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Abstract. The author studies the asymptotic behavior of solutions uε of a p(x)-Landau-Lifschitz
equation as ε tends to zero. Several kinds of convergence to the p(x)-harmonic map are presented
in different senses.
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1. INTRODUCTION

Let G ⊂ R2 be a bounded and simply connected domain with smooth boundary
∂G, and B1 = {x ∈ R2;x2

1 + x2
2 < 1}. Denote S1 = {x ∈ R3;x2

1 + x2
2 = 1,x3 = 0}

and S2 = {x ∈ R3;x2
1 + x2

2 + x2
3 = 1}. The vector value function can be denoted as

u = (u1,u2,u3) = (u′,u3). Let g = (g′,0) be a smooth map from ∂G into S1. The
p-Landau-Lifschitz-type energy functional is

ELL(u) =
1
p

∫
G
|∇u|pdx+

1
2εp

∫
G

u2
3dx

with a small parameter ε > 0. When p = 2, it was introduced in the study of some
simplified model of high-energy physics, which controls the statics of planner fer-
romagnets and antiferromagnets (see [11] and [17]). The asymptotic behavior of
minimizers of ELL(u) had been studied by Hang and Lin in [9]. When p > 1, the cor-
responding asymptotic properties were studied in [12] and [21]. These works show
that the minimizers of Eε(u) converge to the p-harmonic maps with S1-value.

When p = 2, if the term u2
3

2ε2 replaced by (1−|u|2)2

4ε2 and S2 replaced by R2, the prob-
lem becomes the simplified model of the Ginzburg-Landau theory for superconduct-
ors and was well studied in [3] and [4]. The energy functional is

EGL(u) =
1
2

∫
G
|∇u|2dx+

1
4ε2

∫
G
(1−|u|2)2dx.
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It is also showed that the properties of the harmonic maps can be studied via research-
ing the minimizers of the functional with Ginzburg-Landau-type penalization term.
Indeed, Chen and Struwe used the penalty method to establish the global existence of
partial regular weak solutions of the harmonic map flow (see [5] and [7]). They also
generalized the results to the case of p > 1 (cf. [6]). Afterwards, many papers proved
that the limit of minimizers of p-Ginzburg-Landau functional is p-harmonic maps (cf.
[1,2,13,14,18,19,22] and references therein). Misawa studied the p-harmonic maps
by using the same idea of the penalty method in [16]. In 2009, Lei generalized the
results to the case that p is a bounded function (cf. [13]). Now, the functional with
penalization term is

EGL(u,G) =
∫

G

[
1

p(x)
|∇u|p(x)dx+

1
4εp(x)

(1−|u|2)2
]

dx.

The main result is the convergence relation between the minimizers and p(x)-har-
monic maps. Other results of p(x)-harmonic maps can be found in [8, 15] and [20].

In this paper, we are concerned with the p(x)-Landau-Lifschitz functional

Eε(u,G) =
∫

G

[
1

p(x)
|∇u|p(x)dx+

1
2εp(x)

u2
3

]
dx.

Here
2 < p∗ = min

G
p(x)≤max

G
p(x) = p∗ < ∞.

From the direct method in the calculus of variations, it is easy to see that the func-
tional achieves its minimum in the function class

W 1,p(x)
g (G,S2) := {u ∈W 1,p(x)(G,S2);u−g ∈W 1,p(x)

0 (G,R3)}.
Without loss of generality, we assume u3 ≥ 0, otherwise we may consider |u3| in
view of the expression of the functional. We call uε a minimizer of Eε(u,G) in
W 1,p(x)

g (G,S2), if

Eε(uε,G) = min{Eε(u,G);u ∈W 1,p(x)
g (G,S2)}.

We will research the asymptotic properties of minimizers in W 1,p(x)
g (G,S2) when

ε→ 0, and shall prove the limit is the p(x)-harmonic map.

Theorem 1. Let uε be a minimizer of Eε(u,G) in W 1,p(x)
g (G,S2). Assume

deg(g′,∂G) = 0.

Then
lim
ε→0

uε = (up,0), in W 1,p(x)(G,S2),

where up is the minimizer of
∫

G |∇u|p(x)dx in W 1,p(x)
g (G,∂B1).

Comparing with the assumption of Theorem 1, we will consider the problem under
some weaker conditions.
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Theorem 2. Assume uε is a critical point of Eε(u,G) in W 1,p(x)
g (G,S2). If

Eε(uε,K)≤C (1.1)

for some subdomain K ⊆ G. Then there exists a subsequence uεk of uε such that as
k→ ∞,

uεk → (up,0), weakly in W 1,p(x)(K,R3), (1.2)

where up is a critical point of
∫

K |∇u|p(x)dx in W 1,p(x)(K,∂B1) (which is named p(x)-
harmonic map on K). Moreover, for any ζ ∈C∞

0 (K), when ε→ 0,∫
K
|∇uεk |

p(x)
ζdx→

∫
K
|∇up|p(x)ζdx, (1.3)

∫
K

1

ε
p(x)
k

uεk3ζdx→ 0. (1.4)

2. PROOF OF THEOREM 1

A vector-valued function u ∈W 1,p(x)
g (G,∂B1) is named p(x)-harmonic map, if it is

the critical point of
∫

G |∇u|p(x)dx. Namely, it is the weak solution of

−div(|∇u|p(x)−2
∇u) = u|∇u|p(x) (2.1)

on G, or for any φ ∈C∞
0 (G,R2), it satisfies∫
G
|∇u|p(x)−2

∇u∇φdx =
∫

G
u|∇u|p(x)φdx. (2.2)

By the argument of the weak low semi-continuity of the functional, we can deduce
the strong convergence in W 1,p(x) sense for some subsequence of the minimizer uε.
To improve the conclusion of the convergence for all uε, we need the uniqueness of
p(x)-harmonic maps. Therefore, we always assume deg(g′,∂G) = 0 in this section.

From deg(g′,∂G) = 0 and the smoothness of ∂G and g, we see that there is a
smooth function φ0 : ∂G→ R such that

g = (cosφ0,sinφ0), on ∂G. (2.3)

Consider the Dirichlet problem

−div(|∇Φ|p(x)−2
∇Φ) = 0, in G, (2.4)

Φ|∂G = φ0. (2.5)

According to Proposition 2.4 in [13], there exists the unique weak solution Φ of (2.4)
and (2.5) in W 1,p(x)(G,R). Set

up = (cosΦ,sinΦ), on G. (2.6)

Clearly, up is a p(x)-harmonic map on G.
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Since W 1,p(x)
g (G,∂B1) 6=∅ when deg(g′,∂G) = 0, we may consider the minimiza-

tion problem

Min
{∫

G
|∇u|p(x)dx;u ∈W 1,p(x)

g (G,∂B1)

}
. (2.7)

The solution is called the p(x)-energy minimizer. By the direct method, the solution
of (2.7) exists. Obviously, the p(x)-energy minimizer is a p(x)-harmonic map. Ac-
cording to Proposition 2.5 in [13], the p(x)-harmonic map is unique in W 1,p(x)

g (G,∂B1).
So the p(x)-energy minimizer is also unique in W 1,p(x)

g (G,∂B1).
In general, up is the unique p(x)-harmonic map as well as the unique p(x)-energy

minimizer.
Proof of Theorem 1. Noticing that uε is the minimizer, we have

Eε(uε,G)≤ Eε((up,0),G)≤C (2.8)

with C > 0 independent of ε. This means∫
G
|∇uε|p(x)dx≤C, (2.9)∫
G

u2
ε3dx≤Cε

p∗ . (2.10)

Using (2.9), |uε| = 1 and the embedding theorem, we see that there exists a sub-
sequence uεk of uε and u∗ ∈W 1,p(x)(G,R3), such that as εk→ 0,

uεk → u∗, weakly in W 1,p(x)(G,S2), (2.11)

uεk → u∗, in Cα(G,S2), α ∈ (0,1−2/p∗). (2.12)

Obviously, (2.10) and (2.12) lead to u∗ ∈W 1,p(x)
g (G,S1).

Applying (2.11) and the weak low semi-continuity of
∫

G |∇u|p(x)dx, we have∫
G
|∇u∗|p(x)dx≤ limεk→0

∫
G
|∇uεk |

p(x)dx.

On the other hand, (2.8) implies∫
G
|∇uεk |

p(x)dx≤
∫

G
|∇(up,0)|p(x)dx.

Thus, ∫
G
|∇u′∗|p(x)dx≤

∫
G
|∇up|p(x)dx.

This means that u′∗ is also a p(x)-energy minimizer. Noting the uniqueness, we see
u∗ = up. Thus∫

G
|∇up|p(x)dx≤ limεk→0

∫
G
|∇uεk |

p(x)dx≤ limεk→0

∫
G
|∇uεk |

p(x)dx≤
∫

G
|∇up|p(x)dx.

When εk→ 0, ∫
G
|∇uεk |

p(x)→
∫

G
|∇up|p(x).
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Combining this with (2.11) yields

lim
k→∞

∇uεk = ∇(up,0), in Lp(x)(G,S2).

In addition, (2.12) implies that as ε→ 0,

uεk → (up,0), in Lp(x)(G,S2).

Then
lim
k→∞

uεk = (up,0), in W 1,p(x)(G,S2).

Noticing the uniqueness of (up,0), we see the convergence above also holds for all
uε.

3. PROOF OF THEOREM 2

In this section, we always assume that uε is the critical point of the functional,
and Eε(uε,K) ≤ C for some subdomain K ⊆ G, where C is independent of ε. The
assumption is weaker than that of Theorem 1. So, all the results in this section will
be derived in the weak sense.

The method in the calculus of variations shows that the minimizer uε of Eε(u,G)

in W 1,p(x)
g (G,S2) is a weak solution of

−div(|∇u|p(x)−2
∇u) = u|∇u|p(x)+ 1

εp(x)
(uu2

3−u3e3), on G, (3.1)

where e3 = (0,0,1). Namely, for any ψ ∈W 1,p(x)
0 (G,R3), uε satisfies∫

G
|∇u|p(x)−2

∇u∇ψdx =
∫

G
uψ|∇u|p(x)dx+

1
εp(x)

∫
G

ψ(uu2
3−u3e3)dx. (3.2)

Proof of (1.2). Eε(uε,K)≤C means∫
K
|∇uε|p(x)dx≤C, (3.3)

∫
K

u2
ε3dx≤Cε

p∗ , (3.4)

where C is independent of ε. Combining the fact |uε| = 1 a.e. on G with (3.3) we
know that there exist up ∈W 1,p(x)(K,∂B1) and a subsequence uεk of uε, such that as
εk→ 0,

uεk → (up,0), weakly in W 1,p(x)(K), (3.5)

uεk → (up,0), in Cα(K), (3.6)

for some α ∈ (0,1− 2
p∗
). In the following we will prove that up is a weak solution of

(2.1).
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Let B = B(x,3R) ⊂ K. φ ∈ C∞
0 (B(x,3R); [0,1]), φ = 1 on B(x,R), φ = 0 on

B \B(x,2R) and |∇φ| ≤ C, where C is independent of ε. Denote u = uεk in (3.2)
and take ψ = (0,0,φ). Thus∫

B
|∇u|p(x)−2

∇u3∇φdx+
∫

B

1

ε
p(x)
k

|u′|2φu3dx =
∫

B
u3φ|∇u|p(x)dx.

Applying (3.3) we can derive that∫
B

1

ε
p(x)
k

|u′|2φ|u3|dx≤
∫

B
|∇u|p(x)φdx+

∫
B
|∇u|p(x)−1|∇φ|dx≤C. (3.7)

From (3.6) it follows |u′| ≥ 1/2 when εk is sufficiently small. Noting φ= 1 on B(x,R),
we have ∫

B(x,R)

1

ε
p(x)
k

|u3|dx≤C. (3.8)

Taking 1
k = εk, Fk =

1
ε

p(x)
k

(uεk u
2
εk3−uεk3e3) in Lemma 3.11 of [10] (the proof is similar

to Theorem 2.1 in [6]), noting |Fk| = 1
ε

p(x)
k

|u3|2|u′| and applying (3.5) and (3.8), we

obtain that
lim

εk→0
∇uεk = ∇up, in Lq(B(x,R)), ∀q ∈ (1, p(x)).

Since B(x,R) is an arbitrary disc in K, we can see that, for any ξ ∈C∞
0 (B,R3) there

holds

lim
εk→0

∫
B
|∇uεk |

p(x)−2
∇uεk ∇ξdx =

∫
B
|∇up|p(x)−2

∇up∇ξdx. (3.9)

Now, denote u′ = u′εk
= (u1,u2). Taking ψ = (u2,0,0)ζ and ψ = (0,u1,0)ζ in (3.2)

respectively, where ζ ∈C∞
0 (B,R), we have∫

B

1

ε
p(x)
k

u2
3u1u2ζdx+

∫
B

u1u2ζ|∇u|p(x)dx =
∫

B
|∇u|p(x)−2

∇u1∇u2ζdx

+
∫

B
u2|∇u|p(x)−2

∇u1∇ζdx. (3.10)

and∫
B

1

ε
p(x)
k

u2
3u2u1ζdx+

∫
B

u2u1ζ|∇u|p(x)dx =
∫

B
|∇u|p(x)−2

∇u2∇u1ζdx

+
∫

B
u1|∇u|p(x)−2

∇u2∇ζdx. (3.11)

Equation (3.10) subtracts (3.11), then

0 =
∫

B
|∇u|p(x)−2(u∧∇u)∇ζdx, (3.12)
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where u∧∇u = u1∇u2−u2∇u1. On the other hand, since∫
B

u2|∇u|p(x)−2
∇u1∇ζdx−

∫
B

up2|∇up|p(x)−2
∇up1∇ζdx

=
∫

B
(|∇u|p(x)−2

∇u1−|∇up|p(x)−2
∇up1)up2∇ζdx+

∫
B
|∇u|p(x)−2

∇u1∇ζ(u2−up2)dx,

using (3.3), (3.6) and (3.9), we obtain that

lim
εk→0

∫
B

u2|∇u|p(x)−2
∇u1∇ζdx→

∫
B

up2|∇up|p(x)−2
∇up1∇ζdx. (3.13)

Similarly, we may also get that

lim
εk→0

∫
B

u1|∇u|p(x)−2
∇u2∇ζdx =

∫
B

up1|∇up|p(x)−2
∇up2∇ζdx. (3.14)

Clearly, (3.14) subtracting (3.13) yields

lim
εk→0

∫
B
|∇u|p(x)−2(u∧∇u)∇ζdx =

∫
B
|∇up|p(x)−2(up∧∇up)∇ζdx.

Combining this with (3.12), we have∫
B
|∇up|p(x)−2(up∧∇up)∇ζdx = 0. (3.15)

Let u∗ = up1 + iup2 : B→ C, where C is the complex plane. Thus

|∇u∗|2 = |∇up|2. (3.16)

It is easy to see that

u∗∇u∗ = ∇(|u∗|2)+(u∗∧∇u∗)i = 0+(u∗∧∇u∗)i

since |u∗|2 = |up1|2 + |up2|2 = 1. Substituting this into (3.15) yields

−i
∫

B
|∇u∗|p(x)−2u∗∇u∗∇ζdx = 0

for any ζ ∈C∞
0 (B,R). Taking ζ = Re(u∗φ j) and ζ = Im(u∗φ j) ( j = 1,2) respectively,

where φ = (φ1,φ2) ∈C∞
0 (B,R2), we can see that∫

B
|∇u∗|p(x)−2u∗∇u∗∇Re(u∗φ)dx+ i

∫
B
|∇u∗|p(x)−2u∗∇u∗∇Im(u∗φ)dx = 0.

Namely

0 =
∫

G
|∇u∗|p(x)−2u∗∇u∗∇(u∗φ)dx.

Noting u∗∇u∗ =−u∗∇u∗, we obtain

0 =
∫

B
|∇u∗|p(x)−2

∇u∗∇φdx−
∫

B
|∇u∗|p(x)−2u∗∇u∗∇u∗φdx

=
∫

B
|∇u∗|p(x)−2

∇u∗∇φdx−
∫

B
|∇u∗|p(x)u∗φdx := J.
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By using (3.16) and Re(J) = 0, Im(J) = 0, we have∫
B
|∇up|p(x)−2

∇up1∇φdx =
∫

B
|∇up|p(x)up1φdx (3.17)

and ∫
B
|∇up|p(x)−2

∇up2∇φdx =
∫

B
|∇up|p(x)up2φdx.

Combining this with (3.17) yields that for any φ ∈C∞
0 (B,R3),∫

B
|∇up|p(x)−2

∇up∇φdx =
∫

B
|∇up|p(x)upφdx.

This shows that up is a weak solution of (2.5). From (3.5), we know that (1.2) is
proved.
Proof of (1.3). For simplification, we drop ε and εk from uε and uεk . From (3.3) and
(3.6) it is deduced that as ε→ 0,∣∣∣∣∫K

u2
3ζ|∇u|p(x)dx

∣∣∣∣≤ sup
K
(1−|u′|2) ·

∫
K
|∇u|p(x)dx→ 0, (3.18)

∣∣∣∣∫K
u′upζ|∇u|p(x)dx−

∫
K

ζ|∇u|p(x)dx
∣∣∣∣= ∣∣∣∣∫K

(u′up−upup)ζ|∇u|p(x)dx
∣∣∣∣ (3.19)

≤ sup
K
|u′−up| ·

∣∣∣∣∫K
up|∇u|p(x)dx

∣∣∣∣→ 0,

and∣∣∣∣∫K
(u− (up,0))ζ|∇u|p(x)dx

∣∣∣∣≤ sup
K
|u− (up,0)| ·

∣∣∣∣∫K
up|∇u|p(x)dx

∣∣∣∣→ 0. (3.20)

Similarly, (3.4) and (3.6) imply that as ε→ 0,∣∣∣∣∫K

1
εp(x)

u2
3ζdx−

∫
K

1
εp(x)

u2
3ζ(1−u2

3)dx
∣∣∣∣≤ sup

K
|1−|u′|2 ·

∣∣∣∣∫K

1
εp(x)

u2
3dx

∣∣∣∣→ 0,

(3.21)
and∣∣∣∣∫K

1
εp(x)

upζu′u2
3dx−

∫
K

1
εp(x)

ζu2
3dx

∣∣∣∣≤ sup
K
|u′−up| ·

∣∣∣∣∫K

1
εp(x)

upu2
3dx

∣∣∣∣→ 0. (3.22)

Letting ε→ 0 in (3.2) we have

lim
ε→0

∫
K

[
uψ|∇u|p(x)+ 1

εp(x)
ψ(uu2

3−u3e3)

]
dx =

∫
K
|∇up|p(x)−2

∇(up,0)∇ψdx

=
∫

G
(up,0)ψ|∇up|p(x)dx. (3.23)

Take ψ = (0,0,u3ζ) where ζ ∈C∞
0 (K) we have

lim
ε→0

∫
K

[
u2

3ζ|∇u|p(x)+ 1
εp(x)

u2
3ζ(u2

3−1)
]

dx = 0.



P(X)-LANDAU-LIFSCHITZ 1029

Combining this with (3.18) we derive

lim
ε→0

∫
K

1
εp(x)

u2
3ζ(u2

3−1)dx = 0.

Substituting this into (3.21) yields

lim
ε→0

∫
K

1
εp(x)

u2
3ζdx = 0. (3.24)

Hence, as ε→ 0, ∣∣∣∣∫K

1
εp(x)

uu2
3ζdx

∣∣∣∣≤ ∫
K

1
εp(x)

u2
3ζdx→ 0.

Thus, for any ψ ∈W 1,p
0 (K,R3), there holds

lim
ε→0

∫
K

1
εp(x)

uu2
3ψdx = 0. (3.25)

In addition, substituting (3.24) into (3.22) leads to

lim
ε→0

∫
K

1
εp(x)

upζu′u2
3dx = 0. (3.26)

Take ψ = (upζ,0) in (3.23) we have

lim
ε→0

∫
K

[
u′upζ|∇u|p(x)dx+

1
εp(x)

upζu′u2
3

]
dx =

∫
K
|∇up|p(x)ζdx,

which, together with (3.26), implies

lim
ε→0

∫
K

u′upζ|∇u|p(x)dx =
∫

K
|∇up|p(x)ζdx.

Combining this with (3.19) we can see (1.3) at last.
Proof of (1.4). Obviously, (3.20) and (1.3) show that as ε→ 0,∣∣∣∣∫K

u|∇u|p(x)ψdx−
∫

K
(up,0)|∇up|p(x)ψdx

∣∣∣∣
≤
∣∣∣∣∫K

(u− (up,0))|∇u|p(x)ψdx
∣∣∣∣+ ∣∣∣∣∫K

(up,0)(|∇u|p(x)−|∇up|p(x))ψdx
∣∣∣∣→ 0.

Substituting this and (3.25) into (3.23), we see that the left hand side of (3.23) be-
comes

lim
ε→0

∫
K

[
uψ|∇u|p(x)+ 1

εp(x)
ψ(uu2

3−u3e3)

]
dx

=
∫

K
(up,0)|∇up|p(x)ψdx− lim

ε→0

∫
K

1
εp(x)

ψu3e3dx.

Comparing this with the right hand side of (3.23), we have

lim
ε→0

∫
K

1
εp(x)

ψu3e3dx = 0.
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This is (1.4). Theorem 2 is proved.
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