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Abstract. In this article, we initiate the study of conformal vector fields in paracontact geometry.
First, we establish that if the Reeb vector field ζ is a conformal vector field on N(k)-paracontact
metric manifold, then the manifold becomes a para-Sasakian manifold. Next, we show that if the
conformal vector field V is pointwise collinear with the Reeb vector field ζ, then the manifold
recovers a para-Sasakian manifold as well as V is a constant multiple of ζ. Furthermore, we prove
that if a 3-dimensional N(k)-paracontact metric manifold admits a Killing vector field V, then
either it is a space of constant sectional curvature k or, V is an infinitesimal strict paracontact
transformation. Besides these, we also investigate conformal vector fields on para-Kenmotsu
manifolds.
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1. INTRODUCTION

Some intrinsic properties of contact metric manifolds can be explained beautifully
by the existence of conformal vector fields (briefly, CV F) on a contact metric mani-
fold. For example, it is well circulated that [18] if an n-dimensional Riemannian man-
ifold admits a maximal, i.e., (n+1)(n+2)

2 -parameter group of conformal motions, then
it is conformally flat. It is well known that a Sasakian manifold which is conform-
ally flat has a constant curvature 1 [12]. Again, it is to be noted that a complete and
connected Sasakian manifold of dimension greater than three is isometric to sphere
if it admits a conformal motion. This result was determined by Okumura in 1962
[11]. Later study of contact manifolds admitting conformal motions was extended to
N(k)-contact metric manifolds by Sharma [15]. Sharma also introduced the notion of
holomorphic planar CV F in Hermitian manifolds [14]. Planar CV F have also been
studied in [7, 14].

A vector field V on M2n+1 satisfying the equation

£Vg = 2ρg, (1.1)
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ρ being a smooth function and £ is the Lie-derivative, is called a CV F . It is said to be
non-trivial, if V is not Killing. If ρ vanishes, then the CV F V is named Killing. V is
called homothetic, if ρ is constant. CV F have been studied by many authors such as
[4, 5, 9, 10, 15, 16] and many others. The CV F V satisfies the followings [18]

(£V∇)(X1,Y1) = (X1ρ)Y1− (Y1ρ)X1−g(X1,Y1)Dρ,

(£VR)(X1,Y1)Z1 = g(∇X1Dρ,Z1)Y1−g(∇Y1Dρ,Z1)X1

+g(X1,Z1)∇Y1Dρ−g(Y1,Z1)∇X1Dρ,

(£VS)(X1,Y1) =−(2n−1)g(∇X1Dρ,Y1)− (4ρ)g(X1,Y1),

£Vr =−4n4ρ−2rρ

for all vector fields X1,Y1,Z1 on M2n+1, where Dρ and 4ρ = divDρ respectively
denote the gradient and Laplacian of ρ. Here, R being the curvature tensor, S indicates
the Ricci tensor and r denotes the scalar curvature.

Definition 1. A vector field V satisfying the relation

£Vη = ση,

σ being a scalar function, is named an infinitesimal paracontact transformation. It is
called an infinitesimal strict paracontact transformation, if σ vanishes identically.

Sharma and Vrancken [16] generalized the theorem of Tanno [17] and proved:

Theorem 1. If the CV F on M is an infinitesimal contact transformation, then it is
an infinitesimal automorphism of M.

In this paper we observe that the above result of Theorem 1 is exactly the same in
paracontact geometry and proof is the same as in [16].

Now, we recollect the subsequent outcome of Okumura [11], which reveals that
the existence of a non-Killing vector field places a significant condition on a Sasakian
manifold of dimension > 3.

Theorem 2. If M2n+1, n > 1 be a Sasakian manifold with a non-Killing CV F V,
then V is special concircular. M2n+1 is isometric to a unit sphere if it is connected
and complete as well.

Again, to generalize the foregoing result Sharma and Blair [15] proved the follow-
ing:

Theorem 3. On a (k,0)-contact metric manifold M2n+1, let V be a non-Killing
CV F. M2n+1 is Sasakian and V is concircular for n > 1, hence if M2n+1 is complete,
it is isometric to a unit sphere. M2n+1 is either Sasakian or flat for n = 1.

To generalized the above result, Sharma and Vrancken [16] established the follow-
ing theorem:
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Theorem 4. Let M2n+1 be a (k,µ)-contact metric manifold which admits a non-
Killing CV F V, for n > 1,

(i) M2n+1 is Sasakian and V is concircular, in which case if M2n+1 is complete
then it is isometric to a unit sphere, or

(ii) µ = 1,k =−n−1. In addition, M2n+1 is isometric to the unit sphere S2n+1 if
it is compact.

Very recently, De, Suh and Chaubey [4] studied CV F on almost co-Kähler mani-
folds.

Inspired by the foregoing studies we are interested to investigate CV F on paracon-
tact geometry.

The present article is laid out as: In Section 2, we recollect some facts about
paracontact manifolds, in particular N(k)-paracontact metric manifolds. In Section
3, we classify CV F on N(k)-paracontact metric manifolds. Finally, we investigate
CV F on para-Kenmotsu manifolds.

2. PARACONTACT MANIFOLDS

An almost paracontact structure on an (2n+1)-dimensional manifold M consists
of a (1,1)-tensor field φ, a vector field ζ and a one-form η obeying the subsequent
conditions:

φ
2X1 = X1−η(X1)ζ, η(ζ) = 1. (2.1)

The manifold M2n+1 with an almost paracontact structure is called an almost para-
contact manifold. From the foregoing definition we recovers that φζ = 0, η ◦ φ = 0
and rank of φ is 2n. If the Nijenhuis tensor vanishes identically, then the almost
paracontact manifold is named normal. M2n+1 is called an almost paracontact metric
manifold if there exists a semi-Riemannian metric g such that

g(φX1,φY1) =−g(X1,Y1)+η(X1)η(Y1)

for all X1,Y1 ∈ χ(M).
In M2n+1 the fundamental 2-form is defined by Φ(X1,Y1) = g(X1,φY1). If

dη(X1,Y1) = g(X1,φY1), then M2n+1,φ,ζ,η,g) is named paracontact metric mani-
fold.

In M2n+1, one can introduce a symmetric, trace-free (1,1)-tensor h = 1
2 £ζφ ful-

filling [2, 19]

φh+hφ = 0, hζ = 0,

∇X1ζ =−φX1 +φhX1, (2.2)

for all X1 ∈ χ(M). It is noted that the condition h = 0 means that ζ is a Killing
vector field and then (φ,ζ,η,g) is called K-paracontact structure. M2n+1 is named a
para-Sasakian manifold if and only if [19]

(∇X1φ)Y1 =−g(X1,Y1)ζ+η(Y1)X1
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holds, for any X1,Y1. A para-Sasakian manifold satisfies the relation

R(X1,Y1)ζ =−[η(Y1)X1−η(X1)Y1] (2.3)

for any X1,Y1, but in contrast to the contact metric geometry, the equation (2.3) does
not mean that the paracontact manifold is para-Sasakian manifold. It is to be noted
that every para-Sasakian manifold is K-paracontact, but the converse is not always
true, it is true only for three dimensional case [1].

A M2n+1 is named a (k,µ)-paracontact manifold if the curvature tensor R obeys
[2]

R(X1,Y1)ζ = k[η(Y1)X1−η(X1)Y1]+µ[η(Y1)hX1−η(X1)hY1]

for all vector fields X1,Y1 ∈ χ(M) and k, µ are real constants.
In particular, a (k,µ)-paracontact manifold turns into a N(k)-paracontact manifold

for µ = 0 and hence, the curvature tensor obeys

R(X1,Y1)ζ = k[η(Y1)X1−η(X1)Y1].

In a N(k)-paracontact metric manifold (M3,φ,ζ,η,g), the subsequent results hold
[3, 13]:

QX1 = (
r
2
− k)X1 +(3k− r

2
)η(X1)ζ,

S(X1,Y1) = (
r
2
− k)g(X1,Y1)+(3k− r

2
)η(X1)η(Y1),

S(X1,ζ) = 2kη(X1). (2.4)

Lemma 1 ([8], Theorem 3.1). Let M2n+1 be a paracontact metric manifold
R(X1,Y1)ζ = −[η(Y1)X1−η(X1)Y1], for all X1,Y1 on M2n+1. Then M2n+1 is para
Sasakian if and only if ζ is a Killing vector field.

Lemma 2. Let M2n+1 be a N(k)-paracontact metric manifold and the Reeb vector
field ζ is Killing. Then M2n+1 is a para-Sasakian manifold.

Proof. In a N(k)-paracontact metric manifold,

R(X1,Y1)ζ = k[η(Y1)X1−η(X1)Y1]. (2.5)

Contracting the above equation, we get

S(X1,ζ) = 2nkη(X1),

which implies
Qζ = 2nkζ. (2.6)

Now, if ζ is Killing in paracontact metric manifold, then it becomes a K-paracontact
metric manifold. Hence Qζ = −2nζ. Therefore from (2.6), we get k = −1. Hence
from (2.5), we obtain

R(X1,Y1)ζ =−[η(Y1)X1−η(X1)Y1].

Therefore, Lemma 1 implies that the manifold becomes a para-Sasakin manifold.
This completes the proof. �
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3. CONFORMAL VECTOR FIELDS ON N(k)-PARACONTACT METRIC MANIFOLDS

Let us choose that the Reeb vector field ζ be a CV F on M2n+1. Then from (1.1),
we get

(£ζg)(X1,Y1) = 2ρg(X1,Y1), (3.1)
which implies

g(∇X1ζ,Y1)+g(X1,∇Y1ζ) = 2ρg(X1,Y1). (3.2)
Contracting X1 and Y1 in (3.2) entails that

divζ = (2n+1)ρ. (3.3)

Again, from (2.2), we infer
divζ = 0. (3.4)

Equations (3.3) and (3.4) together imply

ρ = 0. (3.5)

Using (3.5) in (3.1), we obtain

(£ζg)(X1,Y1) = 0,

which implies ζ is a Killing vector field. Hence from Lemma 2, we have:

Theorem 5. If the Reeb vector field ζ of M2n+1 is a CV F, then M2n+1 becomes a
para-Sasakian manifold.

Suppose V = aζ, where a is smooth function on M2n+1. Then from (2.1), we get

(£aζg)(X1,Y1) = 2ρg(X1,Y1), (3.6)

which implies
g(∇X1aζ,Y1)+g(X1,∇Y1aζ) = 2ρg(X1,Y1).

Using (2.2) in the above equation entails that

(X1a)η(Y1)+(Y1a)η(X1)−2ag(h′X1,2) = 2ρg(X1,Y1). (3.7)

Contracting (3.7), we provide

ζa = (2n+1)ρ. (3.8)

Putting Y1 = ζ in (3.7) and using (3.8) gives

X1a = (1−2n)ρη(X1). (3.9)

Above two equations together imply

ρ = 0.

Therefore from (3.9), we get X1a = 0, which means that a is a constant. Again from
(3.6), we get

(£Vg)(X1,Y1) = 0,
which implies V is Killing, that is, ζ is Killing. Hence we have:
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Theorem 6. If a CV F V in M2n+1 is pointwise collinear with the Reeb vector field
ζ, then M2n+1 becomes a para-Sasakian manifold and V is a constant multiple of the
Reeb vector field ζ.

We assume that the vector field V in M3 is Killing. Then

(£Vg)(X1,Y1) = 0 (3.10)

and
(£VS)(X1,Y1) = 0. (3.11)

Definition of Lie-derivative infers that

(£Vη)X1 = £Vη(X1)−η(£VX1).

Equation (3.10) implies
(£Vη)X1 = g(£Vζ,X1). (3.12)

Also, we have
η(£Vζ) = 0 and (£Vη)ζ = 0. (3.13)

Now, we take Lie-derivative of the equation (2.4) along the Killing vector field V and
get

(£VS)(X1,Y1) =
V r
2
[g(X1,Y1)−η(X1)η(Y1)] (3.14)

+(3k− r
2
)[(£Vη)X1η(Y1)+(£Vη)Y1η(X1)].

Using (3.11) and (3.12) in (3.14), we provide
V r
2
[g(X1,Y1)−η(X1)η(Y1)] (3.15)

+(3k− r
2
)[g(X1,£Vζ)η(Y1)+g(£Vζ,Y1)η(X1)] = 0.

Setting Y1 = ζ in (3.15) and using (3.13) gives

(6k− r)g(£Vζ,X1) = 0,

which implies either r = 6k or, g(£Vζ,X1) = 0.
Case I: If r = 6k, then (2.4) implies

S(X1,Y1) = 2kg(X1,Y1).

Hence, we get

R(X1,Y1)Z1 = k[g(Y1,Z1)X1−g(X1,Z1)Y1],

which means that it is a space of constant sectional curvature k.
Case II: If g(£Vζ,X1) = 0, then (3.12) implies

(£Vη)X1 = 0,

which means that the vector field V is an infinitesimal strict paracontact trans-
formation. Hence we have:
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Theorem 7. If M3 admits a Killing vector field V, then it is either space of
constant sectional curvature k or the vector field V is an infinitesimal strict
paracontact transformation.

4. PARA-KENMOTSU MANIFOLDS

An almost paracontact manifold with the structure (φ,ζ,η,g) is named an almost
para-Kenmotsu manifold, if

dη = 0, dΦ = 2η∧Φ.

In a para-Kenmotsu manifold the following relations hold [6]:

R(X1,Y1)ζ = η(X1)Y1−η(Y1)X1,

R(X1,ζ)Y1 = g(X1,Y1)ζ−η(Y1)X1,

R(ζ,X1)Y1 = η(Y1)X1−g(X1,Y1)ζ,

η(R(X1,Y1)Z1) = g(X1,Z1)η(Y1)−g(Y1,Z1)η(X1),

(∇X1φ)Y1 = g(φX1,Y1)ζ−η(Y1)φX1,

∇X1ζ = X1−η(X1)ζ, (4.1)

S(X1,ζ) =−2nη(X1).

Also in a 3-dimensional para-Kenmotsu manifold, we have

QX1 = (
r
2
+1)X1− (

r
2
+3)η(X1)ζ,

which implies

S(X1,Y1) = (
r
2
+1)g(X1,Y1)− (

r
2
+3)η(X1)η(Y1). (4.2)

5. CONFORMAL VECTOR FIELDS ON PARA-KENMOTSU MANIFOLDS

We suppose that the Reeb vector field ζ is a CV F . Then from (1.1), we get

(£ζg)(X1,Y1) = 2ρg(X1,Y1), (5.1)

which implies
g(∇X1ζ,Y1)+g(X1,∇Y1ζ) = 2ρg(X1,Y1). (5.2)

Using (4.1) in (5.2), we provide

2[g(X1,Y1)−η(X1)η(Y1)] = 2ρg(X1,Y1). (5.3)

Setting X1 = Y1 = ζ in (5.3) entails that

ρ = 0. (5.4)

Using (5.4) in (5.1), we obtain

(£ζg)(X1,Y1) = 0,
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which implies ζ is a Killing vector field. However the Reeb vector field ζ is not a
Killing vector field on para-Kenmotsu manifolds. Hence we have:

Theorem 8. In a para-Kenmotsu manifold the Reeb vector field ζ can not be a
CV F.

We assume that the vector field V in M3 is Killing. Then

(£Vg)(X1,Y1) = 0. (5.5)

From the definition of Lie-derivative, we infer

(£Vη)X1 = £Vη(X1)−η(£VX1).

Equation (5.5) implies
(£Vη)X1 = g(£Vζ,X1). (5.6)

Also,
η(£Vζ) = 0 and (£Vη)ζ = 0. (5.7)

Taking the Lie-derivative of (4.2), we get

(£VS)(X1,Y1) =
V r
2
[g(X1,Y1)−η(X1)η(Y1)]

− (3+
r
2
)[g(X1,£Vζ)η(Y1)+g(Y1,£Vζ)η(X1)].

Since, V is Killing vector field, then

(£VS)(X1,Y1) = 0.

Above two equations together imply
V r
2
[g(X1,Y1)−η(X1)η(Y1)] (5.8)

− (3+
r
2
)[g(X1,£Vζ)η(Y1)+g(Y1,£Vζ)η(X1)] = 0.

Putting X1 = ζ in (5.8) gives

(3+
r
2
)[η(£Vζ)η(Y1)+g(£Vζ,Y1)] = 0. (5.9)

Using (5.7) in (5.9), we obtain

(r+6)g(£Vζ,Y1) = 0,

which implies either r+6 = 0 or, g(£Vζ,Y1) = 0.
Case I: If we take r+6 = 0, then from (4.2) entails that

S(X1,Y1) =−2g(X1,Y1),

which means the manifold is Einstein. Hence we have

R(X1,Y1)Z1 =−[g(Y1,Z1)X1−g(X1,Z1)Y1],

which is a space of constant sectional curvature -1.
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Case II: If g(£Vζ,Y1) = 0, which implies £Vζ = 0. Hence from (5.6), we get

(£Vη)Y1 = 0.

Hence from Definition 1 we have:

Theorem 9. If M3 admits a Killing vector field V, then it is either locally isometric
to H3(1) or the vector field V is an infinitesimal strict paracontact transformation.

Now, we like to state a lemma before proving the next theorem which is similar to
the proof of the result of Sharma’s paper [16].

Lemma 3. If V is a CV F on a para-Kenmotsu manifold, then
(i) (£Vη)ζ = ρ and

(ii) η(£Vζ) =−ρ.

Theorem 10. Let V be a CV F on a para-Kenmotsu manifold M2n+1. If V is an
infinitesimal paracontact transformation, then V is a homothetic vector field.

Proof. Let V be a CV F , then by definition

(£Vg)(X1,Y1) = 2ρg(X1,Y1),

which implies

£Vg(X1,Y1)−g(£VX1,Y1)−g(X1,£VY1) = 2ρg(X1,Y1). (5.10)

Setting Y = ζ in (5.10), we provide

£Vζ = (σ−2ρ)ζ.

Using Lemma 3 in the foregoing equation gives

σ = ρ. (5.11)

Equation (5.11) and Definition 1 together imply

£Vη = ρη and £Vζ =−ρζ.

The above equation implies

(£Vdη)(X1,Y1) =
1
2
[(X1ρ)η(Y1)− (Y1ρ)η(X1)]+ρdη(X1,Y1). (5.12)

Since in para-Kenmotsu manifold dη = 0, then (5.12) implies

(X1ρ)η(Y1) = (Y1ρ)η(X1),

which implies
X1ρ = (ζρ)η(X1).

If we take ζρ = 0, then the above equation implies X1ρ = 0, which means ρ is a
constant. Hence from (5.11), we get σ = ρ = constant. This completes the proof. �
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