A FIXED POINT THEOREM FOR GENERALIZED NONEXPANSIVE MAPPINGS

ALIREZA AMINI-HARANDI, MAHDI GOLI, AND HAMID REZA HAJISHARIFI

Received 25 January, 2022

Abstract. In this paper, we obtain a generalization of a fixed point theorem given by Popescu [O. Popescu, Comput. Math. Appl., vol. 62, no. 10, pp. 3912–3919, 2011]. An example is also given to support our main result.

2010 Mathematics Subject Classification: 47H04; 47H10; 54H25

Keywords: fixed point, approximate fixed point sequence, metric space, generalized nonexpansive mapping

1. INTRODUCTION AND PRELIMINARIES

Let \((X, d)\) be a metric space and let \(T : X \to X\) be a mapping. We say that \(x \in X\) is a fixed point for \(T\), if \(Tx = x\). The sequence \((x_n) \subseteq X\) is said to be an approximate fixed point sequence (a.f.p.s., for short) for \(T\), if \(d(x_n, Tx_n) \to 0\).

In 2011, Popescu [6] proved the following result.

Theorem 1. Let \((X, d)\) be a complete metric space and let \(T : X \to X\) be a mapping satisfying

\[
\frac{1}{2}d(x, Tx) \leq d(x, y) \Rightarrow d(Tx, Ty) \leq ad(x, y) + b(d(x, Tx) + d(y, Ty)) + c(d(x, Ty) + d(y, Tx)),
\]

for all \(x, y \in X\), with \(a \geq 0, b > 0, c > 0\) and \(a + 2b + 2c = 1\). Then, \(T\) has a unique fixed point.

Definition 1. Let \((X, d)\) be a metric space, \(\lambda \in [0, 1)\) and let \(a, b, c \in \mathbb{R}\) with \(a + 2b + 2c = 1\). We say that a mapping \(T : X \to X\) is a \((\lambda, a, b, c)\)-generalized nonexpansive mapping if for all \(x, y \in X\),

\[
\lambda d(x, Tx) \leq d(x, y) \Rightarrow d(Tx, Ty) \leq ad(x, y) + b(d(x, Tx) + d(y, Ty)) + c(d(x, Ty) + d(y, Tx)).
\]
In the following example, we see that many previously known classes of generalized nonexpansive mappings are actually \((\lambda, a, b, c)\)-generalized nonexpansive, for some \(\lambda \in [0, 1]\) and \(a, b, c \in \mathbb{R}\).

Example 1.

(i) Every nonexpansive mapping is \((0, 1, 0, 0)\)-generalized nonexpansive.

(ii) Every mapping which satisfies condition \((C)\) [2, 4] is \((\frac{1}{2}, 1, 0, 0)\)-generalized nonexpansive.

(iii) Every Kannan nonexpansive mapping [5] is \((0, 0, 0, 1)\)-generalized nonexpansive.

(iv) Every Reich nonexpansive mapping [5] is \((0, a, \alpha, 0)\)-generalized nonexpansive, where \(a \geq 0\) and \(\alpha \geq 0\).

(v) Every generalized \(\alpha\)-nonexpansive mapping [5] is \((\frac{1}{2}, 1 - 2\alpha, 0, 0)\)-generalized nonexpansive, where \(\alpha \in [0, 1]\).

(vi) Every Reich-Suzuki nonexpansive mapping [5] is \((\frac{1}{2}, 1 - 2\alpha, \alpha, 0)\)-generalized nonexpansive, where \(\alpha \in [0, 1]\).

(vii) Every Gobel-Kirk-Shimi generalized nonexpansive mapping [1] is \((0, a, b, c)\)-generalized nonexpansive, where \(a \geq 0, b > 0\) and \(c > 0\).

(viii) The class of \((0, a, b, 0)\)-generalized nonexpansive mappings, where \(a > 0\) and \(b > 0\), was defined and studied by Greguš [3].

(ix) The class of \((\frac{1}{2}, a, b, c)\)-generalized nonexpansive mappings, where \(a \geq 0, b > 0\) and \(c > 0\), was defined and studied by Popescu [6].

In connection with Theorem 1, the following problem arises:

Problem 1. Determine all \((\lambda, a, b, c) \in [0, 1) \times \mathbb{R}^3\) with \(a + 2b + 2c = 1\), such that every \((\lambda, a, b, c)\)-generalized nonexpansive mapping \(T : X \to X\) has a fixed point, where \((X, d)\) is a complete metric space.

Fixed point theory for generalized nonexpansive mappings, that recall in example 1, have been studied by some authors [1–6]. In this paper, we give a partial answer to the problem 1, which is also a generalization of Theorem 1.

2. Main result

García-Falset et al. [2], studied a class of mappings satisfying the following condition.

Definition 2. Let \(C\) be a nonempty subset of a metric space \(X\). For \(\mu \geq 1\), we say that a mapping \(T : C \to X\) satisfies condition \((E_\mu)\) on \(C\) if for each \(x, y \in C\),

\[
d(x, Ty) \leq \mu d(x, Tx) + d(x, y).
\]

We say that \(T\) satisfies condition \((E)\) on \(C\) whenever \(T\) satisfies \((E_\mu)\) on \(C\) for some \(\mu \geq 1\).
Proposition 1. Let $T: X \to X$ be $(\frac{1}{2}, a, b, c)$-generalized nonexpansive mapping with $b \geq 0$, $c \geq 0$ and $b + c < 1$. Then, T satisfies condition (E) with $\mu = \frac{b + c}{1 - b - c}$.

Proof. Since $ \frac{1}{2}d(x, Tx) \leq d(x, Ty)$, for each $x \in X$, then
\[
d(Tx, T^2x) \leq ad(x, Tx) + b(d(x, Tx) + d(Tx, T^2x)) + cd(x, T^2x) \leq ad(x, Tx) + b(d(x, Tx) + d(Tx, T^2x)) + c(d(x, Tx) + d(Tx, T^2x)).
\]
Using the assumptions $b + c < 1$ and $a + 2b + 2c = 1$, from the above we conclude that (note that the above inequality holds for any (λ, a, b, c)-generalized nonexpansive mapping with $\lambda \in [0, 1]$).
\[
d(Tx, T^2x) \leq d(x, Tx) \quad \text{for each } x \in X. \quad (2.1)
\]
Now, we prove that for each $x, y \in X$,
\[
either \quad \frac{1}{2}d(x, Tx) \leq d(x, y) \quad \text{or} \quad \frac{1}{2}d(Tx, T^2x) \leq d(Tx, y). \quad (2.2)
\]

On the contrary, we assume that there exist $x, y \in X$ such that
\[
\frac{1}{2}d(x, Tx) > d(x, y) \quad \text{and} \quad \frac{1}{2}d(Tx, T^2x) > d(Tx, y).
\]
Hence by (2.1), we have
\[
d(x, Tx) \leq d(x, y) + d(y, Tx)
\]
\[
\leq \frac{1}{2}d(x, Tx) + \frac{1}{2}d(Tx, T^2x)
\]
\[
\leq \frac{1}{2}d(x, Tx) + \frac{1}{2}d(x, Tx) = d(x, Tx),
\]
a contradiction. So, (2.2) holds for each $x, y \in X$.

Now, from (2.2) we get that for each $x, y \in X$, either
\[
d(Tx, Ty) \leq ad(x, y) + b(d(x, Tx) + d(y, Ty)) + c(d(x, Ty) + d(y, Tx)), \quad (2.3)
\]
or
\[
d(T^2x, Ty) \leq ad(Tx, y) + b(d(Tx, T^2x) + d(y, Ty)) + c(d(Tx, Ty) + d(y, T^2x)). \quad (2.4)
\]
Let $x, y \in X$. We first assume that (2.3) holds. Then
\[
d(x, Ty) \leq d(x, Tx) + d(Tx, Ty)
\]
\[
\leq d(x, Tx) + ad(x, y)
\]
\[
+ b(d(x, Tx) + d(y, Ty)) + c(d(x, Ty) + d(y, Tx))
\]
\[
\leq (1 + b + c)d(x, Tx) + (b + c)d(x, Ty) + (1 - b - c)d(x, y).
\]
Since $b + c < 1$, we obtain
\[
\begin{align*}
 d(x, Ty) &\leq (1 + b + c)d(x, Tx) + d(x, y) \\
 &\leq (3 + b + c)d(x, Tx) + d(x, y).
\end{align*}
\]

Now assume that (2.4) holds. Then by (2.1), we have
\[
\begin{align*}
 d(x, Ty) &\leq d(x, Tx) + d(Tx, T^2x) + d(T^2x, Ty) \\
 &\leq 2d(x, Tx) + ad(Tx, y) \\
 &\quad + b(d(Tx, T^2x) + d(y, Ty)) + c(d(Tx, Ty) + d(y, T^2x)) \\
 &\leq 2d(x, Tx) + ad(Tx, y) \\
 &\quad + b(d(Tx, T^2x) + d(y, Tx) + d(x, Tx) + d(x, Ty)) \\
 &\quad + c(d(x, Tx) + d(x, Ty) + d(Tx, y) + d(Tx, T^2x)) \\
 &\leq 2d(x, Tx) + ad(Tx, y) \\
 &\quad + b(d(y, Tx) + 2d(x, Tx) + d(x, Ty)) \\
 &\quad + c(d(x, Ty) + d(Tx, y) + 2d(x, Tx)).
\end{align*}
\]

Since $b + c < 1$, we obtain
\[
(1 - b - c)d(x, Ty) \leq (2 + 2b + 2c)d(x, Tx) + (1 - b - c)d(Tx, y) \\
\leq (2 + 2b + 2c)d(x, Tx) + (1 - b - c)(d(Tx, Tx) + d(x, x)).
\]

Hence
\[
d(x, Ty) \leq \left(\frac{3 + b + c}{1 - b - c} \right)d(x, Tx) + d(x, y).
\]

Now, we are ready to state our first main result.

Theorem 2. Let (X, d) be a complete metric space and let $T : X \to X$ be a (λ, a, b, c)-generalized nonexpansive mapping with $\lambda \in [0, 1)$, $b > 0$, $c > 0$ and $b + c < 1$. Then, T has an a.f.p.s.

Proof. Let $m = \inf_{x \in X} d(x, Tx)$. On the contrary, assume that $m > 0$. Let (x_n) be a sequence in X such that
\[
m = \lim_{n \to \infty} d(x_n, Tx_n). \tag{2.5}
\]

By the diagonal argument, we may assume all the following limits exist:
\[
\lim_{n \to \infty} d(T^i x_n, T^j x_n), \quad \forall i, j \in \mathbb{N} \cup \{0\}. \tag{2.6}
\]

Replacing x by $T x_n$ and y by $T^2 x_n$ in Definition 1, for each $n \in \mathbb{N}$ we obtain
\[
d(T^2 x_n, T^3 x_n) \leq ad(T x_n, T^2 x_n) + bd(T x_n, T^2 x_n)
\]
Thus
\[m = \lim_{n \to \infty} d(T^2 x_n, T^3 x_n) \]
\[\leq a \lim_{n \to \infty} d(T x_n, T^2 x_n) + b \lim_{n \to \infty} d(T x_n, T^2 x_n) + b \lim_{n \to \infty} d(T x_n, T^3 x_n) + c \lim_{n \to \infty} d(T x_n, T^3 x_n). \]

From (2.1) and (2.5), we obtain
\[m = \lim_{n \to \infty} d(T^k x_n, T^{k+1} x_n), \text{ for each } k \in \mathbb{N}. \]
(2.8)

Hence by using (2.8) and (2.7), we get
\[m \leq \frac{1}{2} \lim_{n \to \infty} d(T x_n, T^3 x_n), \]
and so (note the conditions (2.5) and (2.6) are also satisfied by \((T x_n)\))
\[m \leq \frac{1}{2} \lim_{n \to \infty} d(T^2 x_n, T^4 x_n). \]

Now we prove by induction that
\[m \leq \frac{1}{k} \lim_{n \to \infty} d(T x_n, T^{k+1} x_n) \text{ for each } k \geq 2. \]
(2.9)

Assume that (2.9) holds for some \(k \geq 2 \), then
\[m \leq \frac{1}{k} \lim_{n \to \infty} d(T^2 x_n, T^{k+2} x_n). \]

Therefore from (2.9) and for sufficiently large \(n \), we have
\[\lambda d(T x_n, T^2 x_n) \leq \lim_{n \to \infty} d(T x_n, T^2 x_n) = m \]
\[\leq \frac{1}{k} \lim_{n \to \infty} d(T x_n, T^{k+1} x_n) \]
\[\leq d(T x_n, T^{k+1} x_n), \]
and so, we may assume that
\[\lambda d(T x_n, T^2 x_n) \leq d(T x_n, T^{k+1} x_n) \text{ for each } n \in \mathbb{N}. \]

Replacing \(x \) by \(T x_n \) and \(y \) by \(T^{k+1} x_n \) in Definition (1), for each \(n \in \mathbb{N} \) we obtain
\[d(T^2 x_n, T^{k+2} x_n) \leq a d(T x_n, T^{k+1} x_n) \]
\[+ b d(T x_n, T^2 x_n) + b d(T^{k+1} x_n, T^{k+2} x_n) + c d(T x_n, T^{k+2} x_n) + c d(T^2 x_n, T^{k+1} x_n). \]

Now we claim that
\[a \lim_{n \to \infty} d(T x_n, T^{k+1} x_n) \leq a m. \]
(2.10)
In the case $a < 0$, the inequality follows from (2.9). In the case $a \geq 0$, (2.10) follows from the inequality
\[d(Tx_n, T^{k+1}x_n) \leq d(Tx_n, T^2x_n) + d(T^2x_n, T^3x_n) + \ldots + d(T^kx_n, T^{k+1}x_n). \]
Thus
\[km \leq \lim_{n \to \infty} d(T^2x_n, T^{k+2}x_n) \]
\[\leq a \lim_{n \to \infty} d(Tx_n, T^{k+1}x_n) + b \lim_{n \to \infty} d(Tx_n, T^2x_n) + b \lim_{n \to \infty} d(T^{k+1}x_n, T^{k+2}x_n) + c \lim_{n \to \infty} d(Tx_n, T^{k+2}x_n) + c \lim_{n \to \infty} d(T^2x_n, T^{k+1}x_n) \]
\[\leq akm + 2bm + c \lim_{n \to \infty} d(Tx_n, T^{k+2}x_n) + c(k-1)m, \]
and so
\[m \leq \frac{c}{(c+2b)(k+1) - 4b} \lim_{n \to \infty} d(Tx_n, T^{k+2}x_n) \]
\[\leq \frac{1}{k+1} \lim_{n \to \infty} d(Tx_n, T^{k+2}x_n), \]
and so (2.9) holds.
Let
\[M = \max \left\{ \left(\frac{a+b+c}{b} \right) m, \left(\frac{2(b+c)}{1-c} \right) m, \left(\frac{b+c}{b} \right) m \right\}. \]
We show that for each $k \geq 2$,
\[\lim_{n \to \infty} d(Tx_n, T^{k+1}x_n) \leq M. \tag{2.11} \]
To prove the claim, note that by (2.1) and (2.9) and for each $k \geq 2$, there exists $N \in \mathbb{N}$ such that for $n \geq N$,
\[\lambda d(x_n, Tx_n) \leq \lim_{n \to \infty} d(x_n, Tx_n) = m \leq \frac{1}{k} \lim_{n \to \infty} d(Tx_n, T^{k+1}x_n) \]
\[\leq \frac{1}{k} \lim_{n \to \infty} d(x_n, T^{k}x_n) \leq d(x_n, T^kx_n). \]
Thus for sufficiently large n, we obtain
\[d(Tx_n, T^{k+1}x_n) \leq ad(x_n, T^kx_n) + b(d(x_n, Tx_n) + d(T^kx_n, T^{k+1}x_n)) \]
\[+ c(d(x_n, T^{k+1}x_n) + d(Tx_n, T^{k+1}x_n)). \tag{2.12} \]
Assume first that $a \geq 0$. Then by (2.12),
\[d(Tx_n, T^{k+1}x_n) \leq a(d(x_n, Tx_n) + d(Tx_n, T^{k+1}x_n) + d(Tx_n, T^{k+1}x_n)) \]
\[+ b(d(x_n, Tx_n) + d(T^kx_n, T^{k+1}x_n)) \]
\[+ c(d(x_n, Tx_n) + d(Tx_n, T^{k+1}x_n)) \]
and so by letting \(n \to \infty \), we get
\[
(1 - a - 2c) \lim_{n \to \infty} d(Tx_n, T^{k+1}x_n) \leq 2(a + b + c)m.
\]
Hence for each \(k \geq 2 \)
\[
\lim_{n \to \infty} d(Tx_n, T^{k+1}x_n) \leq \left(\frac{a + b + c}{b} \right) m \leq M.
\]
If \(a < 0 \) and \(a + c \leq 0 \), then by (2.12),
\[
d(Tx_n, T^{k+1}x_n) \leq ad(x_n, T^k x_n) + b(d(x_n, Tx_n) + d(T^k x_n, T^{k+1}x_n))
\]
\[
+ c(d(x_n, Tx_n) + d(Tx_n, T^{k+1}x_n)) + c(d(x_n, Tx_n) + d(x_n + T^k x_n)).
\]
Thus by letting \(n \to \infty \), we obtain
\[
(1 - c) \lim_{n \to \infty} d(Tx_n, T^{k+1}x_n) \leq (a + c) \lim_{n \to \infty} d(x_n, T^k x_n) + 2(b + c)m,
\]
and so (note that \(c < 1 \) and \(a + c \leq 0 \))
\[
\lim_{n \to \infty} d(Tx_n, T^{k+1}x_n) \leq \frac{2(b + c)}{1 - c} m \leq M.
\]
Now if \(a < 0 \) and \(a + c > 0 \), then thanks to (2.12),
\[
d(Tx_n, T^{k+1}x_n) \leq ad(x_n, T^k x_n) + b(d(x_n, Tx_n) + d(T^k x_n, T^{k+1}x_n))
\]
\[
+ (a + c)d(x_n, T^{k+1}x_n) - ad(x_n, T^{k+1}x_n) + cd(Tx_n, T^k x_n)
\]
\[
\leq (-a)(d(x_n, T^{k+1}x_n) - d(x_n, T^k x_n))
\]
\[
+ b(d(x_n, Tx_n) + d(T^k x_n, T^{k+1}x_n))
\]
\[
+ (a + c)(d(x_n, Tx_n) + d(Tx_n, T^{k+1}x_n))
\]
\[
+ c(d(Tx_n, T^{k+1}x_n) + d(T^k x_n, T^{k+1}x_n))
\]
\[
\leq (-a)d(T^k x_n, T^{k+1}x_n)
\]
\[
+ b(d(x_n, Tx_n) + d(T^k x_n, T^{k+1}x_n))
\]
\[
+ (a + c)(d(x_n, Tx_n) + d(Tx_n, T^{k+1}x_n))
\]
\[
+ c(d(Tx_n, T^{k+1}x_n) + d(T^k x_n, T^{k+1}x_n)).
\]
Thus by letting \(n \to \infty \),
\[
(1 - a - 2c) \lim_{n \to \infty} d(Tx_n, T^{k+1}x_n) \leq 2(b + c)m.
\]
Hence
\[
\lim_{n \to \infty} d(Tx_n, T^{k+1}x_n) \leq \left(\frac{b + c}{b} \right) m \leq M.
\]
Therefore (2.11) holds. Now from (2.9) and (2.11), we obtain
\[m \leq \frac{1}{k} \lim_{n \to \infty} d(Tx_n, T^{k+1}x_n) \leq \frac{1}{k} M, \text{ for each } k \geq 2, \]
and so by letting \(k \to \infty \), we get \(m = 0 \), a contradiction. So, \(T \) has an a.f.p.s. \qed

Now we state our second main result.

Theorem 3. Let \((X, d) \) be complete metric space and let \(T : X \to X \) be \((\frac{1}{2}, a, b, c)\)-generalized nonexpansive mapping with \(b > 0 \), \(c > 0 \) and \(b + c < 1 \). Then \(T \) has a unique fixed point.

Proof. For each \(n \in \mathbb{N} \) we set \(K_n := \{ x \in X : d(x, Tx) \leq \frac{1}{n} \} \). By Theorem 2, \(\inf_{x \in X} d(x, Tx) = 0 \), therefore for each \(n \in \mathbb{N}, K_n \neq \emptyset \). We show that \(\text{diam } (K_n) \to 0 \) as \(n \to \infty \), where for each \(n \in \mathbb{N} \), \(\text{diam } (K_n) := \sup_{x, y \in K_n} d(x, y) \). Let \(n \in \mathbb{N} \) and \(x, y \in K_n \). We have either \(d(x, y) \leq \frac{1}{n} \) or \(d(x, y) > \frac{1}{n} \). If \(d(x, y) > \frac{1}{n} \), then \(\frac{1}{2}d(x, Tx) \leq \frac{1}{n} < d(x, y) \). Hence
\[d(Tx, Ty) \leq ad(x, y) + b(d(x, Tx) + d(y, Ty)) + c(d(x, Ty) + d(y, Tx)). \]
Then
\[
\begin{align*}
 d(x, y) &\leq d(x, Tx) + d(Tx, Ty) + d(y, Ty) \\
 &\leq \frac{2}{n} + ad(x, y) + b(d(x, Tx) + d(y, Ty)) + c(d(x, Ty) + d(y, Tx)) \\
 &\leq \frac{2}{n} + \frac{2b}{n} + ad(x, y) + c(d(x, y) + d(y, Ty) + d(x, Ty)) \\
 &\leq 2 + \frac{2b + 2c}{n} + (a + 2c)d(x, y) \\
 &\leq 2 + \frac{2b + 2c}{n} + (1 - 2b)d(x, y).
\end{align*}
\]
So
\[d(x, y) \leq \frac{1 + b + c}{nb}. \]
Then for each \(x, y \in K_n \), we have
\[d(x, y) \leq \max \left\{ \frac{1}{n}, \frac{1 + b + c}{nb} \right\}. \]
Thus \(\text{diam } (K_n) \to 0 \) when \(n \to \infty \). Since for each \(n \in \mathbb{N} \), \(\text{diam } (K_n) = \text{diam } (K_n) \) and \((K_n) \) is a decreasing sequence of nonempty sets, so \((K_n) \) is a decreasing sequence of nonempty closed sets such that \(\text{diam } (K_n) \to 0 \) as \(n \to \infty \). Therefore \(\bigcap_{n \in \mathbb{N}} K_n \) is singleton, say, \(\bigcap_{n \in \mathbb{N}} K_n = \{ x_0 \} \). Then there exists a sequence \((x_n) \subseteq X \) with \(x_n \in K_n \) for each \(n \in \mathbb{N} \), such that \(x_n \to x_0 \). Now by Proposition 1 there exists \(\mu \geq 1 \), such that for each \(n \in \mathbb{N} \),
\[d(x_n, Tx_0) \leq \mu d(x_n, Tx_n) + d(x_n, x_0). \]
Hence as \(n \to \infty \) we obtain \(d(x_0, T x_0) = 0 \), that is, \(x_0 \) is a fixed point for \(T \).

To prove the uniqueness, suppose that \(x, y \in X \) are two fixed point of \(T \). Since
\[
\frac{1}{4}d(x, T x) = 0 \leq d(x, y)
\]
then (note that \(b > 0 \))
\[
d(x, y) = d(T x, T y) \leq ad(x, y) + b(d(x, T x) + d(y, T y)) + c(d(x, T y) + d(y, T x))
\]
\[
\leq ad(x, y) + c(d(x, y) + d(y, T y) + d(x, y) + d(x, T x))
\]
\[
= (a + 2c)d(x, y) \leq (1 - 2b)d(x, y),
\]
and so \(x = y \). \(\square \)

In the following example, we define a metric space \((X, d)\) and a mapping \(T : X \to X \) which satisfies the assumptions of Theorem 3, but it is easy to see that \(T \) is not in any classes of generalized nonexpansive mappings which are listed in Example 1. This example also shows that Theorem 3 is a real generalization of Theorem 2.1 of [6].

Example 2. Let \((X, d)\) be a metric space such that \(X := \{1, 2, 3, 4, 5\} \) and \(d(1, 2) = d(4, 5) = d(3, 4) = 1, d(1, 5) = d(2, 3) = d(1, 3) = d(2, 5) = 1.7, d(1, 4) = d(2, 4) = 2.2 \) and \(d(3, 5) = 1.8 \). Let \(T : X \to X \) define by \(T 1 = 5, T 2 = 3 \) and \(T 3 = T 4 = T 5 = 4 \). It is straightforward to show that \(T \) is \((\frac{1}{2}, -0.2, 0.3, 0.3)\)-generalized nonexpansive mapping, and so by Theorem 3 has a unique fixed point. But we show that \(T \) does not satisfy the assumptions of Theorem 2.1 of [6]. On the contrary, assume that \(T \) is \((\frac{1}{2}, a, b, c)\)-generalized nonexpansive mapping with \(a \geq 0, b > 0 \) and \(c > 0 \). Then, for \(x = 1 \) and \(y = 2 \) we have \(\frac{1}{2}d(1, T 1) \leq d(1, 2) \). Then (note that \(a \geq 0 \))
\[
1.8 = d(5, 3) = d(T 1, T 2)
\]
\[
\leq ad(1, 2) + b(d(1, T 1) + d(2, T 2)) + c(d(1, T 2) + d(2, T 1))
\]
\[
= a + (2b + 2c)1.7
\]
\[
\leq (a + 2b + 2c)1.7 = 1.7,
\]
a contradiction.

ACKNOWLEDGEMENTS

The authors would like to thank the associate editor and reviewers for their constructive comments, which helped us to improve the paper.

REFERENCES

Authors’ addresses

Alireza Amini-Harandi
Department of Pure Mathematics, Faculty of Mathematics and Statistics, University of Isfahan, Isfahan, 81746-73441, Iran
E-mail address: a.amini@sci.ui.ac.ir

Mahdi Goli
Department of Pure Mathematics, Faculty of Mathematics and Statistics, University of Isfahan, Isfahan, 81746-73441, Iran
E-mail address: golimahdi@gmail.com

Hamid Reza Hajisharifi
(Corresponding author) Department of Mathematics, Khansar Campus, University of Isfahan, Iran, School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box19395-5746, Tehran, Iran
E-mail address: h.r.hajisharifi@sci.ui.ac.ir