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Abstract. We have established this paper on m−convex functions, which can be expressed as
a general form of the convex function concept. First of all, some inequalities of Hadamard
type are proved with fairly simple conditions. Next, an integral identity containing Atangana-
Baleanu fractional integral operators is obtained to prove new inequalities for differentiable m-
convex functions. Using this identity, various properties of m−convex functions and classical
inequalities, some new integral inequalities have been proved.
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1. INTRODUCTION

Although the definition of convex functions has an aesthetic form due to its algeb-
raic and geometric structure, it has been an important place in mathematical analysis
with its applications in many fields. Several modified versions and variants of convex
functions have been established, which have become the center of consideration of
researchers in many branches of applied sciences, especially in areas such as statist-
ics, numerical analysis, convex programming and approximation theory.

The definition of m−convex function, which is one of these general forms, is given
as follows.

Definition 1. [30] The function ϒ : [0,b]→ R is said to be m-convex m ∈ [0,1], if
for every x1,x2 ∈ [0,b] and τ ∈ [0,1], we have

ϒ(τx1 +m(1− τ)x2)≤ τϒ(x1)+m(1− τ)ϒ(x2).

Let us recall what important results were obtained in some of the basic studies
available in the literature for m-convex functions. In the study presented in [12],
firstly some basic properties of m-convex functions are given; then, results including
Hermite-Hadamard inequality for m-convex functions are obtained by Dragomir. In
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[29], Set et al. gave place to two basic theorems for m-convex functions involving
fractional integrals. While the first of these basic results is a Hermite-Hadamard type
result obtained via fractional integrals for m-convex functions; the second theorem
pays attention to an inequality obtained including fractional integrals for a new func-
tion defined with the help of an m-convex function. In [22], Mehreen and Anwar
generalized the inequality obtained by Set et al. for a new function defined by m-
convex function via Katugampola fractional integrals. In [21], addition to the results
including Hermite-Hadamard inequality for m-convex and (α,m)-convex functions,
Klaričić Bakula et al. have also obtained inequalities for the product of m-convex
functions and the product of (α,m) -convex functions. In [8], Chen generalized the
results on the product of two m-convex functions and the product of two (α,m)-
convex functions of Klaričić Bakula et al. with the help of Riemann-Liouville frac-
tional integrals. Different from the above definition, in [25] Pavić and Avcı Ardıç
obtained interesting results for m-convex functions by using the intervals of real
numbers that contain zero. For other results obtained on m-convex functions, see
the references in [6], [14] and [24].

Mathematics is a language that explains nature and events and is as old and ancient
as the history of humanity. The adventure, which started with simple calculations
based on classical analysis, continued towards more advanced problems with the in-
creasing needs of humanity. New orientations in mathematics were needed because
it was insufficient to explain real world problems, physical phenomena and the infra-
structure that would form the basis of engineering sciences with classical analysis.
At this point, the orientation of mathematicians has been towards fractional analysis.
Because it is known that fractional analysis produces more effective results for the
solutions of differential equation systems and differs from classical analysis in terms
of memory effect.

The development in fractional analysis has gained momentum with the definition
of fractional derivative operators and associated integral operators. New operators are
changing with the structural differences in their core structures and their effectiveness
in the application areas, and each new fractional operator has brought a new approach
method to the field. Especially the operators defined by strong kernels with non-local
and non-singular properties have been preferred by mathematicians. To provide more
information related to new fractional operators, integral inequalities and applications,
see the papers [2–4, 7, 9–11, 13, 15–20, 23] and [26–29].

Now, recall the Atangana-Baleanu fractional integral operators associated with the
fractional derivative described with a kernel structure containing the Mittag-Leffler
function.

Definition 2. [5] The fractional integral associate to the new fractional derivative
with non-local kernel of a function ϒ ∈ H1(x1,x2) as defined:

AB
x1

Iα
t {ϒ(t)}=

1−α

B(α)
ϒ(t)+

α

B(α)Γ(α)

∫ t

x1

ϒ(u)(t−u)α−1du
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where x2 > x1,α ∈ [0,1], B(α) is normalization function.

In [1], the authors have given the right hand side of integral operator as following;(ABIα
x2

)
{ϒ(t)}= 1−α

B(α)
ϒ(t)+

α

B(α)Γ(α)

∫ x2

t
ϒ(u)(u− t)α−1du.

Here, Γ(α) is the Gamma function. Since the normalization function B(α) is posit-
ive, it immediately follows that the fractional AB−integral of a positive function is
positive. It should be noted that, when the order α −→ 1, we recover the classical
integral. Also, the initial function is recovered whenever the fractional order α−→ 0.

The paper is organized as follows: In section 2, some new integral inequalities
have been derived via Atangana-Baleanu fractional integrals for m−convex func-
tions. In section 3, a new integral identity containing Atangana-Baleanu fractional
integrals as well as generalizations of some integral inequalities available in the liter-
ature for m−convex functions has been proved. Besides, some new Hadamard type
integral inequalities based on this integral identity are given.

2. INEQUALITIES FOR m-CONVEX FUNCTIONS WITHOUT USING THEIR
DERIVATIVES

In this section, we will first give the inequalities that we have obtained without
using the derivative of a function that is m−convex. Next, we have established some
new inequalities for the product of two m−convex functions. Of course, let’s state
once again that we make use of the Atangana-Baleanu integral operator while obtain-
ing these results.

Theorem 1. Let 0 ≤ x1 < x2
m , ξ,m ∈ (0,1] and ϒ : [0,∞) −→ R be an m-convex

function. If ϒ ∈ L[x1,
x2
m ], we have the following

1
(x2− x1)ξ

(
AB
x1

Iξ
x2
{ϒ(x2)}

)
≤ ξ

B(ξ)Γ(ξ)

[
ϒ(x1)

ξ+1
+

mϒ
( x2

m

)
ξ(ξ+1)

]
+

1−ξ

(x2− x1)ξB(ξ)
ϒ(x2)

(2.1)
and

1
(x2− x1)ξ

(
ABIξ

x2
{ϒ(x1)}

)
≤ ξ

B(ξ)Γ(ξ)

[
ϒ(x2)

ξ+1
+

mϒ
( x1

m

)
ξ(ξ+1)

]
+

1−ξ

(x2− x1)ξB(ξ)
ϒ(x1).

(2.2)

Proof. Let us consider the definition of the m-convex function, we can write for
all τ ∈ [0,1]

ϒ(τx1 +(1− τ)x2)≤ τϒ(x1)+m(1− τ)ϒ
(x2

m

)
(2.3)

and
ϒ(τx2 +(1− τ)x1)≤ τϒ(x2)+m(1− τ)ϒ

(x1

m

)
. (2.4)
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If we multiply both sides of (2.3) by τξ−1, and integrate the resulting inequality
over [0,1] with respect to τ, we get∫ 1

0
τ

ξ−1
ϒ(τx1 +(1− τ)x2)dτ (2.5)

≤
∫ 1

0
τ

ξ−1
(

τϒ(x1)+m(1− τ)ϒ
(x2

m

))
dτ =

ϒ(x1)

ξ+1
+

mϒ
( x2

m

)
ξ(ξ+1)

.

If appropriate variable changing is made for the left hand side of the above inequality,
we obtain∫ 1

0
τ

ξ−1
ϒ(τx1 +(1− τ)x2)dτ =

1
(x2− x1)ξ

∫ x2

x1

(x2− y)ξ−1
ϒ(y)dy. (2.6)

Substituting the equation in (2.6) for the inequality in (2.5), then multiplying the
two sides of the inequality by ξ

B(ξ)Γ(ξ) and adding by 1−ξ

(x2−x1)ξB(ξ)
ϒ(x2) we get the

inequality in (2.1).
Similar steps are followed to obtain the inequality in (2.2). First, we multiply both

sides of (2.4) by τξ−1, and integrate the resulting inequality over [0,1] . After these
operations, if we multiply the two sides of the last inequality by ξ

B(ξ)Γ(ξ) and add by
1−ξ

(x2−x1)ξB(ξ)
ϒ(x1), we obtain the inequality in (2.2). �

Remark 1. In inequalities (2.1) and (2.2), if we choose ξ = 1 and evaluate the
obtained inequalities together, we achieve Theorem 2 of Dragomir’s paper as in [12].

Theorem 2. Let 0 ≤ x1 < x2, ξ,m ∈ (0,1] and ϒ : [0,∞) −→ R be an m-convex
function. If ϒ ∈ L[mx1,x2], we have the following inequality

1
(mx2− x1)ξ

[
AB
x1

Iξ
mx2
{ϒ(mx2)}+AB Iξ

mx2
{ϒ(x1)}

]
(2.7)

+
1

(x2−mx1)ξ

[
ABIξ

x2
{ϒ(mx1)}+AB

mx1
Iξ
x2
{ϒ(x2)}

]
≤ m+1

B(ξ)Γ(ξ)
(ϒ(x1)+ϒ(x2))+

1−ξ

(mx2− x1)ξB(ξ)
(ϒ(x1)+ϒ(mx2))

+
1−ξ

(x2−mx1)ξB(ξ)
(ϒ(mx1)+ϒ(x2)) .

Proof. For the proof, we will basically make use of the m−convex function defin-
ition and the definition of Atangana-Baleanu fractional integral oprator. If we use the
definition of m-convex function, we can write for all τ ∈ [0,1] and x1,x2 ∈ [0,∞)

ϒ(τx1 +m(1− τ)x2)≤ τϒ(x1)+m(1− τ)ϒ(x2) ,

ϒ((1− τ)x1 +mτx2)≤ (1− τ)ϒ(x1)+mτϒ(x2) ,

ϒ(τx2 +m(1− τ)x1)≤ τϒ(x2)+m(1− τ)ϒ(x1)
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and
ϒ((1− τ)x2 +mτx1)≤ (1− τ)ϒ(x2)+mτϒ(x1) .

If we add these four inequalities above, multiply both sides of the new inequality by
τξ−1 and integrate the last inequality over [0,1] with respect to τ, we obtain∫ 1

0
τ

ξ−1
ϒ(τx1 +m(1− τ)x2)dτ+

∫ 1

0
τ

ξ−1
ϒ((1− τ)x1 +mτx2)dτ (2.8)

+
∫ 1

0
τ

ξ−1
ϒ(τx2 +m(1− τ)x1)dτ+

∫ 1

0
τ

ξ−1
ϒ((1− τ)x2 +mτx1)dτ

≤ (m+1)
ξ

(ϒ(x1)+ϒ(x2)) .

Here, following equalities hold:∫ 1

0
τ

ξ−1
ϒ(τx1 +m(1− τ)x2)dτ =

1
(mx2− x1)ξ

∫ mx2

x1

(mx2− y)ξ−1
ϒ(y)dy,∫ 1

0
τ

ξ−1
ϒ((1− τ)x1 +mτx2)dτ =

1
(mx2− x1)ξ

∫ mx2

x1

(y− x1)
ξ−1

ϒ(y)dy,∫ 1

0
τ

ξ−1
ϒ(τx2 +m(1− τ)x1)dτ =

1
(x2−mx1)ξ

∫ x2

mx1

(y−mx1)
ξ−1

ϒ(y)dy

and ∫ 1

0
τ

ξ−1
ϒ((1− τ)x2 +mτx1)dτ =

1
(x2−mx1)ξ

∫ x2

mx1

(x2− y)ξ−1
ϒ(y)dy.

Here, if we take these equations into account in (2.8) and firstly multiply both sides of
the inequality by ξ

B(ξ)Γ(ξ) and secondly add the terms 1−ξ

(mx2−x1)ξB(ξ)
(ϒ(x1)+ϒ(mx2)),

1−ξ

(x2−mx1)ξB(ξ)
(ϒ(mx1)+ϒ(x2)) to both sides of the resulting inequality, we obtain the

inequality in (2.7). �

Remark 2. In (2.7), if we choose ξ = 1, we achieve Theorem 5 in [12].

Theorem 3. Assume that the assumptions given in the Theorem 1 are valid. Then,
we have the following inequalities:

ϒ
( x1+x2

2

)
B(ξ)Γ(ξ)

+
1−ξ

2(x2− x1)ξB(ξ)
ϒ(x2)+

mξ+1 (1−ξ)

2(x2− x1)ξB(ξ)
ϒ

(x1

m

)
(2.9)

≤ 1
2(x2− x1)ξ

[
AB
x1

Iξ
x2
{ϒ(x2)}+m(ξ+1)ABIξ

x2
m

{
ϒ

(x1

m

)}]
≤ ξ

2B(ξ)Γ(ξ)

[
ϒ(x1)+m2ϒ

( x2
m2

)
ξ+1

+
m
(
ϒ
( x2

m

)
+ϒ

( x1
m

))
ξ(ξ+1)

]
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+
1−ξ

2(x2− x1)ξB(ξ)
ϒ(x2)+

mξ+1 (1−ξ)ϒ
( x1

m

)
2(x2− x1)ξB(ξ)

.

Proof. Since ϒ is m-convex function, we can write w1 = τx1 +(1− τ)x2 and w2 =
(1− τ)x1 + τx2 in the inequality

ϒ

(
w1 +w2

2

)
≤ 1

2

(
ϒ(w1)+mϒ

(w2

m

))
where all w1 and w2 belongs to [0,∞), we get

ϒ

(
x1 + x2

2

)
≤ 1

2

[
ϒ(τx1 +(1− τ)x2)+mϒ

(
(1− τ)x1 + τx2

m

)]
. (2.10)

If we multiply both sides of (2.10) by τξ−1, and integrate the resulting inequality over
[0,1] with respect to τ, we get

1
ξ

ϒ

(
x1 + x2

2

)
(2.11)

≤ 1
2(x2− x1)ξ

[∫ x2

x1

(x2− y)ξ−1
ϒ(y)dy+mξ+1

∫ x2
m

x1
m

(
y− x1

m

)ξ−1
ϒ(y)dy

]
.

If we multiply both sides of the inequality in (2.11) by ξ

B(ξ)Γ(ξ) and add the terms
1−ξ

2(x2−x1)ξB(ξ)
ϒ(x2) and mξ+1(1−ξ)

2(x2−x1)ξB(ξ)
ϒ( x1

m ) to both sides of the resulting inequality, we
obtain the first inequality in (2.9).

We will follow a similar method to prove the second inequality in (2.9). Since ϒ

is m-convex function, we can write
1
2

[
ϒ(τx1 +(1− τ)x2)+mϒ

(
(1− τ)x1 + τx2

m

)]
≤ 1

2

[
τϒ(x1)+m(1− τ)ϒ

(x2

m

)
+m

(
(1− τ)ϒ

(x1

m

)
+mτϒ

( x2

m2

))]
.

After multiplying both sides of the above inequality by τξ−1, and integrating the
resulting inequality over [0,1] with respect to τ, if we multiply by ξ

B(ξ)Γ(ξ) both sides

of the last inequality and add the terms 1−ξ

2(x2−x1)ξB(ξ)
ϒ(x2) and mξ+1(1−ξ)

2(x2−x1)ξB(ξ)
ϒ( x1

m ), we
deduce the second inequality in (2.9). �

Remark 3. In (2.9), if we choose ξ = 1, we achieve a result similar to the result in
Theorem 4 in [12].

Theorem 4. Under the assumptions of Theorem 1, let us define the mapping
Ψ(w1,w2)(τ) : [0,1]→ R,

Ψ(w1,w2)(τ) =
1
2
[ϒ(τw1 +m(1− τ)w2)+ϒ((1− τ)w1 +mτw2)] .
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We have for all τ ∈ [0,1]

ξ

B(ξ)Γ(ξ)(x2− x1)ξ

∫ x2

x1

(x2− y)ξ−1
Ψ

(
y,

x1 + x2

2

)
(

x2−y
x2−x1

) dy (2.12)

≤ 1
2(x2− x1)ξ

(
AB
x1

Iξ
x2
{ϒ(x2)}

)
+

m
2B(ξ)Γ(ξ)

ϒ

(
x1 + x2

2

)
− 1−ξ

2(x2− x1)ξB(ξ)
ϒ(x2).

Proof. Considering that ϒ is m-convex function, we can write

Ψ(w1,w2)(τ) ≤
1
2
[τϒ(w1)+m(1− τ)ϒ(w2)+(1− τ)ϒ(w1)+mτϒ(w2)]

=
1
2
[ϒ(w1)+mϒ(w2)]

and

Ψ

(
w1,

x1 + x2

2

)
(τ)

≤ 1
2

[
ϒ(w1)+mϒ

(
x1 + x2

2

)]
. (2.13)

If we write w1 = τx1 +(1− τ)x2 in the equation (2.13), and after that if we multiply
the both sides of resulting inequality with τξ−1 and integrate the last inequality over
[0,1], we have

1
(x2− x1)ξ

∫ x2

x1

(x2− y)ξ−1
Ψ

(
y,

x1 + x2

2

)
(

x2−y
x2−x1

) dy (2.14)

≤ 1
2(x2− x1)ξ

∫ x2

x1

(x2− y)ξ−1
ϒ(y)dy+

m
2ξ

ϒ

(
x1 + x2

2

)
.

To complete the proof, we must multiply the inequality in (2.14) by ξ

B(ξ)Γ(ξ) and we

must add 1−ξ

2(x2−x1)ξB(ξ)
ϒ(x2). So we obtain the requested result. �

Remark 4. In (2.12), if we choose ξ = 1, we achieve the α = 1 special case of the
inequality in Theorem 6 given by Set et al. in [29].

Theorem 5. Let 0 ≤ x1 < x2, and ϒ,Ω : [0,∞)→ [0,∞) be functions such that
ϒΩ ∈ L[x1,x2]. If ϒ and Ω are m1-convex and m2-convex on [x1,x2] respectively with
m1,m2 ∈ (0,1] we obtain

1
(x2− x1)ξ

(
AB
x1

Iξ
x2
{(ϒΩ)(x2)}

)
≤ ξ

B(ξ)Γ(ξ)

[
ϒ(x1)Ω(x1)

ξ+2
(2.15)

+

(
m2ϒ(x1)Ω

(
x2

m2

)
+m1Ω(x1)ϒ

(
x2

m1

))
1

(ξ+1)(ξ+2)

]
+

2m1m2

B(ξ)Γ(ξ)(ξ+1)(ξ+2)
ϒ

(
x2

m1

)
Ω

(
x2

m2

)
+

1−ξ

(x2− x1)ξB(ξ)
(ϒΩ)(x2)
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and
1

(x2− x1)ξ

(
ABIξ

x2
{(ϒΩ)(x1)}

)
≤ ξ

B(ξ)Γ(ξ)

[
ϒ(x2)Ω(x2)

ξ+2
(2.16)

+

(
m2ϒ(x2)Ω

(
x1

m2

)
+m1Ω(x2)ϒ

(
x1

m1

))
1

(ξ+1)(ξ+2)

]
+

2m1m2

B(ξ)Γ(ξ)(ξ+1)(ξ+2)
ϒ

(
x1

m1

)
Ω

(
x1

m2

)
+

1−ξ

(x2− x1)ξB(ξ)
(ϒΩ)(x1)

where ξ ∈ (0,1].

Proof. We will start by proving the inequality in the equation (2.15). In the hy-
pothesis of the Theorem 5, it is given that the functions ϒ and Ω are m1-convex and
m2-convex on [x1,x2] respectively. So, we can write

ϒ(τx1 +(1− τ)x2)≤ τϒ(x1)+m1(1− τ)ϒ

(
x2

m1

)
(2.17)

and

Ω(τx1 +(1− τ)x2)≤ τΩ(x1)+m2(1− τ)Ω

(
x2

m2

)
. (2.18)

If we multiply (2.17) and (2.18), we obtain

ϒ(τx1 +(1− τ)x2)Ω(τx1 +(1− τ)x2)≤ τ
2
ϒ(x1)Ω(x1) (2.19)

+ τ(1− τ)m2ϒ(x1)Ω

(
x2

m2

)
+ τ(1− τ)m1Ω(x1)ϒ

(
x2

m1

)
+(1− τ)2m1m2ϒ

(
x2

m1

)
Ω

(
x2

m2

)
.

After multiplying both sides of (2.19) by τξ−1, and integrating the resulting inequality
over [0,1] with respect to τ, if we multiply both sides of the last inequality by ξ

B(ξ)Γ(ξ)

and add the term 1−ξ

(x2−x1)ξB(ξ)
(ϒΩ)(x2) we complete the proof of the inequality in the

equation (2.15).
Secondly, to prove the inequality in the equation (2.16), one can reach the result

by using the method similar to the proof of the first inequality for the product of the
following inequalities:

ϒ(τx2 +(1− τ)x1)≤ τϒ(x2)+m1(1− τ)ϒ

(
x1

m1

)
and

Ω(τx2 +(1− τ)x1)≤ τΩ(x2)+m2(1− τ)Ω

(
x1

m2

)
.

Based on the above estimates, we can easily obtain the desired results. �
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Corollary 1. If we choose m1 = m2 = 1 in Theorem 5, we have the following
inequalities

1
(x2− x1)ξ

(
AB
x1

Iξ
x2
{(ϒΩ)(x2)}

)
≤ ξ

B(ξ)Γ(ξ)

[
ϒ(x1)Ω(x1)

ξ+2

+(ϒ(x1)Ω(x2)+Ω(x1)ϒ(x2))
1

(ξ+1)(ξ+2)

]
+

2
B(ξ)Γ(ξ)(ξ+1)(ξ+2)

ϒ(x2)Ω(x2)+
1−ξ

(x2− x1)ξB(ξ)
(ϒΩ)(x2)

and

1
(x2− x1)ξ

(
ABIξ

x2
{(ϒΩ)(x1)}

)
≤ ξ

B(ξ)Γ(ξ)

[
ϒ(x2)Ω(x2)

ξ+2

+(ϒ(x2)Ω(x1)+Ω(x2)ϒ(x1))
1

(ξ+1)(ξ+2)

]
+

2
B(ξ)Γ(ξ)(ξ+1)(ξ+2)

ϒ(x1)Ω(x1)+
1−ξ

(x2− x1)ξB(ξ)
(ϒΩ)(x1)

where ϒ and Ω are convex functions on [0,∞).

Remark 5. In inequalities (2.15) and (2.16), if we choose ξ = 1 and evaluate the
obtained inequalities together, we achieve Theorem 2.4 in [21].

3. HERMITE-HADAMARD TYPE INEQUALITIES FOR m-CONVEX FUNCTIONS VIA
ATANGANA-BALEANU INTEGRAL OPERATORS

The lemma containing the Atangana-Baleanu integral operator below incorporates
the left side of the Hermite-Hadamard inequality.

Lemma 1. Let x1 < x2, x1,x2 ∈ J◦and ϒ : J ⊂ R −→ R be a differentiable func-
tion on J◦. If ϒ′ ∈ L[x1,mx2], identity for Atangana-Baleanu integral operators in
equation (3.1) is valid for all τ,ξ ∈ [0,1] and m ∈ (0,1]

AB
x1+mx2

2
Iξ
mx2
{ϒ(mx2)}+AB Iξ

x1+mx2
2
{ϒ(x1)} (3.1)

− (mx2− x1)
ξ

2ξ−1B(ξ)Γ(ξ)
ϒ

(
x1 +mx2

2

)
− 1−ξ

B(ξ)
[ϒ(x1)+ϒ(mx2)]

=
(mx2− x1)

ξ+1

B(ξ)Γ(ξ)

{∫ 1
2

0
τ

ξ
ϒ
′(τx1 +m(1− τ)x2)dτ

−
∫ 1

1
2

(1− τ)ξ
ϒ
′(τx1 +m(1− τ)x2)dτ

}
.
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Proof. By making use of integration by parts, we can write

(mx2− x1)
ξ+1

B(ξ)Γ(ξ)

∫ 1
2

0
τ

ξ
ϒ
′(τx1 +m(1− τ)x2)dτ (3.2)

=
(mx2− x1)

ξ+1

B(ξ)Γ(ξ)

[
τ

ξ ϒ(τx1 +m(1− τ)x2)

x1−mx2

∣∣∣∣ 1
2

0
−

∫ 1
2

0
ξτ

ξ−1 ϒ(τx1 +m(1− τ)x2)

x1−mx2
dτ

]

=−(mx2− x1)
ξ

2ξB(ξ)Γ(ξ)
ϒ

(
x1 +mx2

2

)
+

ξ

B(ξ)Γ(ξ)

∫ mx2

x1+mx2
2

(mx2− y)ξ−1
ϒ(y)dy

and

− (mx2− x1)
ξ+1

B(ξ)Γ(ξ)

∫ 1

1
2

(1− τ)ξ
ϒ
′(τx1 +m(1− τ)x2)dτ (3.3)

=−(mx2− x1)
ξ+1

B(ξ)Γ(ξ)

[
(1− τ)ξ ϒ(τx1 +m(1− τ)x2)

x1−mx2

∣∣∣∣1
1
2

+
∫ 1

1
2

ξ(1− τ)ξ−1 ϒ(τx1 +m(1− τ)x2)

x1−mx2
dτ

]
=−(mx2− x1)

ξ

2ξB(ξ)Γ(ξ)
ϒ

(
x1 +mx2

2

)
+

ξ

B(ξ)Γ(ξ)

∫ x1+mx2
2

x1

(y− x1)
ξ−1

ϒ(y)dy.

If we add (3.2) and (3.3), and then by adding 1−ξ

B(ξ)ϒ(x1)+
1−ξ

B(ξ)ϒ(mx2) to two sides of
resulting equality, we complete the proof of Lemma 1. �

Theorem 6. Let x1 < x2, x1,x2 ∈ J◦and ϒ : J ⊂ [0,∞) −→ R be a differentiable
function on J◦ and ϒ′ ∈ L[x1,mx2]. If |ϒ′| is an m-convex function on [x1,x2], following
inequality is achieved∣∣∣∣AB

x1+mx2
2

Iξ
mx2
{ϒ(mx2)}+AB Iξ

x1+mx2
2
{ϒ(x1)}

− (mx2− x1)
ξ

2ξ−1B(ξ)Γ(ξ)
ϒ

(
x1 +mx2

2

)
− 1−ξ

B(ξ)
[ϒ(x1)+ϒ(mx2)]

∣∣∣∣∣
≤ (mx2− x1)

ξ+1

B(ξ)Γ(ξ)

(
1

2ξ+1 (ξ+1)

)(∣∣ϒ′(x1)
∣∣+m

∣∣ϒ′(x2)
∣∣)

for all ξ ∈ [0,1] and m ∈ (0,1].

Proof. By using the equality in (3.1), property of modulus, we have∣∣∣∣AB
x1+mx2

2
Iξ
mx2
{ϒ(mx2)}+AB Iξ

x1+mx2
2
{ϒ(x1)}
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− (mx2− x1)
ξ

2ξ−1B(ξ)Γ(ξ)
ϒ

(
x1 +mx2

2

)
− 1−ξ

B(ξ)
[ϒ(x1)+ϒ(mx2)]

∣∣∣∣∣
≤ (mx2− x1)

ξ+1

B(ξ)Γ(ξ)

{∫ 1
2

0
τ

ξ
∣∣ϒ′(τx1 +m(1− τ)x2)

∣∣dτ

+
∫ 1

1
2

(1− τ)ξ
∣∣ϒ′(τx1 +m(1− τ)x2)

∣∣dτ

}
.

By applying m-convexity of |ϒ′|, we obtain∣∣∣∣AB
x1+mx2

2
Iξ
mx2
{ϒ(mx2)}+AB Iξ

x1+mx2
2
{ϒ(x1)}

− (mx2− x1)
ξ

2ξ−1B(ξ)Γ(ξ)
ϒ

(
x1 +mx2

2

)
− 1−ξ

B(ξ)
[ϒ(x1)+ϒ(mx2)]

∣∣∣∣∣
≤ (mx2− x1)

ξ+1

B(ξ)Γ(ξ)

{∫ 1
2

0
τ

ξ
[
τ
∣∣ϒ′ (x1)

∣∣+m(1− τ)
∣∣ϒ′ (x2)

∣∣]dτ

+
∫ 1

1
2

(1− τ)ξ
[
τ
∣∣ϒ′ (x1)

∣∣+m(1− τ)
∣∣ϒ′ (x2)

∣∣]dτ

}
.

We complete the proof by making the necessary calculations in above. �

Theorem 7. Let x1 < x2, x1,x2 ∈ J◦and ϒ : J ⊂ [0,∞) −→ R be a differentiable
function on J◦ and ϒ′ ∈ L[x1,mx2]. If |ϒ′|q is an m-convex function on [x1,x2], follow-
ing inequality is achieved for all ξ ∈ [0,1] and m ∈ (0,1]∣∣∣∣AB

x1+mx2
2

Iξ
mx2
{ϒ(mx2)}+AB Iξ

x1+mx2
2
{ϒ(x1)}

− (mx2− x1)
ξ

2ξ−1B(ξ)Γ(ξ)
ϒ

(
x1 +mx2

2

)
− 1−ξ

B(ξ)
[ϒ(x1)+ϒ(mx2)]

∣∣∣∣∣
≤ (mx2− x1)

ξ+1

B(ξ)Γ(ξ)

(
1

2ξ+1 (ξ+1)

) 1
p

×

{(
1

2ξ+2 (ξ+2)

∣∣ϒ′(x1)
∣∣q + m(ξ+3)

2ξ+2 (ξ+1)(ξ+2)

∣∣ϒ′(x2)
∣∣q) 1

q

+

(
(ξ+3)

2ξ+2 (ξ+1)(ξ+2)

∣∣ϒ′(x1)
∣∣q + m

2ξ+2 (ξ+2)

∣∣ϒ′(x2)
∣∣q) 1

q
}

where q > 1 and 1
p +

1
q = 1.
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Proof. If we use Hölder inequality, we have∣∣∣∣AB
x1+mx2

2
Iξ
mx2
{ϒ(mx2)}+AB Iξ

x1+mx2
2
{ϒ(x1)}

− (mx2− x1)
ξ

2ξ−1B(ξ)Γ(ξ)
ϒ

(
x1 +mx2

2

)
− 1−ξ

B(ξ)
[ϒ(x1)+ϒ(mx2)]

∣∣∣∣∣
≤ (mx2− x1)

ξ+1

B(ξ)Γ(ξ)


(∫ 1

2

0
τ

ξdτ

) 1
p
(∫ 1

2

0
τ

ξ
∣∣ϒ′(τx1 +m(1− τ)x2)

∣∣q dτ

) 1
q

+

(∫ 1

1
2

(1− τ)ξ dτ

) 1
p
(∫ 1

1
2

(1− τ)ξ
∣∣ϒ′(τx1 +m(1− τ)x2)

∣∣q dτ

) 1
q
}
.

By using m-convexity of |ϒ′|q , we get∣∣∣∣AB
x1+mx2

2
Iξ
mx2
{ϒ(mx2)}+AB Iξ

x1+mx2
2
{ϒ(x1)}

− (mx2− x1)
ξ

2ξ−1B(ξ)Γ(ξ)
ϒ

(
x1 +mx2

2

)
− 1−ξ

B(ξ)
[ϒ(x1)+ϒ(mx2)]

∣∣∣∣∣
≤ (mx2− x1)

ξ+1

B(ξ)Γ(ξ)


(∫ 1

2

0
τ

ξdτ

) 1
p
(∫ 1

2

0
τ

ξ
[
τ
∣∣ϒ′ (x1)

∣∣q +m(1− τ)
∣∣ϒ′ (x2)

∣∣q]dτ

) 1
q

+

(∫ 1

1
2

(1− τ)ξ dτ

) 1
p
(∫ 1

1
2

(1− τ)ξ
[
τ
∣∣ϒ′ (x1)

∣∣q +m(1− τ)
∣∣ϒ′ (x2)

∣∣q]dτ

) 1
q
}
.

If we calculate the integrals above, we have the desired result. �

Theorem 8. Suppose that the assumptions given in the Theorem 7 are valid. Then,
we have the following inequality:∣∣∣∣AB

x1+mx2
2

Iξ
mx2
{ϒ(mx2)}+AB Iξ

x1+mx2
2
{ϒ(x1)}

− (mx2− x1)
ξ

2ξ−1B(ξ)Γ(ξ)
ϒ

(
x1 +mx2

2

)
− 1−ξ

B(ξ)
[ϒ(x1)+ϒ(mx2)]

∣∣∣∣∣
≤ (mx2− x1)

ξ+1

B(ξ)Γ(ξ)

(
1

2ξp+1 (ξp+1)

) 1
p

×

[(
|ϒ′(x1)|q +3m |ϒ′(x2)|q

8

) 1
q

+

(
3 |ϒ′(x1)|q +m |ϒ′(x2)|q

8

) 1
q
]
.
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Proof. By Hölder’s inequality in a different variant, we can write∣∣∣∣AB
x1+mx2

2
Iξ
mx2
{ϒ(mx2)}+AB Iξ

x1+mx2
2
{ϒ(x1)}

− (mx2− x1)
ξ

2ξ−1B(ξ)Γ(ξ)
ϒ

(
x1 +mx2

2

)
− 1−ξ

B(ξ)
[ϒ(x1)+ϒ(mx2)]

∣∣∣∣∣
≤ (mx2− x1)

ξ+1

B(ξ)Γ(ξ)


(∫ 1

2

0
τ

ξpdτ

) 1
p
(∫ 1

2

0

∣∣ϒ′(τx1 +m(1− τ)x2)
∣∣q dτ

) 1
q

+

(∫ 1

1
2

(1− τ)ξp dτ

) 1
p
(∫ 1

1
2

∣∣ϒ′(τx1 +m(1− τ)x2)
∣∣q dτ

) 1
q
}

By taking into account the m-convexity of |ϒ′|q, we have∣∣∣∣AB
x1+mx2

2
Iξ
mx2
{ϒ(mx2)}+AB Iξ

x1+mx2
2
{ϒ(x1)}

− (mx2− x1)
ξ

2ξ−1B(ξ)Γ(ξ)
ϒ

(
x1 +mx2

2

)
− 1−ξ

B(ξ)
[ϒ(x1)+ϒ(mx2)]

∣∣∣∣∣
≤ (mx2− x1)

ξ+1

B(ξ)Γ(ξ)


(∫ 1

2

0
τ

ξpdτ

) 1
p
(∫ 1

2

0

[
τ
∣∣ϒ′ (x1)

∣∣q +m(1− τ)
∣∣ϒ′ (x2)

∣∣q]dτ

) 1
q

+

(∫ 1

1
2

(1− τ)ξp dτ

) 1
p
(∫ 1

1
2

[
τ
∣∣ϒ′ (x1)

∣∣q +m(1− τ)
∣∣ϒ′ (x2)

∣∣q]dτ

) 1
q
}
.

We complete the proof by calculating the integrals. �

Theorem 9. Assume that the assumptions given in the Theorem 7 are valid. Then,
we have the following inequality:∣∣∣∣AB

x1+mx2
2

Iξ
mx2
{ϒ(mx2)}+AB Iξ

x1+mx2
2
{ϒ(x1)}

− (mx2− x1)
ξ

2ξ−1B(ξ)Γ(ξ)
ϒ

(
x1 +mx2

2

)
− 1−ξ

B(ξ)
[ϒ(x1)+ϒ(mx2)]

∣∣∣∣∣
≤ (mx2− x1)

ξ+1

B(ξ)Γ(ξ)

(
q−1

2ξ( q−p
q−1 )+1 (ξ(q− p)+q−1)

) 1
p

×

{(
1

2ξp+2 (ξp+2)

∣∣ϒ′(x1)
∣∣q + m(ξp+3)

2ξp+2 (ξp+1)(ξp+2)

∣∣ϒ′(x2)
∣∣q) 1

q
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+

(
(ξp+3)

2ξp+2 (ξp+1)(ξp+2)

∣∣ϒ′(x1)
∣∣q + m

2ξp+2 (ξp+2)

∣∣ϒ′(x2)
∣∣q) 1

q
}

where q≥ p > 1.

Proof. Applying by different way of Hölder inequality, we have∣∣∣∣AB
x1+mx2

2
Iξ
mx2
{ϒ(mx2)}+AB Iξ

x1+mx2
2
{ϒ(x1)}

− (mx2− x1)
ξ

2ξ−1B(ξ)Γ(ξ)
ϒ

(
x1 +mx2

2

)
− 1−ξ

B(ξ)
[ϒ(x1)+ϒ(mx2)]

∣∣∣∣∣
≤ (mx2− x1)

ξ+1

B(ξ)Γ(ξ)


(∫ 1

2

0
τ

ξ( q−p
q−1 )dτ

) 1
p (∫ 1

2

0
τ

ξp
∣∣ϒ′(τx1 +m(1− τ)x2)

∣∣q dτ

) 1
q

+

(∫ 1

1
2

(1− τ)ξ( q−p
q−1 )dτ

) 1
p (∫ 1

1
2

(1− τ)ξp
∣∣ϒ′(τx1 +m(1− τ)x2)

∣∣q dτ

) 1
q

 .

If we use m-convexity of |ϒ′|q above and calculate the integrals, we complete the
proof. �
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(Corresponding author) Adıyaman University, Faculty of Science and Arts, Department of Math-

ematics, Adıyaman, Turkey
E-mail address: mavci@adiyaman.edu.tr

Havva Kavurmacı Önalan
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