

# EXISTENCE OF SOLUTION FOR A DIRICHLET BOUNDARY VALUE PROBLEM INVOLVING THE p(x) LAPLACIAN VIA A FIXED POINT APPROACH

# SOUAD AYADI AND OZGUR EGE

Received 23 January, 2022

Abstract. In this paper, we study the existence of a non-trivial solution in  $W_0^{1,p(x)}(\Omega)$  for the problem

$$\begin{cases} \Delta_{p(x)} u = f(x, u, \nabla u) \text{ in } \Omega, \\ u = 0 \text{ in } \Omega. \end{cases}$$

The proof is based on Schaefer's fixed point theorem.

2010 Mathematics Subject Classification: 34B15; 34A12; 54H25

Keywords: p(x)-Laplacian, generalized Sobolev space, variable exponent, fixed point.

## 1. INTRODUCTION

Let us consider the problem

$$\begin{cases} -\Delta_{p(x)}u = f(x, u, \nabla u), & \text{if } x \in \Omega\\ u = 0, & \text{if } x \in \partial\Omega, \end{cases}$$
(1.1)

where  $\Omega$  is a smooth bounded domain in  $\mathbb{R}^N$ ,  $N \ge 2$ ,  $p(x) \in C(\overline{\Omega})$  is log-Hölder continuous with values in  $(1, +\infty)$ ,

$$-\Delta_{p(x)}(u) = div\left(|\nabla u(x)|^{p(x)-2}\nabla u(x)\right)$$

and  $f: \Omega \times \mathbb{R} \to \mathbb{R}$  is a Caratheodory function satisfying some growth conditions.

According to the behavior of f, the existence results of weak solutions for Dirichlet boundary value problems involving p(x)-Laplacian have been established in [3,4,6, 10–12] where variational and topological methods were used in [10] while the proof relies on simple variational arguments based on Mountain-Pass Theorem in [12].

Our contribution in this area is to prove the existence of nontrivial solutions for the Problem (1.1) using variable exponent and a fixed point theorem, in particular, Schaefer's fixed point theorem. This paper is divided into three sections. In the

© 2022 Miskolc University Press

#### SOUAD AYADI AND OZGUR EGE

following section, we will introduce some tools which we need to prove our main result in the last section.

## 2. PRELIMINARIES

Let us summary the most important results on variable exponent Sobolev space and the basic properties of the p(x)-Laplacian and the Nemytskii operators. For more details, we orient the reader to [3, 5-8, 10-14] and references therein. We also recall Schaefer's and Schauder's fixed point theorems [1, 2, 9, 15].

 $\Omega \subset \mathbb{R}^N, N \ge 2$  denotes an open bounded subset with smooth boundary  $\partial \Omega$  and set

$$C_+(\overline{\Omega}) := \{g : g \in C(\overline{\Omega}), g(x) > 1 \text{ for all } x \in \overline{\Omega}\},\$$

 $D = \{u : \Omega \to \mathbb{R}; \text{ is a measurable real-valued function} \}.$ 

For any  $p \in C_+(\overline{\Omega})$ , we denote  $1 < p^- := \min_{x \in \overline{\Omega}} p(x) \le p^+ = \max_{x \in \overline{\Omega}} p(x) < \infty$  and

$$L^{p(x)}(\Omega) = \left\{ u \in D : \int_{\Omega} |u(x)|^{p(x)} dx < \infty \right\}.$$

On this space, the so-called Luxemburg norm is defined by the following formula

$$|u|_{p(x)} = \inf \left\{ \tau > 0 : \int_{\Omega} \left| \frac{u(x)}{\tau} \right|^{p(x)} dx \le 1 \right\}$$

 $(L^{p(x)}(\Omega), |u|_{p(x)})$  are Banach spaces. There exists a fact that they are reflexive if and only if  $1 < p^- \le p^+ < \infty$ . The inclusion between Lebesgue spaces also generalizes naturality: if  $0 < |\Omega| < \infty$  and  $p_1(\cdot)$ ,  $p_2(\cdot)$  are variable exponents such that  $p_1(x) \le p_2(x)$  a.e.  $x \in \Omega$ . Then, there exists a continuous embedding from  $L^{p_2(x)}(\Omega)$ to  $L^{p_1(x)}(\Omega)$ .

Moreover, if  $L^{p'(x)}(\Omega)$  is the conjugate space of  $L^{p(x)}(\Omega)$ , where  $\frac{1}{p(x)} + \frac{1}{p'(x)} = 1$ , then we have Hölder-type inequality [3]

$$\left| \int_{\Omega} uvdx \right| \le \left( \frac{1}{p^{-}} + \frac{1}{(p')^{-}} \right) |u|_{p(x)} |v|_{p'(x)} \le 2|u|_{p(x)} |v|_{p'(x)}, \ u \in L^{p(x)}(\Omega), v \in L^{p'(x)}(\Omega)$$

$$(2.1)$$

Later we need to use the modular and its properties, which is a mapping

$$\rho_{p(x)}: L^{p(x)}(\Omega) \to \mathbb{R}$$

defined by

$$\rho_{p(x)}(u) := \int_{\Omega} |u|^{p(x)} dx.$$

**Proposition 1.** (See [3]) For all  $u, v \in L^{p(x)}(\Omega)$ , we have

$$|u|_{p(x)} < 1 \ (resp. = 1, > 1) \Leftrightarrow \rho_{p(x)}(u) < 1 \ (resp. = 1, > 1).$$
(2.2)

$$|u|_{p(x)} < 1 \Rightarrow |u|_{p(x)}^{p^+} \le \rho_{p(x)}(u) \le |u|_{p(x)}^{p^-}.$$
(2.3)

EXISTENCE OF SOLUTION FOR A DIRICHLET BOUNDARY VALUE PROBLEM ...

$$|u|_{p(x)} > 1 \Rightarrow |u|_{p(x)}^{p^{-}} \le \rho_{p(x)}(u) \le |u|_{p(x)}^{p^{+}}.$$
(2.4)

$$\rho_{p(x)}(u-v) \to 0 \Leftrightarrow |u-v|_{p(x)} \to 0.$$
(2.5)

From (2.3) and (2.4), it follows that

$$|u|_{p(x)} \le \rho_{p(x)}(u) + 1 \tag{2.6}$$

87

and

$$\rho_{p(x)}(u) \le |u|_{p(x)}^{p^+} + |u|_{p(x)}^{p^-}.$$
(2.7)

The variable Sobolev space  $W^{1,p(x)}(\Omega)$  is defined as follows:

$$W^{1,p(x)}(\Omega) = \left\{ u \in L^{p(x)}(\Omega) : |\nabla u| \in L^{p(x)}(\Omega) \right\}$$

and it is equipped with the norm

$$||u||_{1,p(x)} := |u|_{p(x)} + |\nabla u|_{p(x)}.$$

 $W_0^{1,p(x)}(\Omega)$  denotes the closure of  $C_0^{\infty}(\Omega)$  in  $W^{1,p(x)}(\Omega)$  and

$$p^*(x) = \begin{cases} \frac{Np(x)}{N - p(x)}, & \text{if } p(x) < N \\ +\infty, & \text{if } p(x) \ge N. \end{cases}$$

We have the following proposition.

**Proposition 2.** (See [5, 7, 12])

- (1)  $W^{1,p(x)}(\Omega)$  and  $W_0^{1,p(x)}(\Omega)$  are separable reflexive Banach spaces. (2) If  $\alpha \in C_+(\overline{\Omega})$  and  $\alpha(x) < p^*(x)$  for any  $x \in \overline{\Omega}$ , then the embedding from  $W^{1,p(x)}(\Omega)$  to  $L^{\alpha(x)}(\Omega)$  is continuous and compact.
- (3) There exists a constant  $\theta_0 > 0$  such that

$$|u|_{p(x)} \le \Theta_0 |\nabla u|_{p(x)} \quad \forall u \in W_0^{1,p(x)}(\Omega).$$

$$(2.8)$$

According to this last assertion,  $|\nabla u|_{p(x)}$  and  $||u||_{1,p(x)}$  are equivalent norms on  $W_0^{1,p(x)}(\Omega)$ .

We close this section with the following fixed point theorem which will be used in this paper.

**Theorem 1.** (Classical Schaefer's fixed point theorem) [15]

Let X be a normed space, T a continuous mapping of X into X which is compact on each bounded subset of X. Then, either

- the equation  $u = \lambda T u$  has a solution for  $\lambda = 1$ , or
- the set of all such solutions u, for  $0 < \lambda < 1$  is unbounded.

# 3. MAIN RESULT

In this section, we first consider the following problem

$$\begin{cases} -\Delta_{p(x)}u = f(x, u, \nabla u), & x \in \Omega\\ u = 0, & x \in \partial\Omega, \end{cases}$$

where  $\Omega$  is a smooth bounded domain in  $\mathbb{R}^N$ ,  $N \ge 2$ ,  $p(x) \in C(\overline{\Omega})$  is log-Hölder continuous with values in  $(1, +\infty)$ ,  $1 < p^- \le p(x) \le p^+ < \infty$ , p'(x) the conjugate of p(x),  $-\Delta_{p(x)}(u) = \operatorname{div}(|\nabla u(x)|^{p(x)-2}\nabla u(x))$  and  $f : \Omega \times \mathbb{R} \to \mathbb{R}$  is Caratheodory function satisfying the following growth condition.

(A<sub>1</sub>) 
$$|f(x,s,t)| \le \phi(x) + c|s|^{\eta(x)-1} + c|t|^{\eta(x)-1}, \quad \forall (x,s,t) \in \Omega \times \mathbb{R} \times \mathbb{R}^N,$$

where

$$\phi(x) \in L^{p'(x)}(\Omega), \ c > 0, \ \eta(x) \in C_{+}(\overline{\Omega}), \ \eta(x) < p^{*}(x), \ 1 < \eta^{-} \le \eta(x) \le \eta^{+} < p^{-}.$$

Let  $\theta_0$  be such that  $|u|_{p(x)} \leq \theta_0 |\nabla u|_{p(x)}$ , for all  $u \in W_0^{1,p(x)}(\Omega)$  and  $\theta_1$  the constant of the embedding of  $L^{p(x)}(\Omega)$  into  $L^{\eta(x)}(\Omega)$  such that

$$(A_2) \ 0 < c < \frac{1}{4\lambda^{p^+-1} \left( (\theta_0 \theta_1)^{p^-} + \theta_1^{p^-} \right)}, \ |\phi|_{p'(x)} < \frac{1 - 4c\lambda^{p^+-1} \left( (\theta_0 \theta_1)^{p^-} + \theta_1^{p^-} \right)}{2\lambda^{p^+-1} \theta_0},$$

for some  $\lambda \in [0 1]$ . If *u* is a weak solution of the Problem (1.1), then for all  $v \in W_0^{1,p(x)}(\Omega)$ , we have

$$\int_{\Omega} |\nabla u|^{p(x)-2} \nabla u \nabla v \, dx = \int_{\Omega} f(x, u, \nabla u) v \, dx.$$
(3.1)

Let  $K = W_0^{1,p(x)}(\Omega)$  and  $K^*$  its dual, that is  $(W_0^{1,p(x)}(\Omega))^* = K^*$ . We define the operators  $(-\Delta_{p(x)})$  and  $\Phi$  as follows:

$$-\Delta_{p(x)}: K \to K^*$$
$$\langle -\Delta_{p(x)}u, v \rangle = \int_{\Omega} |\nabla|(u)|^{p(x)-2} \nabla u \nabla v \, dx, \ \forall u, v \in K$$

and

$$\Phi: K^* \to K$$
$$\langle \Phi u, v \rangle = \int_{\Omega} f(x, u, \nabla u) v \, dx, \ \forall u, v \in K.$$

If  $(A_1)$  is satisfied, then the following propositions give the most properties of  $-\Delta_{p(x)}$  and  $\Phi$ .

**Proposition 3.** [3, 6]

- (1)  $-\Delta_{p(x)}: W_0^{1,p(x)}(\Omega) \to \left(W_0^{1,p(x)}(\Omega)\right)'$  is a homeomorphism from  $W_0^{1,p(x)}(\Omega)$ to  $\left(W_0^{1,p(x)}(\Omega)\right)'$ .
- (2)  $-\Delta_{p(x)}: W_0^{1,p(x)}(\Omega) \to \left(W_0^{1,p(x)}(\Omega)\right)'$  is a continuous, bounded and strictly monotone operator.
- (3)  $-\Delta_{p(x)}: W_0^{1,p(x)}(\Omega) \to \left(W_0^{1,p(x)}(\Omega)\right)'$  is a mapping of type  $S_+$ .
- (4) The operator  $-\Delta_{p(x)}: W_0^{1,p(x)}(\Omega) \to \left(W_0^{1,p(x)}(\Omega)\right)'$  has a continuous inverse mapping  $\left(-\Delta_{p(x)}\right)^{-1}: \left(W_0^{1,p(x)}(\Omega)\right)' \to W_0^{1,p(x)}(\Omega).$
- (5)  $(-\Delta_{p(x)})^{-1}$  is bounded and satisfies condition  $S_+$ .

**Proposition 4.** [3] The operator  $\Phi$  is compact.

One can see that if u is a weak solution for the Problem (1.1) means that

$$\langle -\Delta_{p(x)}u,v\rangle = \langle \Phi u,v\rangle, \ \forall v \in K.$$

On the other hand, we have the following equivalence:

$$-\Delta_{p(x)}u = \Phi(u) \Longleftrightarrow u = (-\Delta_{p(x)})^{-1}\Phi u.$$

Let T be the operator defined by

$$T: K \to K, Tu = (-\Delta_{p(x)})^{-1} \Phi u.$$

Now, we state our main result which will be proved by using Schaefer's fixed point theorem.

**Theorem 2.** Under assumptions  $(A_1)$  and  $(A_2)$ , the Problem (1.1) admits at least a nontrivial solution.

It is easily seen that a solution of the Problem (1.1) is a fixed point of the operator T. So, we will prove that T is well defined and all the conditions of Theorem 1 are satisfied.

*Proof.* (1) T is well defined. Indeed, the operator T can be considered as follows:

$$T: K \xrightarrow{\Phi} K^* \xrightarrow{(-\Delta_{p(x)})^{-1}} K.$$

(2) T is compact. In fact, let (u<sub>n</sub>) be a bounded sequence in the reflexive space K. Then, there exist u<sub>0</sub> and a subsequence which we also denote (u<sub>n</sub>) such that u<sub>n</sub> converges weakly to u<sub>0</sub> in K. By the compactness of Φ (Lemma 2 in [3]), we have Φ(u<sub>n</sub>) → Φ(u<sub>0</sub>) in K\*. Using the continuity of the operator (-Δ<sub>p(x)</sub>)<sup>-1</sup>, then we get

$$(-\Delta_{p(x)})^{-1}\overline{F}(u_n) \to (-\Delta_{p(x)})^{-1}\overline{F}(u_0).$$

That is,  $T(u_n)$  converges strongly to  $T(u_0)$ . We mention that T is also continuous.

(3) We claim that the set

$$B = \left\{ u \in W_0^{1,p(x)}(\Omega) : u = \lambda T u, \ \lambda \in [0\ 1] \right\}$$

is bounded. In fact, we will prove that for all  $u \in B$ , there exists R > 0 such that  $|\nabla u|_{p(x)} \leq R$ . Let  $u \in B$ . Then, we have to consider two cases: • If  $|\nabla u| \leq 1$ , then *B* is bounded.

• If  $|\nabla u| > 1$ , by using modular's properties, we proceed as follows: If  $u = \lambda T u$  and assuming that  $\lambda \neq 0$ , we have  $\frac{u}{\lambda} = T u = (-\Delta_{p(x)})^{-1} \Phi u$ . Then we obtain

$$-\Delta_{p(x)}\left(\frac{u}{\lambda}\right) = \Phi u$$

and consequently,

$$\int_{\Omega} |\nabla\left(\frac{u}{\lambda}\right)|^{p(x)-2} \nabla\left(\frac{u}{\lambda}\right) \nabla v \, dx = \int_{\Omega} f(x, u, \nabla u) v \, dx,$$

for all  $v \in K$ . Using Hölder-type inequality, Proposition 1 and Proposition 2, we have

$$\begin{split} \frac{1}{\lambda^{p^+}} \rho_{p(x)}(\nabla u) &\leq \rho_{p(x)} \nabla \left(\frac{u}{\lambda}\right) \leq \frac{1}{\lambda} \int_{\Omega} f(x, u, \nabla u) u \, dx, \\ \rho_{p(x)}(\nabla u) &\leq \lambda^{p^+-1} \int_{\Omega} f(x, u(x)) u(x) \, dx, \\ &\leq \lambda^{p^+-1} \Big[ \int_{\Omega} |\phi(x)u(x)| + c \int_{\Omega} |u(x)|^{\eta(x)} + c \int_{\Omega} |\nabla u(x)|^{\eta(x)} \, dx \Big], \\ &\leq \lambda^{p^+-1} \Big[ 2|\phi|_{p'(x)}|u|_{p(x)} + c \rho_{\eta(x)}(u) + c \rho_{\eta(x)}(\nabla u) \Big], \\ &\leq \lambda^{p^+-1} \Big[ 2|\phi|_{p'(x)} \theta_0 \left( \rho_{p(x)}(\nabla u) + 1 \right) + c \left( |u|_{\eta(x)}^{\eta^+} + |u|_{\eta(x)}^{\eta^-} \right) \\ &\quad + c \left( |\nabla u|_{\eta(x)}^{\eta^+} + |\nabla u|_{\eta(x)}^{\eta^-} \right) \Big], \end{split}$$

and so,

$$\begin{split} \left(1 - 2\lambda^{p^{+}-1}\theta_{0}|\phi|_{p'(x)}\right)\rho_{p(x)}(\nabla u) &\leq 2\lambda^{p^{+}-1}\theta_{0}|\phi|_{p'(x)} \\ &+ 4\lambda^{p^{+}-1}c\left[(\theta_{0}\theta_{1})^{p^{-}} + (\theta_{1})^{p^{-}}\right]\left|\nabla u\right|_{p(x)}^{p^{-}}, \\ \left(1 - 2\lambda^{p^{+}-1}\theta_{0}|\phi|_{p'(x)}\right)\left|\nabla u\right|_{p(x)}^{p^{-}} &\leq 2\lambda^{p^{+}-1}\theta_{0}|\phi|_{p'(x)} \\ &+ 4\lambda^{p^{+}-1}c\left[(\theta_{0}\theta_{1})^{p^{-}} + (\theta_{1})^{p^{-}}\right]\left|\nabla u\right|_{p(x)}^{p^{-}}, \end{split}$$

$$\begin{split} \left(1 - 2\lambda^{p^+ - 1} \Theta_0 |\phi|_{p'(x)} - 4\lambda^{p^+ - 1} c \left[ (\Theta_0 \Theta_1)^{p^-} + (\Theta_1)^{p^-} \right] \right) \left| \nabla u \right|_{p(x)}^{p^-} \\ &\leq 2\lambda^{p^+ - 1} \Theta_0 |\phi|_{p'(x)}. \end{split}$$

It follows from assumption  $(A_2)$  that

$$1 - 4\lambda^{p^+ - 1} c \left[ (\theta_0 \theta_1)^{p^-} + (\theta_1)^{p^-} \right] > 0,$$

and

$$2\lambda^{p^{+}-1}\theta_{0}|\phi|_{p'(x)} < 1 - 4\lambda^{p^{+}-1}c\left[(\theta_{0}\theta_{1})^{p^{-}} + (\theta_{1})^{p^{-}}\right],$$

hence we obtain

$$1 - 2\lambda^{p^{+}-1}\theta_{0}|\phi|_{p'(x)} - 4\lambda^{p^{+}-1}c\left[(\theta_{0}\theta_{1})^{p^{-}} + (\theta_{1})^{p^{-}}\right] > 0$$

and

$$|\nabla u|_{p(x)}^{p^-} \leq \frac{2\lambda^{p^+-1}\theta_0|\phi|_{p'(x)}}{1-2\lambda^{p^+-1}\theta_0|\phi|_{p'(x)}-4\lambda^{p^+-1}c(\theta_0\theta_1)^{p^-}+(\theta_1)^{p^-}} = R > 0.$$

That is, *B* is bounded. By Schaefer's fixed point theorem, the operator *T* has a fixed point u which is the solution of the given Problem (1.1).

*Remark* 1. If we assume that there exists  $x_0 \in \Omega$  such that  $f(x_0, 0, t) \neq 0$  in Theorem 2, then the solution of the Problem (1.1) is nontrivial.

#### **ACKNOWLEDGEMENTS**

The authors express their gratitude to the anonymous referees for their helpful suggestions and corrections.

#### REFERENCES

- R. P. Agarwal, M. Meehan, and D. O'Regan, *Fixed point theory and applications*. Cambridge: Cambridge University Press, 2001, vol. 141.
- [2] R. P. Agarwal, D. O'Regan, and D. R. Sahu, Fixed point theory for Lipschitzian-type mappings with applications. New York, NY: Springer, 2009. doi: 10.1007/978-0-387-75818-3.
- [3] M. Ait Hammou, E. Azroul, and B. Lahmi, "Existence of solutions for p(x)-Laplacian Dirichlet problem by topological degree," *Bull. Transilv. Univ. Brașov, Ser. III, Math. Inform. Phys.*, vol. 11, no. 2, pp. 29–38, 2018.
- [4] M.-M. Boureanu, "Existence of solutions for an elliptic equation involving the p(x)-Laplace operator," *Electron. J. Differ. Equ.*, vol. 2006, p. 10, 2006, id/No 97.
- [5] X. Fan, J. Shen, and D. Zhao, "Sobolev embedding theorems for spaces W<sup>k,p(x)</sup>(Ω)," J. Math. Anal. Appl., vol. 262, no. 2, pp. 749–760, 2001, doi: 10.1006/jmaa.2001.7618.
- [6] X. Fan and Q. Zhang, "Existence of solutions for p(x)-Laplacian Dirichlet problem." Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods, vol. 52, no. 8, pp. 1843–1852, 2003, doi: 10.1016/S0362-546X(02)00150-5.

#### SOUAD AYADI AND OZGUR EGE

- [7] X. Fan and D. Zhao, "On the spaces L<sup>p(x)</sup>(Ω) and W<sup>m,p(x)</sup>(Ω)," J. Math. Anal. Appl., vol. 263, no. 2, pp. 424–446, 2001, doi: 10.1006/jmaa.2000.7617.
- [8] R. Guefaifia and S. Boulaaras, "Existence of positive radial solutions for (p(x),q(x))-Laplacian systems," *Appl. Math. E-Notes*, vol. 18, pp. 209–218, 2018.
- [9] M. Hsini, N. Irzi, and K. Kefi, "Nonhomogeneous p(x)-Laplacian Steklov problem with weights," *Complex Var. Elliptic Equ.*, vol. 65, no. 3, pp. 440–454, 2020, doi: 10.1080/17476933.2019.1597070.
- [10] P. S. Iliaş, "Dirichlet problems with p(x)-Laplacian," *Math. Rep., Buchar.*, vol. 10, no. 1, pp. 43–56, 2008.
- [11] K. Kefi, "p(x)-Laplacian with indefinite weight," Proc. Am. Math. Soc., vol. 139, no. 12, pp. 4351–4360, 2011, doi: 10.1090/S0002-9939-2011-10850-5.
- [12] M. Moussaoui and L. Elbouyahyaoui, "Existence of solution for Dirichlet problem with p(x)-Laplacian." Bol. Soc. Paran. Mat., vol. 33, no. 2, pp. 241–248, 2015, doi: 10.5269/bspm.v33i2.24210.
- [13] M. Ragusa, "On weak solutions of ultraparabolic equations." *Nonlinear Anal.*, vol. 47, no. 1, pp. 503–511, 2001, doi: 10.1016/S0362-546X(01)00195-X.
- [14] M. Ragusa and A. Tachikawa, "Regularity for minimizers for functionals of double phase with variable exponents." *Adv. Nonlinear Anal.*, vol. 9, pp. 710–728, 2020, doi: 10.1515/anona-2020-0022.
- [15] D. Smart, Fixed Point Theorems. Cambridge: Cambridge University Press, 1974.

Authors' addresses

## Souad Ayadi

Science Department of Matter, Faculty of Science, Djilali Bounaama University, Khemis Miliana, Algeria

*E-mail address:* souad.ayadi@univ-dbkm.dz

#### **Ozgur Ege**

(**Corresponding author**) Ege University, Faculty of Science, Department of Mathematics, Bornova, 35100, Izmir, Turkey

E-mail address: ozgur.ege@ege.edu.tr