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Abstract. The main purpose of this paper is to study the feedback control systems governed
by Hilfer fractional evolution inclusions involving history-dependent operators. We first show
a priori estimates of the solutions to the fractional feedback control system. Then, by using
the well-known Bohnenblust-Karlin fixed point theorem, we prove an existence theorem for the
fractional feedback control system. Finally, we consider an optimal control problem driven by
the fractional feedback control system, and establish its solvability.
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1. INTRODUCTION

In recent years, with the development of computer technology and scientific com-
puting methods, the theory and application of fractional differential evolution equa-
tions have developed rapidly. The fractional differential evolution equations in infin-
ite dimensional spaces have been applied in many fields such as economy, mechan-
ics, physics and so on. The fractional differential evolution equations with Caputo
type and Riemann-Liouville type have also been widely studied by a large number
of scholars(see [9, 11, 17, 19]). Hilfer type fractional derivatives include both Cap-
uto type and Riemann-Liouville type fractional derivatives, which have been widely
studied by a large number of scholars (cf. [2]). For example, Gu-Trujillo [2] stud-
ied the existence of mild solutions of Hilfer fractional differential equations and the
references therein.

Feedback control is a very important concept in control theory. Feedback con-
trol refers to the process of sending the output information of the system back to
the input end, comparing with the input information, and using the deviation of the
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two to control. Its characteristic is that the control function affects the state func-
tion, and the state function will affect the control function in turn, so as to achieve
the effect of feedback. In recent years, feedback control systems have been widely
used in many fields, such as spacecraft, robot operation and greenhouse regulation
(cf. [5, 10, 20–22]. In [20], Wang et al. considered optimal feedback control prob-
lems of fractional evolution equations with Caputo fractional derivatives. In [21,22],
the authors studied the feedback control problems of impulsive fractional evolution
equations with Riemann-Liouville type. However, there are few studies on optimal
feedback control problems of fractional evolution equations with Hilfer type frac-
tional derivatives. This is one of the motivations of this paper. Based on the above
considerations, we first study the existence of feasible pairs of Hilfer fractional evol-
ution inclusion with feedback control of the following form:

Dν,µ
t x(t) ∈ Ax(t)+(R x)(t)+F(t,x(t))+B(t,x(t))u(t), t ∈ (0,b],

u(t) ∈U(t, t1−αx(t)), a.e. t ∈ (0,b),
I(1−ν)(1−µ)
0+ x(t) |t=0= x0,

(1.1)

where Dν,µ
t denotes the Hilfer fractional derivative, ν ∈ [0,1], µ ∈ (0,1).

Let α = ν+ µ− νµ, then 1−α = (1− ν)(1− µ) ≥ 0. A: D(A) ⊆ X → X is the
infinitesimal generator of a uniformly bounded C0-semigroup {T (t)}t≥0 on a re-
flexive Banach space X . R is a history-dependent operator, F : [0,b]×X → P (X),
B : [0,b]×X → L(V,X), where L(V,X) represents the space of all bounded linear
operators from V to X with the standard norm ‖ · ‖L(V,X), U : [0,b]×X ⇒ V is a
feedback multifunction.

An outline of this paper is organized as follows. In Section 2, we will present some
basic definitions and preliminary facts which will be used throughout the following
sections. In Section 3, we present a priori estimates of the solutions to the fractional
feedback control system and by using the well-known Bohnenblust-Karlin fixed point
theorem, we prove an existence result of feasible pairs of the system (1.1). In Section
4, we will study an optimal control problem driven by the feedback control system
and establish its solvability.

2. PRELIMINARIES

In order to study the feedback control systems of Hilfer fractional evolution inclu-
sions involving history-dependent operators, we introduce the following basic defin-
itions and preparatory knowledge. The norm of a Banach space X will be denoted by
‖ · ‖X . In the sequel, we assume that V is a separable reflexive Banach space. For a
uniformly bounded C0-semigroup T (t)(t ≥ 0), we set M:= supt∈[0,∞) ‖T (t)‖L(X ,X).
C1−α([0,b],X) = {x: y(t) = t1−αx(t), y ∈ C([0,b],X)} with the norm ‖x‖C1−α

=

sup{t1−α‖x(t)‖X : t ∈ [0,b]}, where 0 < α≤ 1.
In the sequel, we denote by P (Y ) [P f (Y ), P f c(Y ), P f bc(Y ),P(w)cp(Y )] the collec-

tions of all nonempty [respectively, nonempty closed, nonempty closed and convex,
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nonempty closed,bounded and convex, nonempty (weakly) compact] subsets of a
Banach space Y .

Now, let us recall the following basic definitions and properties related to fractional
calculus that will be used in the sequel.

Definition 1 ([6, 19]). For a function x(t) given in the interval [0,∞), the integral

Iα
t x(t) =

1
Γ(α)

∫ t

0
(t− s)α−1x(s)ds, α > 0,

is called the Riemann-Liouville fractional integral of order α, where Γ is the Gamma
function.

Definition 2 ([6, 19]). For a function x(t) given in the interval [0,∞), the integral

LDα
t x(t) =

1
Γ(n−α)

dn

dtn

∫ t

0
(t− s)n−α−1x(s)ds, α > 0,

where n = [α]+ 1, [α] denotes the integer part of number α, is called the Riemann-
Liouville fractional derivative of order α.

Definition 3 ([6, 19]). The Caputo fractional derivative of order α > 0 is defined
as

CDα
t x(t) =L Dα

t [x(t)−
n−1

∑
k=0

tk

k!
x(k)(0)], n−1 < α < n.

If x ∈Cn[0,+∞), then

CDα
t x(t) =

1
Γ(n−α)

∫ t

0
(t− s)n−α−1x(n)(s)ds, n−1 < α < n.

Definition 4 ([17]). The Hilfer fractional derivative Dν,µ
t x(t) of order ν∈ [0,1] and

µ ∈ (0,1) is defined as

Dν,µ
t x(t) = Iν(1−µ)

t
d
dt

I(1−ν)(1−µ)
t x(t),

provided the right side is point-wise defined on [0,∞).

Remark 1 ([17]). The properties of Hilfer fractional derivatives are as follows.
(i) For ν = 0, µ ∈ (0,1), we have

D0,µ
t x(t) =

d
dt

I1−µ
t x(t),

which means the Hilfer fractional derivative D0,µ
t x(t) is the Riemann-Liouville

fractional derivative.
(ii) For ν = 1, µ ∈ (0,1), we have

D1,µ
t x(t) = I1−µ

t
d
dt

x(t) = CDµ
t x(t),
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which means the Hilfer fractional derivative D1,µ
t x(t) is the Caputo fractional

derivative.

Lemma 1 ([2]). Let ν ∈ [0,1] and µ ∈ (0,1), α = ν+µ−νµ, h ∈ Lp(J,X)(p > 1
µ).

If x ∈C1−α(J,X) and x is a solution of the following problem{
Dν,µ

t x(t) = Ax(t)+h(t), t ∈ (0,b],
I(1−ν)(1−µ)
0+ x(t) |t=0= x0 ∈ X ,

(2.1)

then, x satisfies the following equation:

x(t) = Sν,µ(t)x0 +
∫ t

0
(t− s)µ−1Pµ(t− s)h(s)ds, t ∈ (0,b],

Sν,µ(t) = Iν(1−µ)
t Tµ(t), Tµ(t) = tµ−1Pµ(t), Pµ(t) = µ

∫
∞

0
θMµ(θ)T (tµ

θ)dθ,

where Mµ(θ) =
∞

∑
n=1

(−θ)n−1

(n−1)!Γ(1−nµ) (0 < µ < 1) is the Wright function and satisfies

∫
∞

0
θ

δMµ(θ)dθ =
Γ(1+δ)

Γ(1+µδ)
, δ≥ 0.

According to Lemma 1, we give the following definition.

Definition 5. A function x ∈ C1−α([0,b],X) is called a mild solution of system
(1.1), if there exists u(t) ∈U(t, t1−αx(t)) and ξ(t) ∈ F(t,x(t)) a.e. t ∈ [0,b] such that
x satisfies the following fractional integral equation

x(t) = Sν,µ(t)x0 +
∫ t

0
(t− s)µ−1Pµ(t− s)

[
(R x)(s)+ξ(s)+B(s,x(s))u(s)ds, t ∈ [0,b].

(2.2)

Obviously, from [2, 18], we have

Lemma 2. Assume that T (t) is strongly continuous and there exists M > 1 such
that supt∈[0,∞) ‖T (t)‖ ≤M, we have the following properties.

(i) Pµ(t), Tµ(t) and Sν,µ(t) are linear and bounded operators, i.e. for all t > 0,
x ∈ X we can obtain:

‖Pµ(t)x‖ ≤
M‖x‖
Γ(µ)

, ‖Tµ(t)x‖ ≤
Mtµ−1‖x‖

Γ(µ)
,

and

‖Sν,µ(t)x‖ ≤
Mtα−1‖x‖

Γ(α)
, α = ν+µ−νµ.

(ii) Operators Pµ(t), Tµ(t) and Sν,µ(t) are strongly continuous.

(iii) For each t > 0,Sν,µ(t) and Pµ(t) are compact operators if T (t) is compact.
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At the end of this section, we state the following Bohnenblust-Karlin fixed point
theorem, which will play an important role to obtain the existence of solutions of
feedback control system (1.1).

Theorem 1. Let D be a nonempty subset of Banach space X, which is bounded,
closed and convex. Suppose G : D→ P (X) is u.s.c. with closed, convex values, and
such that G(D) ⊆D and G(D) is compact (i.e., G(D) is relatively compact). Then
G has a fixed point.

3. THE EXISTENCE OF FEASIBLE PAIRS

In this section, we first study the existence of feasible pairs for feedback control
system (1.1). At first, we need the following assumptions on the data of our prob-
lems.
H(T ): T (t) is compact for every t > 0.
H(R) R : Lp([0,b],X)→ Lp([0,b],X) is a history-dependent operator, i.e., there ex-
ists a constant cR > 0 such that

‖(R x1)(t)− (R x2)(t)‖X ≤ cR

∫ t

0
‖x1(s)− x2(s)‖X ds,

for a.e. t ∈ [0,b], all x1,x2 ∈ Lp([0,b],X).

Remark 2. Obviously, if we denote (R 0)(t) by ϕ(t), then, one has from H(R)

ϕ(t) ∈ Lp([0,b]) and ‖(R x)(t)‖X ≤ ϕ(t)+ cR

∫ t

0
‖x(s)‖X ds, (3.1)

for a.e. t ∈ [0,b], all x ∈ Lp([0,b],X).

H(F): [0,b]×X → P f c(X) is such that
(i) t 7→ F(t,x) is measurable on [0,b] for all x ∈ X ;

(ii) F(t, ·) admits a strongly-weakly closed graph for a.e. t ∈ [0,b];

(iii) there are a function ϕF ∈ Lp([0,b]) for some p >
1
µ

and a constant cF > 0

such that

‖F(t,x)‖X = sup
z∈F(t,x)

‖z‖X ≤ ϕF(t)+cFt1−α‖x‖X for all x ∈ X and a.e. t ∈ [0,b].

Remark 3. If we assume that J : [0,b]×X → R is such that
(i) t 7→ J(t,x) is measurable on [0,b] for all x ∈ X ;

(ii) x 7→ J(t,x) is locally Lipschitz on X for a.e. t ∈ [0,b];

(iii) there are a function ϕJ ∈ Lp([0,b]) for some p >
1
µ

and a constant cJ > 0

such that

‖∂J(t,x)‖X∗ ≤ ϕJ(t)+ cJt1−α‖x‖X for all x ∈ X and a.e. t ∈ [0,b],
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where ∂J(t, ·) stands for the generalized Clarke subdifferential of the local Lipschitz
functional J(t, ·) on X (cf.[1,15]). Then, ∂J satisfies all the conditions of H(F). Thus,
if we replace F by the generalized Clarke subdifferential ∂J, some recent problems
involving hemivariational inequalities are special cases of our problems studied here
[7, 12–14, 16, 23–25].

H(B): B : [0,b]×X → L(V,X) is such that
(i) t 7→ B(t,x)u is measurable on [0,b] for any (x,u) ∈ X×V ;

(ii) x 7→ B∗(t,x)y is continuous for all y ∈ X∗ and a.e. t ∈ [0,b];
(iii) there exists a constant cB > 0 such that for any x ∈ X and a.e. t ∈ [0,b]

‖B(t,x)‖L(U,X) ≤ cB.

H(U): the feedback multifunction U : [0,b]×X → P f c(V ) is such that
(i) the map t→U(t,x) is measurable for all x ∈ X ;

(ii) there exist a function ϕU(·) ∈ Lp([0,b],R+) (p >
1
µ
) and a constant cU > 0

such that

‖U(t,x)‖= sup
z∈U(t,x)

‖z‖V ≤ ϕU(t)+ cU t1−α‖x‖X , for all (t,x) ∈ [0,b]×X .

(iii) for a.e. t ∈ [0,b], the function x→U(t,x) is upper semicontinuous.
Using the same ideas of the proof of Lemma 3.2 in [8, p.104], one easily obtain

Lemma 3. If H(T ) holds, then the operator π: Lp([0,b],X)→ C([0,b],X) for

some p >
1
µ

, given by

(πh)(·) =
∫ ·

0
(·− s)µ−1Pµ(·− s)h(s)ds, ∀h ∈ Lp(J,X)

is compact.

Definition 6. A pair (x,u) ∈C1−α([0,b],X)×Lp([0,b],V ) is said to be feasible if
(x,u) satisfies (1.1).

For the sake of conveniences, we denote by S the collection of all the feasible pairs
of (1.1). Now we will start to prove an existence result of mild solutions for feedback
control system (1.1).

Proposition 1. If H(T ), H(R), H(F), H(B) and H(U) hold and (x,u) ∈ S , then
there exist two constants R1,R2 > 0 such that the following inequalities hold

‖x‖C1−α([0,b],X) ≤ R1, ‖u‖Lp([0,b],V ) ≤ R2. (3.2)

Proof. For the sake of convenience, in the sequel, we introduce an equivalent
weighted norm on the Banach space C1−α([0,b],X) as follows

‖x‖r = sup
t∈[0,b]

t1−µ‖x(t)‖X e−rt , (3.3)
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where r will be specified later. Let (x,u)∈ S . Then there exists f (s)∈ F(t,x(t)) such
that{

x(t) = Sν,µ(t)x0 +
∫ t

0(t− s)µ−1Pµ(t− s)
[
(R x)(s)+ f (s)+B(s,x(s))u(s))

]
ds,

u(t) ∈U(t, t1−αx(t)), a.e. t ∈ [0,b].
(3.4)

Notice that∫ t

0
(t−s)α−1ersds= r−αert

∫ rt

0
zα−1e−zdz≤ r−αert

Γ(α), ∀r > 0,0<α≤ 1. (3.5)

From the assumption H(R), H(F), H(B), the formula (3.4) and the Hölder inequality,
we have

t1−α‖x(t)‖X ≤ t1−α‖Sν,µ(t)x0‖X

+ t1−α‖
∫ t

0
(t− s)µ−1Pµ(t− s)

[
(R x)(s)+ f (s)+B(s,x(s))u(s))

]
ds‖X

≤ M
Γ(α)

‖x0‖X +
Mb1−α

Γ(µ)

∫ t

0
(t− s)µ−1[

ϕ(s)+ϕF(s)+ cBϕU(s)
]

ds

+
Mt1−α[cF + cBcU ]

Γ(µ)

∫ t

0
(t− s)µ−1s1−αerse−rs‖x(s)‖X ds

+
Mt1−αcR

Γ(µ)

∫ t

0
(t− s)µ−1

∫ s

0
τ

1−α
τ

α−1erτe−rτ‖x(τ)‖X dτ
]

ds

≤ M
Γ(α)

‖x0‖X

+
Mb1−α+µ− 1

p

Γ(µ)
(

p−1
µp−1

)
p−1

p [‖ϕ‖Lp +‖ϕF‖‖Lp + cB‖ϕU‖‖Lp ]

+
[
Mt1−α(cF + cBcU)+

MtcR

α

]
r−µert‖x‖r

≤ w+
[
Mb1−α(cF + cBcU)+

MbcR

α

]
r−µert‖x‖r, (3.6)

where

w =
M

Γ(α)
‖x0‖X +

Mb1−α+µ− 1
p

Γ(µ)
(

p−1
µp−1

)
p−1

p [‖ϕ‖Lp +‖ϕF‖‖Lp + cB‖ϕU‖‖Lp ].

Let us choose

r ≥
[
2(Mb1−α(cF + cBcU)+

MbcR

α
)
] 1

µ . (3.7)

Then from the above inequality, one has

‖x‖r = sup
t∈[0,b]

t1−α‖x(t)‖X e−rt ≤ R1(:= 2w).
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By H(U), there exists a constant R2 > 0 such that

‖u‖Lp([0,b],V ) ≤ R2(:= ‖ϕU‖Lp([0,b],R+)+ cU bR1),

which completes the proof. �

From Proposition 1, if (x,u) ∈ S , then we have from H(B), H(F) and H(U)

‖F(t,x(t))‖X +‖B(t,x(t))u(t)‖X ≤ ϕF(t)+ cBϕU(t)+(cF + cBcU)t1−α‖x(t)‖X ,

a.e. t ∈ [0,b], and set

G := {g ∈ Lp([0,b],X)|‖ f‖X ≤ ϕF(t)+ cBϕU(t)+(cF + cBcU)R1, a.e. t ∈ [0,b]}.
(3.8)

We now consider the following Cauchy problem:{
Dν,µ

t x(t) ∈ Ax(t)+(R x)(t)+g(t), t ∈ (0,b],
I(1−ν)(1−µ)
0+ x(t) |t=0= x0.

(3.9)

Next we begin to prove the existence and uniqueness of mild solutions for (3.9).

Theorem 2. If H(T ) and H(R) hold, then for any g ∈ G , the system (3.9) has a
unique mild solution on C1−α([0,b],X). Furthermore, the map S : G→C1−α([0,b],X)
defined by

S(g) = x(g) ∀g ∈ K,

where x(g) is the unique solution of problem (3.9) corresponding to g ∈ G , is con-
tinuous from w−Lp([0,b],X) into C1−α([0,b],X).

Proof. For any g ∈ G , define the operator G: C1−α(J,X)→C1−α([0,b],X) by

(Gx)(t) = Sν,µ(t)x0 +
∫ t

0
(t− s)µ−1Pµ(t− s)[(R x)(s)+g(s)]ds, t ∈ [0,b].

Here we also use the same equivalent weighted norm

‖x‖r = sup
t∈(0,T ]

t1−α‖x(t)‖X e−rt

defined by (3.3) in the Banach space C1−α([0,b],X) and r also satisfies the inequality
(3.7).

We show that the operator G is a contraction operator on C1−α([0,b],X).
For any x,y ∈C1−α(J,X), if t ∈ [0,b], we have

(Gx)(t) = Sν,µ(t)x0 +
∫ t

0
(t− s)µ−1Pµ(t− s)[(R x)(s)+g(s)]ds,

(Gy)(t) = Sν,µ(t)x0 +
∫ t

0
(t− s)µ−1Pµ(t− s)[(R y)(s)+g(s)]ds.

So, we obtain from H(R)

t1−α‖(Gx)(t)− (Gy)(t)‖X ≤
McR b

α
ertr−µ‖x− y‖r,
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which implies that from (3.7)

‖(Gx)−(Gy)‖r = sup
t∈[0,t1]

t1−α‖(Gx)(t)−(Gy)(t)‖X e−rt ≤
McR b

αrµ ‖x−y‖r≤
1
2
‖x−y‖r.

Therefore, G is a contraction operator on C1−α([0,b],X). According to the Banach’s
fixed theorem, G has a unique fixed point on C1−α([0,b],X) and this fixed point is the
mild solution of system (3.9).

In the sequel, we show that the map S : G → C1−α([0,b],X) is continuous from
w−Lp([0,b],X) into C1−α([0,b],X).

Let {gn} ⊂ G and {xn} ⊂ C1−α([0,b],X) be such that xn = S(gn) and gn ⇀ g in
Lp([0,b],X).

For each n ∈ N, one has

xn(t) = Sν,µ(t)x0 +
∫ t

0
(t− s)µ−1Pµ(t− s)[(R xn)(s)+gn(s)]ds, t ∈ [0,b], (3.10)

x(t) = Sν,µ(t)x0 +
∫ t

0
(t− s)µ−1Pµ(t− s)[(R x)(s)+g(s)]ds, t ∈ [0,b], (3.11)

for any n ∈ N, which implies that

t1−α‖xn(t)− x(t)‖X ≤
McR b

α
ertr−µ‖xn− x‖r +

∫ t

0
(t− s)µ−1Pµ(t− s)[gn(s)−g(s)]ds,

‖xn− x‖r ≤ 2 sup
t∈[0,b]

∫ t

0
(t− s)µ−1Pµ(t− s)[gn(s)−g(s)]ds. (3.12)

Notice that by Lemma 3, the following holds∫ ·
0
(·− s)µ−1Pµ(·− s)[gn(s)−g(s)]ds→ 0 in C([0,b],X) as n→ ∞. (3.13)

Thus, we obtain
xn→ x in C1−α([0,b],X) as n→ ∞.

The proof is complete. �

Theorem 3. If H(T ), H(R), H(F), H(B) and H(U) hold, then the solution set S
of feedback control system 1.1 is nonempty.

Proof. We first consider the multifunction SU : C1−α([0,b],X)→ P (Lp([0,b],V ))
defined by

SU(x) : = {u ∈ Lp([0,b],V ) | u(t) ∈U(t,x(t)) for a.e. t ∈ [0,b]}.

From the Yankov-von Neumann-Aumann selection theorem (see Hu-Papageorgiou
[3, p.158]) and hypotheses H(U), we easily see that SU(x) ∈ P f c(Lp([0,b],V )) for
any x ∈C1−α([0,b],X).



886 R. LUO, L. HOU, AND J. ZHAO

We show that SU is strongly-weakly u.s.c.,i.e., SU is u.s.c. from C1−α([0,b],X) to
w−Lp([0,b],V ). To this end, we need to prove that for any weakly closed set C in
Lp([0,b],V ) the set S−U (C ) is closed in C1−α([0,b],X). Let {xn} ⊂ S−U (C ) be such that

xn→ x in C1−α([0,b],X) for some x ∈C1−α([0,b],X). (3.14)

So, there exists a sequence {un} ⊂ Lp([0,b],V ) with un ∈ SU(xn)∩C for each n ∈ N
such that

un(t) ∈U(t,xn(t)) for a.e. t ∈ [0,b].

Condition H(U)(ii) implies that the sequence {un} is bounded in Lp([0,b],V ). Passing
to a subsequence if necessary, we may assume that

un→ u weakly in Lp([0,b],V ) for some u ∈ Lp([0,b],V ). (3.15)

Applying Mazur Theorem, see e.g. [8, Chapter 2, Corollary 2.8], we have that there
is a sequence ail ≥ 0 with ∑i≥1 ail = 1 such that

ul(·) := ∑
i≥1

ailui+l(·)→ u strongly in Lp([0,b],V ).

Hence, we may assume that

ul(t)→ u(t) in V for a.e. t ∈ [0,b]. (3.16)

Notice that xn→ x in C1−α([0,b],X), we have

t1−αxn(t)→ t1−αx(t) in X for all t ∈ [0,b]. (3.17)

Since x 7→U(t,x) is u.s.c., then for any ε > 0, there exists k > 0 large enough such
that

uk(t) ∈U(t,xk(t))⊂U(t,x(t))+Bε for a.e. t ∈ [0,b],

where Bε is an open ball with radius ε > 0 centered at 0V . So, if l is large enough,
one also has

ul(t) ∈U(t,x(t))+Bε for a.e. t ∈ [0,b],

due to the convexity of U(t,x(t))+Bε. This combined with the convergence (3.16)
deduces

u(t) ∈U(t,x(t))+Bε for a.e. t ∈ [0,b].

Letting ε→ 0, we have

u(t) ∈U(t,x(t)) for a.e. t ∈ [0,b].

Since U has closed values, so, we have u(t)∈U(t,x(t)) =U(t,x(t)) for a.e. t ∈ [0,b].
This means that u ∈ SU(x). But, the weak closedness of C infers that u ∈ C , thus is,
x ∈ S−U (C ). So, SU is u.s.c. from C1−α([0,b],X) to w−Lp([0,b],V ).

Let us consider the multifunction Λ : C1−α([0,b],X)→ 2C1−α([0,b],X) defined by

Λ(x) = S(FB(x)) for all x ∈C1−α([0,b],X), (3.18)
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where S is the solution map defined in Theorem 2 and

FB : C1−α([0,b],X)→ 2Lp([0,b],X)

is given by

FB(x) := {F(·,x(·))+B(·,x(·))u(·) | u ∈ SU(x)} for all x ∈C1−α([0,b],X). (3.19)

It is easy to see that for each g ∈ FB(x), there exist f (t) ∈ F(t,x(t) and u ∈ SU(x)
such that

g(t) = f (t)+B(t,x(t))u(t) for a.e. t ∈ [0,b]
and

‖g(t)‖X = ‖ f (t)+B(t,x(t))u(t)‖X ≤ ‖ f (t)‖X + cB‖u(t)‖V
≤ ϕF(t)+ cFt1−α‖x(t)‖X + cB(aU(t)+ cU t1−α‖x(t)‖X) for a.e. t ∈ [0,b].

Obviously, for each x ∈C1−α([0,b],X), FB(x) is a bounded, closed and convex sub-
set of Lp([0,b],X), due to the closedness and convexity of F(·,x(·)) and SU(x) in
Lp([0,b],X) and Lp([0,b],V ), respectively. Besides, we also say that FB is u.s.c. from
C1−α([0,b],X) to w−Lp([0,b],X). For any weakly closed set D in Lp([0,b],X), let
{xn} ⊂ F −B (D) be such that

xn→ x in C1−α([0,b],X) for some x ∈C1−α([0,b],X).

So, for each n ∈ N, there exist fn(·) ∈ F(·,xn(·)) and un ∈ SU(xn) such that

fn(·)+B(·,xn(·))un(·) ∈D ∩FB(xn).

Conditions H(F)(iii) and H(U)(ii) point out that {F(·,xn(·))} and {un(·)} are
bounded in Lp([0,b],X) and Lp([0,b],V ), respectively. Thus we may assume that
fn ⇀ f and un ⇀ u in Lp([0,b],X) and Lp([0,b],V ),respectively. By H(F)(ii), one
has f (·) ∈ F(·,x(·)). Using the same arguments as the proof of the upper semicon-
tinuity of SU , we obtain u ∈ SU(x). For any y ∈ [Lp([0,b],X)]∗(= Lp′([0,b],X∗)), it
has ∫ b

0
〈B(t,xn(t))un(t),y(t)〉dt =

∫ b

0
〈un(t),B∗(t,xn(t))y(t)〉dt.

The continuity of x 7→ B∗(t,x) and Lebesgue dominated convergence theorem entail

lim
n→∞

∫ b

0
〈B(t,xn(t))un(t),y(t)〉dt = lim

n→∞

∫ b

0
〈un(t), [B∗(t,xn(t))−B∗(t,x(t))]y(t)〉dt

+ lim
n→∞

∫ b

0
〈un(t),B∗(t,x(t))y(t)〉dt

=
∫ b

0
〈u(t),B∗(t,x(t))y(t)〉dt

=
∫ b

0
〈B(t,x(t))u(t),y(t)〉dt,
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so, B(·,xn(·))un(·)→ B(·,x(·))u(·) weakly in Lp([0,b],X). The fact u ∈ SU(x) turns
out f (·) + B(·,x(·))u(·) ∈ FB(x). This combined with the weak closedness of D
implies

f (·)+B(·,x(·))u(·) ∈ FB(x)∩D,

that is, x ∈ F −B (D). So, FB is strongly-weakly u.s.c.
The continuity of S and FB concludes that the multifunction Λ : C1−α([0,b],X)→

2C1−α([0,b],X) is u.s.c. as well (see e.g. [4, Theorem 1.2.8]). Besides, it is easy to prove
that Λ has closed and convex values. Set

B(R1) := {x ∈C1−α([0,b],X) | ‖x(t)‖C1−α([0,b],X) ≤ R1 for all t ∈ [0,b]}. (3.20)

G := {g ∈ Lp([0,b],X) | ‖g(t)‖X ≤ ϕF(t)+ cBaU(t)+(cF + cBcU)R1

for a.e. t ∈ [0,b]} (3.21)

It is easy to see that for each g ∈ FB(x), there exist f (t) ∈ F(t,x(t) and u ∈ SU(x)
such that

g(t) = f (t)+B(t,x(t))u(t) for a.e. t ∈ [0,b].

Now, we prove that Λ maps B(R1) into itself. For any x ∈ B(R1) and y ∈ Λ(x), there
exist f (·) ∈ F(·,x(·)) and u(·) ∈ SU(x) such that y = S( f (·)+B(·,x(·))u(·)), i.e.,

y(t) = Sν,µ(t)x0 +
∫ t

0
(t− s)µ−1Pµ(t− s)[(R y)(s)+ f (s)+B(s,x(s)u(s)]ds.

Using the same arguments in the proof of Proposition 1, we can also show that
‖y(t)‖C1−α([0,b],X) ≤ R1. So, Λ maps B(R1) into itself. Moreover, condition H(U)(ii)
can imply the inclusion F(·,B(R1))+B(·,B(R1))SU(B(R1)) ⊂ G . But, Theorem 2
turns out that the set Λ(B(R1)) is relatively compact in C1−α([0,b],X).

Since all the conditions of Theorem 1 are satisfied, we apply this theorem to con-
clude that Λ has a fixed point, i.e., there exists x ∈ B(R1) such that x ∈ Λ(x). Then,
we can find f (·) ∈ F(·,x(·)),u ∈ SU(x) such that x = Γ( f (·)+B(·,x(·))u(·)), namely,

Dν,µ
t x(t) ∈ Ax(t)+(R x)(t)+F(t,x(t))+B(t,x(t))u(t), t ∈ (0,b],

u(t) ∈U(t, t1−αx(t)), a.e. t ∈ (0,b),
I(1−ν)(1−µ)
0+ x(t) |t=0= x0.

(3.22)

Consequently, (x,u) ∈C1−α([0,b],X)×Lp([0,b],V ) is a solution of feedback control
system 1.1. �

4. EXISTENCE OF OPTIMAL FEEDBACK CONTROL PAIRS

In this section, we study the existence of solutions for the following optimal feed-
back control problem: find (x∗,u∗) ∈ S such that

I(x∗,u∗) = inf
(x,u)∈S

I(x,u), (4.1)
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where S is the collection of all the feasible pairs of feedback control system (1.1) and
I is defined by

I(x,u) =
∫ b

0
h(t,x(t),u(t))dt for all (x,u) ∈C1−α(J,X)×Lp(J,V ).

In the sequel, we need the following hypotheses H(h): h : [0,b]×X×V →R is such
that

(i) for all (x,u) ∈ X×V , the map t 7→ h(t,x,u) is measurable;
(ii) there exist k1,k2 ∈ L1([0,b],R) and ch ≥ 0 such that

|h(t,x,u)| ≤ k1(t)+ k2(t)t1−α‖x‖X + ch‖u‖V
for all (x,u) ∈ X×V and a.e. t ∈ [0,b];

(iii) for each bounded set D ⊂ Lp([0,b],V ), there exists a function
aD ∈ Lp([0,b],R) such that

|h(t,x,u(t))−h(t,y,u(t))| ≤aD(t)t1−α‖x− y‖X

for all x,y ∈ X , u ∈D and a.e. t ∈ [0,b];

(iv) for a.e. t ∈ [0,b] and x ∈ X , the function u 7→ h(t,x,u) is lower semicontinu-
ous and convex.

Theorem 4. If H(T ), H(R), H(F), H(B), H(U) and H(h) hold, then the optimal
feedback control problem (4.1) has at least one solution.

Proof. For any (x,u) ∈ C1−α([0,b],X)×Lp([0,b],V ), using H(h)(ii) and Hölder
inequality, one has

I(x,u) =
∫ b

0
h(t,x(t),u(t))dt

≥−
∫ b

0

(
k1(t)+ k2(t)t1−α‖x(t)‖X + ch‖u(t)‖V

)
dt

≥−(‖k1‖L1 +‖x‖C1−α([0,b],X)‖k2‖L1 + chb1− 1
p ‖u‖Lp([0,b],V )),

which implies that the functional I is bounded from below on S , due to the bounded-
ness of S in C1−α([0,b],X)×Lp([0,b],V ) (recall Proposition 1).

Let {(xn,un)} ⊂ S be a minimizing sequence of optimal feedback control prob-
lem 4.1, i.e.,

inf = lim
n→∞

I(xn,un). (4.2)

For each n ∈ N, there exist fn(·) ∈ F(·,xn(·)), un(·) ∈ SU(xn) such that ∀t ∈ [0,b]

xn(t) = Sν,µ(t)x0 +
∫ t

0
(t− s)µ−1Pµ(t− s)[(R xn)(s)+ fn(s)+B(s,xn(s))un(s)]ds.

(4.3)
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The boundedness of {un}, H(F)(iii) and H(B)(iii) allow us to assume that

un→ u weakly in Lp([0,b],V ) for some u ∈ Lp([0,b],V ) (4.4)

fn→ f weakly in Lp([0,b],X) for some f ∈ Lp([0,b],X) (4.5)

B(·,xn(·))un(·)→ z weakly in Lp([0,b],X) for some z ∈ Lp([0,b],X). (4.6)

However, the continuity of S (see Theorem 2) implies

xn = S( fn(·)+B(·,xn(·))un)→ S( f + z) := x in C1−α([0,b],X).

Obviously, by H(F)(ii), we have

f (t) ∈ F(t,x(t)) a.e. t ∈ [0,b]. (4.7)

We shall show that z = B(·,x(·))u(·). To this end, for any y ∈
(
Lp([0,b],X)

)∗, we
have from H(B)(ii)

lim
n→∞

∫ b

0
〈B(t,xn(t))un(t),y(t)〉X dt =

∫ b

0
〈u(t),B∗(t,S( f + z)(t))y(t)〉dt

=
∫ b

0
〈B(t,S( f + z)(t))u(t),y(t)〉dt.

Hence, B(·,xn(·))un(·) → z = B(t,S( f + z)(·))u(·) = B(t,x(·))u(·) weakly in
Lp([0,b],X). From the definition of S and x = S( f + z), we can see that (x,u) ∈
C1−α([0,b],X)×Lp([0,b],V ) is a solution of feedback control system (1.1), namely,
(x,u) ∈ S .

In what follows, we prove that (x,u) ∈ S is also a solution of optimal feedback
control problem 4.1. Now, we show that u 7→ I(x,u) is weakly lower semicontinuous.

Firstly, we claim that for any x ∈C1−α([0,b],X), u 7→ I(x,u) is convex. In fact, for
any u,v ∈ Lp([0,b],V ) and s ∈ [0,1], we have

I(x,su+(1− s)v) =
∫ b

0
h(t,x(t),su(t)+(1− s)v(t))dt

≤ s
∫ b

0
h(t,x(t),u(t))dt +(1− s)

∫
T

h(t,x(t),v(t))dt

= sI(x,u)+(1− s)I(x,v),

i.e., u 7→ I(x,u) is convex.
Let {un} → u in Lp([0,b],V ) for some u ∈ Lp([0,b],V ). Without any loss of gen-

erality, we may assume that un(t)→ u(t) in V for a.e. t ∈ [0,b]. It follows from
H(h)(iv) and Fatou lemma that

liminf
n→∞

I(x,un) = liminf
n→∞

∫ b

0
h(t,x(t),un(t))dt

≥
∫ b

0
liminf

n→∞
h(t,x(t),un(t))dt ≥

∫ b

0
h(t,x(t),u(t))dt.
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So, u 7→ I(x,u) is l.s.c for any x ∈C1−α([0,b],X). Moreover, it is weakly lower semi-
continuous by the convexity of u 7→ I(x,u).

Let {(xn,un)}⊂C1−α([0,b],X)×Lp([0,b],V ) be such that xn→ x in C1−α([0,b],X)
for some x ∈C1−α([0,b],X) and un ⇀ u in Lp([0,b],V ) for some u ∈ Lp([0,b],V ). It
follows from H(h)(ii), (iii), (iv) and Fatou lemma that

liminf
n→∞

I(xn,un)≥ liminf
n→∞

[I(xn,un)− I(x,un)]+ liminf
n→∞

I(x,un)

≥− limsup
n→∞

∫ b

0
aD(t)t1−α‖xn(t)− x(t)‖X dt + liminf

n→∞
I(x,un)≥ I(x,u),

where the weak lower semicontinuity of u 7→ I(x,u). The above estimates and (4.2)
conclude that inf≤ I(x,u)≤ liminfn→∞ I(xn,un)= inf, due to (x,u)∈ S . So, (x,u)∈ S
is also a solution of optimal feedback control problem 4.1. �
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