Miskolc Mathematical Notes
HU e-ISSN 1787-2413
Vol. 24 (2023), No. 3, pp. 1117-1126

A FIXED POINT THEOREM FOR GENERALIZED NONEXPANSIVE MAPPINGS

ALIREZA AMINI-HARANDI, MAHDI GOLI, AND HAMID REZA HAJISHARIFI

Received 25 January, 2022

Abstract. In this paper, we obtain a generalization of a fixed point theorem given by Popescu [O. Popescu, Comput. Math. Appl., vol. 62, no. 10, pp. 3912-3919, 2011]. An example is also given to support our main result.

2010 Mathematics Subject Classification: 47H04; 47H10; 54H25
Keywords: fixed point, approximate fixed point sequence, metric space, generalized nonexpansive mapping

1. Introduction and Preliminares

Let (X, d) be a metric space and let $T: X \rightarrow X$ be a mapping. We say that $x \in X$ is a fixed point for T, if $T x=x$. The sequence $\left(x_{n}\right) \subseteq X$ is said to be an approximate fixed point sequence (a.f.p.s., for short) for T, if $d\left(x_{n}, T x_{n}\right) \rightarrow 0$.

In 2011, Popescu [6] proved the following result.
Theorem 1. Let (X, d) be a complete metric space and let $T: X \rightarrow X$ be a mapping satisfying

$$
\begin{aligned}
& \frac{1}{2} d(x, T x) \leq d(x, y) \Rightarrow \\
& d(T x, T y) \leq a d(x, y)+b(d(x, T x)+d(y, T y))+c(d(x, T y)+d(y, T x))
\end{aligned}
$$

for all $x, y \in X$, with $a \geq 0, b>0, c>0$ and $a+2 b+2 c=1$. Then, T has a unique fixed point.

Definition 1. Let (X, d) be a metric space, $\lambda \in[0,1)$ and let $a, b, c \in \mathbb{R}$ with $a+2 b+2 c=1$. We say that a mapping $T: X \rightarrow X$ is a (λ, a, b, c)-generalized nonexpansive mapping if for all $x, y \in X$,

$$
\begin{aligned}
& \lambda d(x, T x) \leq d(x, y) \Rightarrow \\
& d(T x, T y) \leq a d(x, y)+b(d(x, T x)+d(y, T y))+c(d(x, T y)+d(y, T x))
\end{aligned}
$$

[^0]In the following example, we see that many previously known classes of generalized nonexpansive mappings are actually (λ, a, b, c)-generalized nonexpansive, for some $\lambda \in[0,1)$ and $a, b, c \in \mathbb{R}$.

Example 1.
(i) Every nonexpansive mapping is $(0,1,0,0)$-generalized nonexpansive.
(ii) Every mapping which satisfies condition $(C)[2,4]$ is $\left(\frac{1}{2}, 1,0,0\right)$-generalized nonexpansive.
(iii) Every Kannan nonexpansive mapping [5] is ($0,0,0,1$)-generalized nonexpansive.
(iv) Every Reich nonexpansive mapping [5] is ($0, a, \alpha, 0$)-generalized nonexpansive, where $a \geq 0$ and $\alpha \geq 0$.
(v) Every generalized α-nonexpansive mapping [5] is $\left(\frac{1}{2}, 1-2 \alpha, 0, \alpha\right)$-generalized nonexpansive, where $\alpha \in[0,1)$.
(vi) Every Reich-Suzuki nonexpansive mapping [5] is $\left(\frac{1}{2}, 1-2 \alpha, \alpha, 0\right)$-generalized nonexpansive, where $\alpha \in[0,1)$.
(vii) Every Gobel- Kirk-Shimi generalized nonexpansive mapping [1] is $(0, a, b, c)$ generalized nonexpansive, where $a \geq 0, b>0$ and $c>0$.
(viii) The class of ($0, a, b, 0$)-generalized nonexpansive mappings, where $a>0$ and $b>0$, was defined and studied by Greguš [3].
(ix) The class of $\left(\frac{1}{2}, a, b, c\right)$-generalized nonexpansive mappings, where $a \geq 0$, $b>0$ and $c>0$, was defined and studied by Popescu [6].

In connection with Theorem 1, the following problem arises:
Problem 1. Determine all $(\lambda, a, b, c) \in[0,1) \times \mathbb{R}^{3}$ with $a+2 b+2 c=1$, such that every (λ, a, b, c)-generalized nonexpansive mapping $T: X \rightarrow X$ has a fixed point, where (X, d) is a complete metric space.

Fixed point theory for generalized nonexpansive mappings, that recall in example 1 , have been studied by some authors [1-6]. In this paper, we give a partial answer to the problem 1 , which is also a generalization of Theorem 1.

2. Main result

García-Falset et al. [2], studied a class of mappings satisfying the following condition.

Definition 2. Let C be a nonempty subset of a metric space X. For $\mu \geq 1$, we say that a mapping $T: C \rightarrow X$ satisfies condition $\left(E_{\mu}\right)$ on C if for each $x, y \in C$,

$$
d(x, T y) \leq \mu d(x, T x)+d(x, y)
$$

We say that T satisfies condition (E) on C whenever T satisfies $\left(E_{\mu}\right)$ on C for some $\mu \geq 1$.

Proposition 1. Let $T: X \rightarrow X$ be $\left(\frac{1}{2}, a, b, c\right)$-generalized nonexpansive mapping with $b \geq 0, c \geq 0$ and $b+c<1$. Then, T satisfies condition (E) with $\mu=\frac{3+b+c}{1-b-c}$.

Proof. Since $\frac{1}{2} d(x, T x) \leq d(x, T x)$, for each $x \in X$, then

$$
\begin{aligned}
d\left(T x, T^{2} x\right) & \leq a d(x, T x)+b\left(d(x, T x)+d\left(T x, T^{2} x\right)\right)+c d\left(x, T^{2} x\right) \\
& \leq a d(x, T x)+b\left(d(x, T x)+d\left(T x, T^{2} x\right)\right)+c\left(d(x, T x)+d\left(T x, T^{2} x\right)\right)
\end{aligned}
$$

Using the assumptions $b+c<1$ and $a+2 b+2 c=1$, from the above we conclude that (note that the above inequality holds for any (λ, a, b, c)-generalized nonexpansive mapping with $\lambda \in[0,1)$),

$$
\begin{equation*}
d\left(T x, T^{2} x\right) \leq d(x, T x) \quad \text { for each } x \in X \tag{2.1}
\end{equation*}
$$

Now, we prove that for each $x, y \in X$,

$$
\begin{equation*}
\text { either } \quad \frac{1}{2} d(x, T x) \leq d(x, y) \quad \text { or } \quad \frac{1}{2} d\left(T x, T^{2} x\right) \leq d(T x, y) \tag{2.2}
\end{equation*}
$$

On the contrary, we assume that there exist $x, y \in X$ such that

$$
\frac{1}{2} d(x, T x)>d(x, y) \quad \text { and } \quad \frac{1}{2} d\left(T x, T^{2} x\right)>d(T x, y)
$$

Hence by (2.1), we have

$$
\begin{aligned}
d(x, T x) & \leq d(x, y)+d(y, T x) \\
& <\frac{1}{2} d(x, T x)+\frac{1}{2} d\left(T x, T^{2} x\right) \\
& \leq \frac{1}{2} d(x, T x)+\frac{1}{2} d(x, T x)=d(x, T x)
\end{aligned}
$$

a contradiction. So, (2.2) holds for each $x, y \in X$.
Now, from (2.2) we get that for each $x, y \in X$, either

$$
\begin{equation*}
d(T x, T y) \leq a d(x, y)+b(d(x, T x)+d(y, T y))+c(d(x, T y)+d(y, T x)) \tag{2.3}
\end{equation*}
$$

or

$$
\begin{equation*}
d\left(T^{2} x, T y\right) \leq a d(T x, y)+b\left(d\left(T x, T^{2} x\right)+d(y, T y)\right)+c\left(d(T x, T y)+d\left(y, T^{2} x\right)\right) \tag{2.4}
\end{equation*}
$$

Let $x, y \in X$. We first assume that (2.3) holds. Then

$$
\begin{aligned}
d(x, T y) \leq & d(x, T x)+d(T x, T y) \\
\leq & d(x, T x)+a d(x, y) \\
& +b(d(x, T x)+d(y, T y))+c(d(x, T y)+d(y, T x)) \\
\leq & (1+b+c) d(x, T x)+(b+c) d(x, T y)+(1-b-c) d(x, y)
\end{aligned}
$$

Since $b+c<1$, we obtain

$$
\begin{aligned}
d(x, T y) & \leq\left(\frac{1+b+c}{1-b-c}\right) d(x, T x)+d(x, y) \\
& \leq\left(\frac{3+b+c}{1-b-c}\right) d(x, T x)+d(x, y)
\end{aligned}
$$

Now assume that (2.4) holds. Then by (2.1), we have

$$
\begin{aligned}
d(x, T y) \leq & d(x, T x)+d\left(T x, T^{2} x\right)+d\left(T^{2} x, T y\right) \\
\leq & 2 d(x, T x)+a d(T x, y) \\
& +b\left(d\left(T x, T^{2} x\right)+d(y, T y)\right)+c\left(d(T x, T y)+d\left(y, T^{2} x\right)\right) \\
\leq & 2 d(x, T x)+a d(T x, y) \\
& +b\left(d\left(T x, T^{2} x\right)+d(y, T x)+d(x, T x)+d(x, T y)\right) \\
& +c\left(d(x, T x)+d(x, T y)+d(T x, y)+d\left(T x, T^{2} x\right)\right) \\
\leq & 2 d(x, T x)+a d(T x, y) \\
& +b(d(y, T x)+2 d(x, T x)+d(x, T y)) \\
& +c(d(x, T y)+d(T x, y)+2 d(x, T x))
\end{aligned}
$$

Since $b+c<1$, we obtain

$$
\begin{aligned}
(1-b-c) d(x, T y) & \leq(2+2 b+2 c) d(x, T x)+(1-b-c) d(T x, y) \\
& \leq(2+2 b+2 c) d(x, T x)+(1-b-c)(d(x, T x)+d(x, y))
\end{aligned}
$$

Hence

$$
d(x, T y) \leq\left(\frac{3+b+c}{1-b-c}\right) d(x, T x)+d(x, y)
$$

Now, we are ready to state our first main result.
Theorem 2. Let (X, d) be a complete metric space and let $T: X \rightarrow X$ be a (λ, a, b, c)-generalized nonexpansive mapping with $\lambda \in[0,1), b>0, c>0$ and $b+c<$ 1. Then, T has an a.f.p.s.

Proof. Let $m=\inf _{x \in X} d(x, T x)$. On the contrary, assume that $m>0$. Let $\left(x_{n}\right)$ be a sequence in X such that

$$
\begin{equation*}
m=\lim _{n \rightarrow \infty} d\left(x_{n}, T x_{n}\right) \tag{2.5}
\end{equation*}
$$

By the diagonal argument, we may assume all the following limits exist:

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(T^{i} x_{n}, T^{j} x_{n}\right), \quad \forall i, j \in \mathbb{N} \cup\{0\} \tag{2.6}
\end{equation*}
$$

Replacing x by $T x_{n}$ and y by $T^{2} x_{n}$ in Definition 1 , for each $n \in \mathbb{N}$ we obtain

$$
d\left(T^{2} x_{n}, T^{3} x_{n}\right) \leq a d\left(T x_{n}, T^{2} x_{n}\right)+b d\left(T x_{n}, T^{2} x_{n}\right)
$$

$$
+b d\left(T^{2} x_{n}, T^{3} x_{n}\right)+c d\left(T x_{n}, T^{3} x_{n}\right)
$$

Thus

$$
\begin{align*}
m= & \lim _{n \rightarrow \infty} d\left(T^{2} x_{n}, T^{3} x_{n}\right) \tag{2.7}\\
\leq & a \lim _{n \rightarrow \infty} d\left(T x_{n}, T^{2} x_{n}\right)+b \lim _{n \rightarrow \infty} d\left(T x_{n}, T^{2} x_{n}\right) \\
& +b \lim _{n \rightarrow \infty} d\left(T^{2} x_{n}, T^{3} x_{n}\right)+c \lim _{n \rightarrow \infty} d\left(T x_{n}, T^{3} x_{n}\right)
\end{align*}
$$

From (2.1) and (2.5), we obtain

$$
\begin{equation*}
m=\lim _{n \rightarrow \infty} d\left(T^{k} x_{n}, T^{k+1} x_{n}\right), \text { for each } k \in \mathbb{N} \tag{2.8}
\end{equation*}
$$

Hence by using (2.8) and (2.7), we get

$$
m \leq \frac{1}{2} \lim _{n \rightarrow \infty} d\left(T x_{n}, T^{3} x_{n}\right)
$$

and so (note the conditions (2.5) and (2.6) are also satisfied by $\left(T x_{n}\right)$)

$$
m \leq \frac{1}{2} \lim _{n \rightarrow \infty} d\left(T^{2} x_{n}, T^{4} x_{n}\right)
$$

Now we prove by induction that

$$
\begin{equation*}
m \leq \frac{1}{k} \lim _{n \rightarrow \infty} d\left(T x_{n}, T^{k+1} x_{n}\right) \quad \text { for each } k \geq 2 \tag{2.9}
\end{equation*}
$$

Assume that (2.9) holds for some $k \geq 2$, then

$$
m \leq \frac{1}{k} \lim _{n \rightarrow \infty} d\left(T^{2} x_{n}, T^{k+2} x_{n}\right)
$$

Therefore from (2.9) and for sufficiently large n, we have

$$
\begin{aligned}
\lambda d\left(T x_{n}, T^{2} x_{n}\right) & \leq \lim _{n \rightarrow \infty} d\left(T x_{n}, T^{2} x_{n}\right)=m \\
& \leq \frac{1}{k} \lim _{n \rightarrow \infty} d\left(T x_{n}, T^{k+1} x_{n}\right) \\
& \leq d\left(T x_{n}, T^{k+1} x_{n}\right)
\end{aligned}
$$

and so, we may assume that

$$
\lambda d\left(T x_{n}, T^{2} x_{n}\right) \leq d\left(T x_{n}, T^{k+1} x_{n}\right) \text { for each } n \in \mathbb{N}
$$

Replacing x by $T x_{n}$ and y by $T^{k+1} x_{n}$ in Definition (1), for each $n \in \mathbb{N}$ we obtain

$$
\begin{aligned}
d\left(T^{2} x_{n}, T^{k+2} x_{n}\right) \leq & a d\left(T x_{n}, T^{k+1} x_{n}\right) \\
& +b d\left(T x_{n}, T^{2} x_{n}\right)+b d\left(T^{k+1} x_{n}, T^{k+2} x_{n}\right) \\
& +c d\left(T x_{n}, T^{k+2} x_{n}\right)+c d\left(T^{2} x_{n}, T^{k+1} x_{n}\right)
\end{aligned}
$$

Now we claim that

$$
\begin{equation*}
a \lim _{n \rightarrow \infty} d\left(T x_{n}, T^{k+1} x_{n}\right) \leq a k m \tag{2.10}
\end{equation*}
$$

In the case $a<0$, the inequality follows from (2.9). In the case $a \geq 0$, (2.10) follows from the inequality

$$
d\left(T x_{n}, T^{k+1} x_{n}\right) \leq d\left(T x_{n}, T^{2} x_{n}\right)+d\left(T^{2} x_{n}, T^{3} x_{n}\right)+\ldots+d\left(T^{k} x_{n}, T^{k+1} x_{n}\right)
$$

Thus

$$
\begin{aligned}
k m \leq & \lim _{n \rightarrow \infty} d\left(T^{2} x_{n}, T^{k+2} x_{n}\right) \\
\leq & a \lim _{n \rightarrow \infty} d\left(T x_{n}, T^{k+1} x_{n}\right) \\
& +b \lim _{n \rightarrow \infty} d\left(T x_{n}, T^{2} x_{n}\right)+b \lim _{n \rightarrow \infty} d\left(T^{k+1} x_{n}, T^{k+2} x_{n}\right) \\
& +c \lim _{n \rightarrow \infty} d\left(T x_{n}, T^{k+2} x_{n}\right)+c \lim _{n \rightarrow \infty} d\left(T^{2} x_{n}, T^{k+1} x_{n}\right) \\
\leq & a k m+2 b m+c \lim _{n \rightarrow \infty} d\left(T x_{n}, T^{k+2} x_{n}\right)+c(k-1) m
\end{aligned}
$$

and so

$$
\begin{aligned}
m & \leq \frac{c}{(c+2 b)(k+1)-4 b} \lim _{n \rightarrow \infty} d\left(T x_{n}, T^{k+2} x_{n}\right) \\
& \leq \frac{1}{k+1} \lim _{n \rightarrow \infty} d\left(T x_{n}, T^{k+2} x_{n}\right)
\end{aligned}
$$

and so (2.9) holds.
Let

$$
M=\max \left\{\left(\frac{a+b+c}{b}\right) m,\left(\frac{2(b+c)}{1-c}\right) m,\left(\frac{b+c}{b}\right) m\right\}
$$

We show that for each $k \geq 2$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(T x_{n}, T^{k+1} x_{n}\right) \leq M \tag{2.11}
\end{equation*}
$$

To prove the claim, note that by (2.1) and (2.9) and for each $k \geq 2$, there exists $N \in \mathbb{N}$ such that for $n \geq N$,

$$
\begin{aligned}
\lambda d\left(x_{n}, T x_{n}\right) & \leq \lim _{n \rightarrow \infty} d\left(x_{n}, T x_{n}\right)=m \leq \frac{1}{k} \lim _{n \rightarrow \infty} d\left(T x_{n}, T^{k+1} x_{n}\right) \\
& \leq \frac{1}{k} \lim _{n \rightarrow \infty} d\left(x_{n}, T^{k} x_{n}\right) \leq d\left(x_{n}, T^{k} x_{n}\right)
\end{aligned}
$$

Thus for sufficiently large n, we obtain

$$
\begin{align*}
d\left(T x_{n}, T^{k+1} x_{n}\right) \leq & a d\left(x_{n}, T^{k} x_{n}\right)+b\left(d\left(x_{n}, T x_{n}\right)+d\left(T^{k} x_{n}, T^{k+1} x_{n}\right)\right) \tag{2.12}\\
& +c\left(d\left(x_{n}, T^{k+1} x_{n}\right)+d\left(T x_{n}, T^{k} x_{n}\right)\right)
\end{align*}
$$

Assume first that $a \geq 0$. Then by (2.12),

$$
\begin{aligned}
d\left(T x_{n}, T^{k+1} x_{n}\right) \leq & a\left(d\left(x_{n}, T x_{n}\right)+d\left(T x_{n}, T^{k+1} x_{n}\right)+d\left(T^{k} x_{n}, T^{k+1} x_{n}\right)\right) \\
& +b\left(d\left(x_{n}, T x_{n}\right)+d\left(T^{k} x_{n}, T^{k+1} x_{n}\right)\right) \\
& +c\left(d\left(x_{n}, T x_{n}\right)+d\left(T x_{n}, T^{k+1} x_{n}\right)\right)
\end{aligned}
$$

$$
+c\left(d\left(T x_{n}, T^{k+1} x_{n}\right)+d\left(T^{k} x_{n}+T^{k+1} x_{n}\right)\right)
$$

and so by letting $n \rightarrow \infty$, we get

$$
(1-a-2 c) \lim _{n \rightarrow \infty} d\left(T x_{n}, T^{k+1} x_{n}\right) \leq 2(a+b+c) m
$$

Hence for each $k \geq 2$

$$
\lim _{n \rightarrow \infty} d\left(T x_{n}, T^{k+1} x_{n}\right) \leq\left(\frac{a+b+c}{b}\right) m \leq M
$$

If $a<0$ and $a+c \leq 0$, then by (2.12),

$$
\begin{aligned}
d\left(T x_{n}, T^{k+1} x_{n}\right) \leq & a d\left(x_{n}, T^{k} x_{n}\right)+b\left(d\left(x_{n}, T x_{n}\right)+d\left(T^{k} x_{n}, T^{k+1} x_{n}\right)\right) \\
& +c\left(d\left(x_{n}, T x_{n}\right)+d\left(T x_{n}, T^{k+1} x_{n}\right)\right)+c\left(d\left(x_{n}, T x_{n}\right)+d\left(x_{n}+T^{k} x_{n}\right)\right)
\end{aligned}
$$

Thus by letting $n \rightarrow \infty$, we obtain

$$
(1-c) \lim _{n \rightarrow \infty} d\left(T x_{n}, T^{k+1} x_{n}\right) \leq(a+c) \lim _{n \rightarrow \infty} d\left(x_{n}, T^{k} x_{n}\right)+2(b+c) m
$$

and so (note that $c<1$ and $a+c \leq 0$)

$$
\lim _{n \rightarrow \infty} d\left(T x_{n}, T^{k+1} x_{n}\right) \leq \frac{2(b+c)}{1-c} m \leq M
$$

Now if $a<0$ and $a+c>0$, then thanks to (2.12),

$$
\begin{aligned}
d\left(T x_{n}, T^{k+1} x_{n}\right) \leq & a d\left(x_{n}, T^{k} x_{n}\right)+b\left(d\left(x_{n}, T x_{n}\right)+d\left(T^{k} x_{n}, T^{k+1} x_{n}\right)\right) \\
& +(a+c) d\left(x_{n}, T^{k+1} x_{n}\right)-a d\left(x_{n}, T^{k+1} x_{n}\right)+c d\left(T x_{n}, T^{k} x_{n}\right) \\
\leq & (-a)\left(d\left(x_{n}, T^{k+1} x_{n}\right)-d\left(x_{n}, T^{k} x_{n}\right)\right) \\
& +b\left(d\left(x_{n}, T x_{n}\right)+d\left(T^{k} x_{n}, T^{k+1} x_{n}\right)\right) \\
& +(a+c)\left(d\left(x_{n}, T x_{n}\right)+d\left(T x_{n}, T^{k+1} x_{n}\right)\right) \\
& +c\left(d\left(T x_{n}, T^{k+1} x_{n}\right)+d\left(T^{k} x_{n}, T^{k+1} x_{n}\right)\right) \\
\leq & (-a) d\left(T^{k} x_{n}, T^{k+1} x_{n}\right) \\
& +b\left(d\left(x_{n}, T x_{n}\right)+d\left(T^{k} x_{n}, T^{k+1} x_{n}\right)\right) \\
& +(a+c)\left(d\left(x_{n}, T x_{n}\right)+d\left(T x_{n}, T^{k+1} x_{n}\right)\right) \\
& +c\left(d\left(T x_{n}, T^{k+1} x_{n}\right)+d\left(T^{k} x_{n}, T^{k+1} x_{n}\right)\right) .
\end{aligned}
$$

Thus by letting $n \rightarrow \infty$,

$$
(1-a-2 c) \lim _{n \rightarrow \infty} d\left(T x_{n}, T^{k+1} x_{n}\right) \leq 2(b+c) m
$$

Hence

$$
\lim _{n \rightarrow \infty} d\left(T x_{n}, T^{k+1} x_{n}\right) \leq\left(\frac{b+c}{b}\right) m \leq M
$$

Therefore (2.11) holds. Now from (2.9) and (2.11), we obtain

$$
m \leq \frac{1}{k} \lim _{n \rightarrow \infty} d\left(T x_{n}, T^{k+1} x_{n}\right) \leq \frac{1}{k} M, \text { for each } k \geq 2
$$

and so by letting $k \rightarrow \infty$, we get $m=0$, a contradiction. So, T has an a.f.p.s.
Now we state our second main result.
Theorem 3. Let (X, d) be complete metric space and let $T: X \rightarrow X$ be $\left(\frac{1}{2}, a, b, c\right)$ generalized nonexpansive mapping with $b>0, c>0$ and $b+c<1$. Then, T has a unique fixed point.

Proof. For each $n \in \mathbb{N}$ we set $K_{n}:=\left\{x \in X: d(x, T x) \leq \frac{1}{n}\right\}$. By Theorem 2, $\inf _{x \in X} d(x, T x)=0$, therefore for each $n \in \mathbb{N}, K_{n} \neq \varnothing$. We show that diam $\left(K_{n}\right) \rightarrow 0$ as $n \rightarrow \infty$, where for each $n \in \mathbb{N}$, $\operatorname{diam}\left(K_{n}\right):=\sup _{x, y \in K_{n}} d(x, y)$. Let $n \in \mathbb{N}$ and $x, y \in K_{n}$. We have either $d(x, y) \leq \frac{1}{n}$ or $d(x, y)>\frac{1}{n}$. If $d(x, y)>\frac{1}{n}$, then $\frac{1}{2} d(x, T x) \leq \frac{1}{n}<d(x, y)$. Hence

$$
d(T x, T y) \leq a d(x, y)+b(d(x, T x)+d(y, T y))+c(d(x, T y)+d(y, T x))
$$

Then

$$
\begin{aligned}
d(x, y) & \leq d(x, T x)+d(T x, T y)+d(y, T y) \leq \frac{2}{n}+d(T x, T y) \\
& \leq \frac{2}{n}+a d(x, y)+b(d(x, T x)+d(y, T y))+c(d(x, T y)+d(y, T x)) \\
& \leq \frac{2}{n}+\frac{2 b}{n}+a d(x, y)+c(d(x, y)+d(y, T y)+d(x, y)+d(x, T x)) \\
& \leq \frac{2+2 b+2 c}{n}+(a+2 c) d(x, y) \\
& \leq \frac{2+2 b+2 c}{n}+(1-2 b) d(x, y)
\end{aligned}
$$

So

$$
d(x, y) \leq \frac{1+b+c}{n b}
$$

Then for each $x, y \in K_{n}$, we have

$$
d(x, y) \leq \max \left\{\frac{1}{n}, \frac{1+b+c}{n b}\right\}
$$

Thus $\operatorname{diam}\left(K_{n}\right) \rightarrow 0$ when $n \rightarrow \infty$. Since for each $n \in \mathbb{N}$, $\operatorname{diam}\left(\overline{K_{n}}\right)=\operatorname{diam}\left(K_{n}\right)$ and $\left(K_{n}\right)$ is a decreasing sequence of nonempty sets, so $\left(\overline{K_{n}}\right)$ is a decreasing sequence of nonempty closed sets such that diam $\left(\overline{K_{n}}\right) \rightarrow 0$ as $n \rightarrow \infty$. Therefore $\bigcap_{n \in \mathbb{N}} \overline{K_{n}}$ is singleton, say, $\bigcap_{n \in \mathbb{N}} \overline{K_{n}}=\left\{x_{0}\right\}$. Then there exists a sequence $\left(x_{n}\right) \subseteq X$ with $x_{n} \in K_{n}$ for each $n \in \mathbb{N}$, such that $x_{n} \rightarrow x_{0}$. Now by Proposition 1 there exists $\mu \geq 1$, such that for each $n \in \mathbb{N}$,

$$
d\left(x_{n}, T x_{0}\right) \leq \mu d\left(x_{n}, T x_{n}\right)+d\left(x_{n}, x_{0}\right)
$$

Hence as $n \rightarrow \infty$ we obtain $d\left(x_{0}, T x_{0}\right)=0$, that is, x_{0} is a fixed point for T.
To prove the uniqueness, suppose that $x, y \in X$ are two fixed point of T. Since $\frac{1}{2} d(x, T x)=0 \leq d(x, y)$ then (note that $b>0$)

$$
\begin{aligned}
d(x, y) & =d(T x, T y) \leq a d(x, y)+b(d(x, T x)+d(y, T y))+c(d(x, T y)+d(y, T x)) \\
& \leq a d(x, y)+c(d(x, y)+d(y, T y)+d(x, y)+d(x, T x)) \\
& =(a+2 c) d(x, y) \leq(1-2 b) d(x, y)
\end{aligned}
$$

and so $x=y$.
In the following example, we define a metric space (X, d) and a mapping $T: X \rightarrow$ X which satisfies the assumptions of Theorem 3, but it is easy to see that T is not in any classes of generalized nonexpansive mappings which are listed in Example 1. This example also shows that Theorem 3 is a real generalization of Theorem 2.1 of [6].

Example 2. Let (X, d) be a metric space such that $X:=\{1,2,3,4,5\}$ and $d(1,2)=$ $d(4,5)=d(3,4)=1, d(1,5)=d(2,3)=d(1,3)=d(2,5)=1.7, d(1,4)=d(2,4)=$ 2.2 and $d(3,5)=1.8$. Let $T: X \rightarrow X$ define by $T 1=5, T 2=3$ and $T 3=T 4=T 5=$ 4. It is straightforward to show that T is $\left(\frac{1}{2},-0.2,0.3,0.3\right)$-generalized nonexpansive mapping, and so by Theorem 3 has a unique fixed point. But we show that T does not satisfy the assumptions of Theorem 2.1 of [6]. On the contrary, assume that T is $\left(\frac{1}{2}, a, b, c\right)$-generalized nonexpansive mapping with $a \geq 0, b>0$ and $c>0$. Then, for $x=1$ and $y=2$ we have $\frac{1}{2} d(1, T 1) \leq d(1,2)$. Then (note that $a \geq 0$)

$$
\begin{aligned}
1.8 & =d(5,3)=d(T 1, T 2) \\
& \leq a d(1,2)+b(d(1, T 1)+d(2, T 2))+c(d(1, T 2)+d(2, T 1)) \\
& =a+(2 b+2 c) 1.7 \\
& \leq(a+2 b+2 c) 1.7=1.7
\end{aligned}
$$

a contradiction.

ACKNOWLEDGEMENTS

The authors would like to thank the associate editor and reviewers for their constructive comments, which helped us to improve the paper.

References

[1] J. Bogin, "A generalization of a fixed point theorem of Goebel, Kirk and Shimi," Canad. Math. Bull., vol. 19, no. 1, pp. 7-12, 1976, doi: 10.4153/CMB-1976-002-7. [Online]. Available: https://doi.org/10.4153/CMB-1976-002-7
[2] J. García-Falset, E. Llorens-Fuster, and T. Suzuki, "Fixed point theory for a class of generalized nonexpansive mappings," J. Math. Anal. Appl., vol. 375, no. 1, pp. 185-195, 2011, doi: 10.1016/j.jmaa.2010.08.069. [Online]. Available: https://doi.org/10.1016/j.jmaa.2010.08.069
[3] M. Greguš, Jr., "A fixed point theorem in Banach space," Boll. Un. Mat. Ital. A (5), vol. 17, no. 1, pp. 193-198, 1980.
[4] G. A. Okeke and C. I. Ugwuogor, "Iterative construction of the fixed point of Suzuki's generalized nonexpansive mappings in Banach spaces," Fixed Point Theory, vol. 23, no. 2, pp. 633-651, 2022, doi: 10.24193/fpt-ro. [Online]. Available: https://doi.org/10.24193/fpt-ro
[5] R. Pandey, R. Pant, V. Rakočević, and R. Shukla, "Approximating fixed points of a general class of nonexpansive mappings in Banach spaces with applications," Results Math., vol. 74, no. 1, pp. Paper No. 7, 24, 2019, doi: 10.1007/s00025-018-0930-6. [Online]. Available: https://doi.org/10.1007/s00025-018-0930-6
[6] O. Popescu, "Two generalizations of some fixed point theorems," Comput. Math. Appl., vol. 62, no. 10, pp. 3912-3919, 2011, doi: 10.1016/j.camwa.2011.09.044. [Online]. Available: https://doi.org/10.1016/j.camwa.2011.09.044

Authors' addresses

Alireza Amini-Harandi

Department of Pure Mathematics, Faculty of Mathematics and Statistics, University of Isfahan, Isfahan, 81746-73441, Iran

E-mail address: a.amini@sci.ui.ac.ir
Mahdi Goli
Department of Pure Mathematics, Faculty of Mathematics and Statistics, University of Isfahan, Isfahan, 81746-73441, Iran

E-mail address: golimahdi@gmail.com

Hamid Reza Hajisharifi

(Corresponding author) Department of Mathematics, Khansar Campus, University of Isfahan, Iran, School of Mathematics, Institute for Research in Fundamental Sciences (IPM), P.O. Box193955746, Tehran, Iran

E-mail address: h.r.hajisharifi@sci.ui.ac.ir

[^0]: The third author was in part supported by a grant from IPM (No.1402460315).

