pleteness of whole space X ,

• some examples are constructed to demonstrate the realized improvement in
the proved results in this article.

3. MAIN RESULTS

Now, we are equipped to prove our main result as follows:

Theorem 3. Let (X ,d) be a metric space endowed with a binary relation R , let
(T,g) be a pair of self-mappings defined on X and Z be an R -complete subspace of
X. Assume that hypotheses (a), (b), (e), or

[
(e′) in which modified (e′2) : either T is

(g,R )-continuous or T is continuous and g is bijective and bi-continuous or R |Z is
d-self-closed.)

]
of Theorem 2 along with the following conditions hold:

(k) R is (T,g)-closed and locally T -transitive;
(l) there exists a comparison function ϕ such that

d(T x,Ty)≤ ϕ(d(gx,gy)) f or all x,y ∈ X with (gx,gy) ∈ R .

Then C(T,g) ̸=∅.

Proof. Let x0 ∈ X such that (gx0,T x0) ∈ R (due to hypothesis (b)). Construct a
Picard Jungck sequence {gxn} based at the point x0, i.e.,

g(xn+1) = T (xn) ∀ n ∈ N0. (3.1)

Since (gx0,T x0) ∈ R , R is (T,g)-closed and using (3.1), inductively we have

(gxn,gxn+1) ∈ R ∀ n ∈ N0. (3.2)

In view of (3.1) and (3.2), we have {T xn} is R -preserving in Z (due to hypothesis
(a)), i.e.,

(T xn,T xn+1) ∈ R ∀ n ∈ N0. (3.3)

Now, if d(gxn0+1,gxn0) = 0 for some n0 ∈ N0, then in view of (3.1), we have
T (xn0) = g(xn0) so that xn0 is a coincidence point of T and g and hence we are done.
On the other hand, if d(gxn+1,gxn) > 0 ∀ n ∈ N0, then applying the contractivity
condition (l) to (3.2), we deduce, for all n ∈ N that

d(gxn+1,gxn)≤ ϕ(d(gxn,gxn−1)),
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which on using (3.2), contractive condition (l) and increasing property of ϕ, reduces
to

d(gxn+1,gxn)≤ ϕ
n(d(gx1,gx0)). (3.4)

Making n → ∞, in (3.4) and using the definition of comparison function, we get

lim
n→∞

d(gxn+1,gxn) = 0. (3.5)

Fix ε > 0. Then in view of (3.5), we can choose fix n ∈ N (corresponding to given
ε > 0) such that

d(gxn+1,gxn)< ε−ϕ(ε). (3.6)

Now, we claim that {gxn} is a Cauchy sequence. To substantiate the claim, using
increasing property of ϕ, (3.1), (3.2) and (3.6), we obtain

d(gxn+2,gxn)≤ d(gxn+2,gxn+1)+d(gxn+1,gxn)

< d(T xn+1,T xn)+ ε−ϕ(ε)

≤ ϕ(d(gxn+1,gxn))+ ε−ϕ(ε)

≤ ϕ(ε−ϕ(ε))+ ε−ϕ(ε)

≤ ϕ(ε)+ ε−ϕ(ε)

= ε.

Now, again using the increasing property of ϕ, (3.2) and locally T -transitivity of R ,
we obtain

d(gxn+3,gxn)≤ d(gxn+3,gxn+1)+d(gxn+1,gxn)

< (d(T xn+2,T xn))+ ε−ϕ(ε)

≤ ϕ(d(gxn+2,gxn))+ ε−ϕ(ε)

≤ ϕ(ε−ϕ(ε))+ ε−ϕ(ε)

≤ ϕ(ε)+ ε−ϕ(ε)

= ε,

so that inductively yields,

d(gxn+k,gxn)< ε for all k ∈ N. (3.7)

Set m0 := n and m := n+ k for all k ∈ N in (3.7), then the inequality (3.7) yields that
d(gxm,gxn) < ε ∀ m,n ≥ m0 with m > n, which shows that the sequence {gxn} is a
Cauchy and {gxn} is R -preserving. By R -completeness of (Z,d), there exists z ∈ Z
such that

lim
n→∞

g(xn) = z. (3.8)
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On using (3.1), (3.2) and (3.8), we obtain

lim
n→∞

T (xn) = z. (3.9)

Now, to complete the proof by using (e) or (e′). Assume that (e) holds. Using (3.2),
(3.8) and assumption (e2) (i.e., R -continuity of g), we have

lim
n→∞

g(gxn) = g( lim
n→∞

gxn) = g(z). (3.10)

Now, utilizing (3.1), (3.2) and (3.9) and assumption (e2) (i.e., R -continuity of g), we
have

lim
n→∞

g(T xn) = g( lim
n→∞

T xn) = g(z). (3.11)

Since {T xn} and {gxn} are R -preserving (owing to (3.2) and (3.3)) and lim
n→∞

g(xn) =

lim
n→∞

T (xn) = z (owing to (3.8) and (3.9)), using assumption (e1) (i.e., R -compatibility
of T and g), give rise

lim
n→∞

d(gT xn,T gxn) = 0. (3.12)

We need to prove that z is a coincidence point of T and g. To do this, we use assump-
tion (e3). Assume that T is R -continuous. On using (3.2), (3.9) and R -continuity of
T , we obtain

lim
n→∞

T (gxn) = T ( lim
n→∞

gxn) = T (z). (3.13)

Applying (3.11), (3.12), (3.13) and the continuity of d, we obtain

d(gz,T z) = d( lim
n→∞

gT xn, lim
n→∞

T gxn) = lim
n→∞

d(gT xn,T gxn) = 0,

so that
g(z) = T (z).

Thus z ∈C(T,g).
Alternatively, assume that R is (g,d)-self-closed. As {gxn} is R -preserving (due

to (3.2)) and g(xn)
d−→ z (in view of (3.8)), due to (g,d)-self-closedness of R , there

exists a subsequence {gxnk} of {gxn} such that

[ggxnk ,gz] ∈ R ∀ k ∈ N0. (3.14)

Since g(xnk)
d−→ z, so equations (3.10)-(3.13) also hold for {xnk} (instead of {xn}).

On using (3.14), assumption (l) and Propositions 3 and 4 (either d(ggxnk ,gz) is zero
or non-zero), we have

d(T gxnk ,T z)≤ ϕ(d(ggxnk ,gz))≤ d(ggxnk ,gz) ∀ k ∈ N0. (3.15)

Employing the triangular inequality, continuity of ‘d’, (3.10), (3.11), (3.12) and
(3.15), we get

d(gz,T z)≤ d(gz,gT xnk)+d(gT xnk ,T gxnk)+d(T gxnk ,T z)
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≤ d(gz,gT xnk)+d(gT xnk ,T gxnk)+d(ggxnk ,gz)
→ 0 as k → ∞

so that
g(z) = T (z).

Thus z ∈C(T,g) and hence again we are done.
Now, we assume that (e′) holds. Owing to assumption (e′1) (i.e., Z ⊆ g(X)), we can
find some u ∈ X such that z = g(u). Hence, (3.8) and (3.9) respectively reduce to

lim
n→∞

g(xn) = g(u). (3.16)

lim
n→∞

T (xn) = g(u). (3.17)

Now, we need to prove that u is a coincidence point of T and g. To accomplish this,
we use assumption (e′2). Firstly, assume that T is (g,R )-continuous, then using (3.2)
and (3.16), we get

lim
n→∞

T (xn) = T (u). (3.18)

On using (3.17) and (3.18), we get g(u) = T (u). Hence, u ∈C(T,g).
Secondly, assume that T is continuous and g is bijective and bi-continuous. Then on
using (3.16) and (3.17), we get

T (u) = T g−1(gu) = T g−1( lim
n→∞

gxn) = lim
n→∞

T g−1(gxn) = lim
n→∞

T (xn) = g(u).

Thus u ∈C(T,g) and hence again we are through.
Finally, assume that R |Z is d-self-closed. Since {gxn} is R |Z-preserving (due to

(3.2)) and g(xn)
d−→ g(u) ∈ Z (due to (3.8)), using d-self-closeness of R |Z , there

exists a subsequence {gxnk} of {gxn} such that

[gxnk ,gu] ∈ R |Z ∀ k ∈ N0. (3.19)

Applying (3.1), (3.19), assumption (l), Propositions 3 and 4, (whether d(gxnk ,gu) is
zero or non-zero), we obtain

d(gxnk+1,Tu) = d(T xnk ,Tu)≤ ϕ(d(gxnk ,gu))≤ d(gxnk ,gu) ∀ k ∈ N0 (3.20)

Applying (3.16), (3.20) and continuity of d, we get

d(gu,Tu) = d( lim
k→∞

gxnk+1,Tu) = lim
k→∞

d(gxnk+1,Tu)≤ lim
k→∞

d(gxnk ,gu),

so that
g(u) = T (u).

Hence u ∈C(T,g). This completes the proof. □

Now, we present a consequence of Theorem 3 by assuming the map g = I (identity
mapping on X), remains a sharpened form of Theorem 1 (due to Arif et al. [6]) in the
context of R -complete subspace of X , which runs as:
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Corollary 1. Let (X ,d) be a metric space endowed with a binary relation R , let
T be a self-mapping on X and Z be an R -complete subspace of X with T (X) ⊆ Z.
Suppose that the following conditions hold:

(i) R is T -closed and locally T -transitive;
(ii) either T is R -continuous or R is d-self-closed;
(iii) X(T,R ) is non-empty;
(iv) there exists a comparison function ϕ such that

d(T x,Ty)≤ ϕ(d(x,y)) ∀ x,y ∈ X with (x,y) ∈ R .

Then F(T ) ̸=∅.

Corollary 2. The conclusion of Theorem 3 (also, Corollary 1) holds, if locally
T -transitivity of R is replaced by any one of the following conditions:

(i) R is transitive;
(ii) R is T -transitive;
(iii) R is g-transitive;
(iv) R is locally transitive.

4. UNIQUENESS RESULTS

In this section, we present the corresponding uniqueness results, as follows:

Theorem 4. If in the hypotheses of Theorem 3, the assumption R |sg(X)-connectedness

of T (X) is added, then C(T,g) is singleton.

Proof. Owing to Theorem 3, let x and y be the two elemtents of C(T,g), then there
exist x,y ∈ X such that

x = g(x) = T (x) and y = g(y) = T (y). (4.1)

We claim that x = y. Since T (x),T (y) ∈ T (X) ⊆ g(X), by assumption the R |sg(X)-
connectedness of T (X), there exists a path (say {gw0,gw1,gw2, ...,gwk}) of some
finite length k in R |sg(X) from T (x) to T (y) (where w0,w1,w2, ...,wk ∈ X). Owing to
(4.1), without loss of generality, we may set w0 = x and wk = y. Thus, we obtain

[gwi,gwi+1] ∈ R |g(X) for each i (0 ≤ i ≤ k−1). (4.2)

Define the constant sequences w0
n = x and wk

n = y. On using (4.1), we have g(w0
n+1) =

T (w0
n) = x and g(wk

n+1) = T (wk
n) = y ∀ n ∈ N0. Set w1

0 = w1,w2
0 = w2, ...,wk−1

0 =
wk−1. As T (X) ⊆ g(X), on the lines similar to proof of Theorem 3, we can fur-
nish sequences {w1

n},{w2
n}, ...,{wk−1

n } in X such that g(w1
n+1) = T (w1

n),g(w
2
n+1) =

T (w2
n), ...,g(w

k−1
n+1) = T (wk−1

n ) ∀ n ∈ N0. Hence, we have

g(wi
n+1) = T (wi

n) ∀ n ∈ N0 and for each i (0 ≤ i ≤ k). (4.3)
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Now, we assert that

[gwi
n,gwi+1

n ] ∈ R ∀ n ∈ N0 and for each i (0 ≤ i ≤ k−1). (4.4)

We prove this assertion by an inductive method with respect to index n. It follows
from (4.3) that (4.4) holds for n = 0. Assume that (4.4) holds for n = r > 0, i.e.,

[gwi
r,gwi+1

r ] ∈ R for each i (0 ≤ i ≤ k−1).

Since R is (T,g)-closed and owing to Proposition 2, we obtain

[Twi
r,Twi+1

r ] ∈ R for each i (0 ≤ i ≤ k−1),

which on utilizing (4.3), give rise

[gwi
r+1,gwi+1

r+1] ∈ R for each i (0 ≤ i ≤ k−1).

It follows that (4.4) holds for n = r+ 1. Therefore, by induction, (4.4) holds for all
n∈N0. Now, for all n∈N0 and for each i (0≤ i≤ k−1), define ηi

n := d(gwi
n,gwi+1

n ).
We claim that

lim
n→∞

η
i
n = 0, for each i (0 ≤ i ≤ k−1). (4.5)

With fix i, two cases arise. Firstly, assume that ηi
n0

:= d(gwi
n0
,gwi+1

n0
) = 0 for some

n0 ∈N0, then by the assumption (l) and Proposition 4, we obtain d(Twi
n0
,Twi+1

n0
) = 0.

Consequently on using (4.3), we get ηi
n0+1 = d(gwi

n0+1,gwi+1
n0+1) = d(Twi

n0
,Twi+1

n0
) =

0. Thus by induction, we get ηi
n = 0 ∀ n ≥ n0, yielding thereby lim

n→∞
ηi

n = 0. Secondly,

assume that ηi
n > 0 ∀ n∈N0, then on using (4.3), (4.4), the assumption (l), increasing

property of ϕ and Proposition 3, we obtain

η
i
n = d(gwi

n,gwi+1
n ) = d(Twi

n−1,Twi+1
n−1)≤ ϕ(d(gwi

n−1,w
i+1
n−1)) = ϕ(ηi

n−1)

≤ ϕ
2(ηi

n−2)

...

≤ ϕ
n(ηi

0).

Tending with n → ∞, we get lim
n→∞

ηi
n = 0. Therefore, in both cases, claim (4.5) is

proved for each i (0 ≤ i ≤ k−1). On using triangular inequality and (4.5), we obtain

d(x,y)≤ η
0
n +η

1
n + · · ·+η

k−1
n → 0 as n → ∞

Thus x = y, which ends the proof. □

Corollary 3. If in the hypotheses of Theorem 4, we replace the assumption R |sg(X)-
connectedness of T (X) by either completeness of R |T (X) or R |sg(X)-directedness of
T (X), then the conclusion of Theorem 4 also holds.

Theorem 5. If in the hypotheses of Theorem 4, the assumption of injectivity of any
one of the mappings T and g is added, then C(T,g) is singleton.
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Theorem 6. If in the hypotheses of Theorem 4, the assumption of weakly compat-
ibility of T and g (embodied in conditions (e′)) is added, then F(T,g) is singleton.

The proofs of Corollary 3, Theorems 5 and 6 can be obtained on the lines similar to
Corollary 4.6, Theorems 4.7, and 4.8 respectively, contained in [4].

Remark 4. If in addition to hypotheses of Corollary 1, R s-connectedness of T (X)
is added, then F(T ) is singleton.

5. ILLUSTRATIVE EXAMPLES

Finally, we furnish some examples to demonstrate the realized improvement of
our proved results.

Example 1. Let (X = [0,∞),d) (where d(x,y) := |x−y|, for all x,y∈X) be a metric
space endowed with a binary relation R , where R := {(x,y) ∈ X2 : x− y > 0, x,y ∈
[0, 1

2)}∪{(1
n ,

1
n+1)

∞
n=2}. On X , define a pair of self-mappings (T,g) by T (x) = x

1+2x
and g(x) = x

1+x for all x ∈ X . Clearly, neither R is transitive nor g-transitive but it
is T -transitive, hence it is locally T -tranisitive and also R is (T,g)-closed. Define a
comparison function ϕ by ϕ(s)= s

s+1 ∀ s∈ [0,∞). On choosing R -complete subspace
Z = [0,1) of X with T (X)⊆ Z∩g(X) (as T (X) = [0, 1

2) and g(X) = [0,1)). Now, for
all (gx,gy) ∈ R , we have

d(T x,Ty) =
∣∣∣∣ x
1+2x

− y
1+2y

∣∣∣∣= ∣∣∣∣ (x− y)
1+2x+2y+4xy

∣∣∣∣
≤
(

(x− y)
1+ x+ y+2xy+(x− y)

)
=

(
(x− y)/(1+ x+ y+2xy)

(1+ x+ y+2xy+(x− y))/(1+ x+ y+2xy)

)

=

(
x

1+x −
y

1+y

)
1+
(

x
1+x −

y
1+y

)
=

(gx−gy)
1+(gx−gy)

=
d(gx,gy)

1+d(gx,gy)
= ϕ(d(gx,gy)).

Hence the pair (T,g) and ϕ satisfy the contractive condition (l) of Theorem 3. Fur-
ther, it can be easily seen that X(T,g,R ) ̸= ∅ and continuity of the pair (T,g). Ob-
serve that in view of Theorem 3, (T,g) has a coincidence point (namely: x = 0).

Further, the conditions R |sg(X)-connectedness of T (X) and weakly compatibility of
(T,g) of Theorem 6 can be easily verified. Notice that x = 0, is the unique common
fixed point of (T,g).
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But contraction condition (d) of Theorem 2 (due to Alam and Imdad [4]) is not
satisfied as on choosing very small positive number ε with (gε,g0) ∈ R , we have

ε

1+2ε
= d(T ε,T 0)≤ αd(gε,g0) = α

ε

1+ ε
,

wich implies that α ≥ 1+ε

1+2ε
. However, α ≥ 1, as ε tends to zero, which is a contradic-

tion, this shows that genuineness of our newly proved results.

Example 2. Let (X = [0,4),d) be a metric space endowed with a binary relation
R = {(0,0),(0,1),(1,0),(1,1),(3,0)}∪{(xn,xn+1) : xn = 4− 1

n}, where d is a usual
metric on X . It is easy to see that R is neither transitive nor g-transitive but it is
locally T -transitive. On X , define a pair of self-mappings (T,g) by

T (x) =
{

0, 0 ≤ x ≤ 1;
1, 1 < x < 4, and g(x) =

{
[x], 0 ≤ x ≤ 1;
3, 1 < x < 4,

where [·] is a greatest integer function. Clearly, R is (T,g)-closed. Let Z = {0,1},
then Z is R -complete and T (X)= {0,1}⊆Z ⊆ g(X)= {0,1,3}. Define a comparison
function ϕ by ϕ(s) = 1

2 s, for all s ∈ [0,∞).

Let {xn} be any R |Z-preserving sequence in Z such that xn
d−→ x. As (xn,xn+1) ∈

R |Z , for all n ∈ N, there exists positive integer N ∈ N such that xn = x ∈ {0,1} for
all n ≥ N. Hence, we can choose a subsequence {xnk} of the sequence {xn} such
that xnk = x, for all k ∈ N, which amounts to saying that [xnk ,x] ∈ R |Z , for all k ∈ N.
Hence, R |Z is d-self-closed. It can be easily seen that contraction condition (l) and
remaining hypotheses of Theorem 3 are also satisfied.

Observe that, in view of Theorem 3, (T,g) has a coincidence point (namely
x = 0). Furthermore, the remaining hypotheses of Theorem 6 also holds. Thus,
all the hypotheses of Theorem 6 are satisfied and hence (T,g) has a unique common
fixed point (namely x = 0).

On setting g = I, identity mapping on X in the present example and further all the
conditions of Corollary 1 can be easily verified. Notice that, in view of Corollary 1
and Remark 4, x = 0 is the unique fixed point of T . But (X ,d) is not R -complete,
therefore this example cannot be covered by Theorem 1, which substantiate the utility
of Corollary 1 over Theorem 1 (due to Arif et al. [6]).
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