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Abstract. We establish the existence of positive radial entire solutions for nonlinear equations
and systems. Our main results obtained with the use of the Schauder-Tychonov fixed point
theorem will complete the works of Kusano-Swanson and Holanda.
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1. INTRODUCTION

We consider the existence of entire radial solutions for the following nonlinear
equation

Sk1

(
Λ
(
D2u1

))
−α1Sk2

(
Λ
(
D2u1

))
= λ1 f (|x| ,u1, |∇u1|) , x ∈ RN , (1.1)

and the nonlinear system{
Sk1

(
Λ
(
D2u1

))
−α1Sk2

(
Λ
(
D2u1

))
= λ1 f1 (|x| ,u1,u2, |∇u1| , |∇u2|) , x ∈ RN ,

Sk1

(
Λ
(
D2u2

))
−α2Sk2

(
Λ
(
D2u2

))
= λ2 f2 (|x| ,u1,u2, |∇u1| , |∇u2|) , x ∈ RN ,

(1.2)
where N ≥ 3, αi ∈ (0,∞), λi ∈R, ki ∈ {1,2, ...,N} with k1 > 2k2, D2ui is the Hessian
matrix of a C2 function ui defined over RN , Λ

(
D2ui

)
=
(
Λi

1, ...,Λ
i
N
)

is the vector of
eigenvalues of D2ui, Ski

(
Λ
(
D2ui

))
is the ki- Hessian operator defined by

Ski

(
Λ
(
D2ui

))
= ∑

1≤ j1<...< jki≤N
Λ

i
j1 · ... ·Λ

i
jki
, i = 1,2,

and the nonlinearities f , f1 and f2 satisfy some of the conditions that will be specified
later.

Historically, when α1 ∈ (0,∞), k1 = N and k2 = 1, (1.1) is referred in differential
geometry as the equation for prescribed generalized Gaussian curvature, as pointed
in the paper written with a long time ago by Kusano and Swanson [5] (for further
details, see Pogorelov [6, Chap. 10-13]). In this situation, with k1 = N and k2 = 1,
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from mathematical point of view the authors [5] carried out a systematic study of
(1.1) and gave sufficient conditions on f to admit solutions in RN .

Recently, in the case α1 = α2 = 0, the question of existence of solutions for the
more general equations and systems of the form (1.1) and (1.2) was studied by
Holanda [2]. So, the case α1,α2 ∈ (0,∞) is a whole new ball game. Observing
the results obtained until now and practical character of the problems of the type
(1.1)/(1.2), there are several reasons to restate the research of these more general
equations and systems.

In this work, we shall consider directly the equation (1.1), the system (1.2) and
we intend to obtain the same results as observed by Kusano and Swanson [5], in the
particular case mentioned. We also point that, our results can be adapted to a more
larger classes of problems that was studied by Holanda [2].

The outline of the paper is as follows. Section 2 present the hypotheses on the
nonlinearities and our main results. In Section 3 we give some auxiliary results. Our
main Theorems will be proved in Section 4.

2. THE MAIN RESULTS

2.1. The scalar equation (1.1)

We work with the following classes of functions f :
(C1) | f (t,x,z)| is monotone nondecreasing function with respect to x and z for

fixed values of other variables. Meaning, x→ | f (t,x,z)| and z→ | f (t,x,z)|
are monotone nondecreasing, for fixed (t,z) and fixed (t,x) respectively;

(C2) F (m) = supt∈[0,∞)

∣∣ f (t,m(1+ t2
)
,2mt

)∣∣< ∞ for all m > 0;

(C3) limm→∞
F(m)

mk1
= 0;

(C4)
H (c) = sup

t∈[0,∞)

∣∣ f (t,c+2αN;k1,k2t
2,4αN;k1,k2t

)∣∣< ∞

for all c ∈ R, where α1
N;k1,k2

is defined by

α
1
N;k1,k2

=
(

α1k1Ck2−1
N−1 /k2Ck1−1

N−1

)1/(k1−k2)
, Ck2−1

N−1 = (N−1)!/(k2−1)!(N− k2)!;

(C5) limc→−∞ H (c) = 0.
The main results of the paper for the equation (1.1) are the following theorems.

Theorem 1. Suppose that f : [0,∞)×(0,∞)× [0,∞)→R is a continuous function
that satisfies the assumptions (C1) and (C2). Then, there exists λ1

0 > 0 such that for all
λ1 ∈

[
−λ1

0,λ
1
0
]

the equation (1.1) has an infinitude of positive radial entire solutions
u1 (x) = u1 (|x|) such that

0 < lim
|x|→∞

inf
u1 (|x|)
|x|2

and lim
|x|→∞

sup
u1 (|x|)
|x|2

< ∞. (2.1)
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Theorem 2. Assume that f : [0,∞)×(0,∞)× [0,∞)→ [0,∞) is a continuous func-
tion that satisfies the assumptions (C1), (C2) and (C3). Then, for all λ1 ∈ [0,∞) the
equation (1.1) has an infinitude of positive radial entire solutions u1 (x) = u1 (|x|)
satisfying (2.1).

Theorem 3. If f : [0,∞)×R× [0,∞)→ R is a continuous function that satisfies
the assumptions (C1), (C4) and (C5) then, for all λ1 ∈ R the equation (1.1) has an
infinitude of radial entire solutions u1 (x) = u1 (|x|) which are positive in a neighbor-
hood of infinity and satisfy (2.1).

2.2. The system of equations (1.2)

Let i = 1,2 and consider the following classes of functions f1 and f2:
(CS1) | fi (t,s, l,q,w)| is monotone nondecreasing function with respect to t, s, l, q

and w for fixed values of other variables;
(CS2) Fi (m1,m2) = supt∈[0,∞)

∣∣ fi
(
t,m1

(
1+ t2

)
,m2

(
1+ t2

)
,2m1t,2m2t

)∣∣ < ∞ for
all m1,m2 > 0;

(CS3)

lim
m1→∞

F1 (m1,m2)

(m1)
k1

= 0 for all m2 > 0

and

lim
m2→∞

F2 (m1,m2)

(m2)
k1

= 0 for all m1 > 0;

(CS4)

Hi (c1,c2) = sup
t∈[0,∞)

∣∣ fi
(
t,c1 +2α

1
N;k1,k2

t2,c2 +2α
2
N;k1,k2

t2,4α
1
N;k1,k2

t,4α
2
N;k1,k2

t
)∣∣< ∞

for all c1,c2 ∈ R, where αi
N;k1,k2

is defined by

α
i
N;k1,k2

=
(

αik1Ck2−1
N−1 /k2Ck1−1

N−1

)1/(k1−k2)
, Ck2−1

N−1 = (N−1)!/(k2−1)!(N− k2)!;

(CS5) limc1→−∞ H1 (c1,c2) = 0 for all c2 ∈ R and limc2→−∞ H2 (c1,c2) = 0 for all
c1 ∈ R.

Regarding the system (1.2), Our main results are the following theorems.

Theorem 4. Let

D = [0,∞)× (0,∞)× (0,∞)× [0,∞)× [0,∞) .

Suppose that f1, f2 : D→ R are continuous functions that satisfy the assumptions
(CS1) and (CS2). Then, there exists λi

0 > 0 such that for all λi ∈
[
−λi

0,λ
i
0

]
the

system (1.2) has an infinitude of positive radial entire solutions (u1 (x) ,u2 (x)) =
(u1 (|x|) ,u2 (|x|)) such that

0 < lim
|x|→∞

inf
ui (|x|)
|x|2

and lim
|x|→∞

sup
ui (|x|)
|x|2

< ∞, i = 1,2. (2.2)
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Theorem 5. Let

D = [0,∞)× (0,∞)× (0,∞)× [0,∞)× [0,∞) .

Assume that f1, f2 : D→ [0,∞) are continuous functions that satisfy the assumptions
(CS1), (CS2) and (CS3). Then, for all λi ∈ [0,∞) the system (1.2) has an infinitude of
positive radial entire solutions (u1 (x) ,u2 (x)) = (u1 (|x|) ,u2 (|x|)) satisfying (2.2).

Theorem 6. Let

D = [0,∞)×R×R× [0,∞)× [0,∞) .

Suppose that f1, f2 : D→ R are continuous functions that satisfy the assumptions
(CS1), (CS4) and (CS5). Then, for all λi ∈ R the system (1.2) has an infinitude
of radial entire solutions (u1 (x) ,u2 (x)) = (u1 (|x|) ,u2 (|x|)) which are positive in a
neighborhood of infinity and satisfy (2.2).

Comparing the results in the paper of [5] with our Theorems 1-3, we consider that
our work is a consistent generalization of [5] from the mathematical point view and
on the other hand Theorems 4-6 are excellent sources of inspiration for the futures
works in treating a more general classes of equations and systems that was considered
by Holanda [2].

3. PRELIMINARY CONSIDERATIONS

To prove our theorems, we make to introduce the following useful result.

Lemma 1. Setting

ϕ(t) = tk1− tk2 for t ∈ R, t0 = (k2/k1)
1/(k1−k2) ,

the following hold:

1. ϕ(t0) = k2−k1
k1

(
k2
k1

)k2/(k1−k2)
< 0, ϕ(1) = 0 and ϕ(∞) := limt→∞ ϕ(t) = ∞;

2. ϕ : [t0,∞)→ [ϕ(t0) ,∞) is strictly increasing for all t > t0 and in fact has a
uniquely defined inverse function φ : [ϕ(t0) ,∞)→ [t0,∞) with φ(0) = 1;

3. φ : [ϕ(t0) ,∞)→ [t0,∞) is analytic and concave. In particular, φ(t) ≥ 1 for
all t ≥ 0, φ(∞) := limt→∞ φ(t) =∞ and for t > ϕ(t0) we have that φ is strictly
increasing and it hold

φ
′ (t) =

1

k1 (φ(t))
k1−1− k2 (φ(t))

k2−1 > 0

and

φ
′′ (t) =−k1 (k1−1)(φ(t))k1−2− k2 (k2−1)(φ(t))k2−2[

k1 (φ(t))
k1−1− k2 (φ(t))

k2−1
]3 < 0;

4. φ(sξ)≤ ξ1/k1φ(s) for all s≥ 0 and ξ≥ 1.
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Proof of Lemma 1.

1. By a direct calculation

ϕ(t0) =
(

k2

k1

) k1
k1−k2
−
(

k2

k1

) k2
k1−k2

=

(
k2

k1

) k1−k2+k2
k1−k2

−
(

k2

k1

) k2
k1−k2

=

(
k2

k1

) k2
k1−k2

[(
k2

k1
−1
)]

=
k2− k1

k1

(
k2

k1

)k2/(k1−k2)

,

and from k1 > k2 we obtain ϕ(t0) < 0. Clearly ϕ(1) = 0 and ϕ(∞) :=
limt→∞ ϕ(t) = ∞.

2. Since ϕ is differentiable, we have

ϕ
′ (t) = k1tk1−1− k2tk2−1 = tk2−1

(
k1tk1−k2− k2

)
≥ 0 for t ≥ t0

and so ϕ is strictly increasing on (t0,∞) with the range [ϕ(t0) ,∞). Whereas
ϕ is bijective with the inverse function satisfying φ(0) = 1.

3. It is important to note that the last part of the result follow from standard
inversion theorem, from where

φ
′ (t) =

1
(ϕ′ ◦φ)(t)

.

On the other hand

k2

k1
≥ k2 (k2−1)

k1 (k1−1)
and φ(t)> 0, for t > ϕ(t0) ,

implies φ′′ (t)< 0 for all t > ϕ(t0).
4. By the basic fact σk1 ≥ σ for all σ≥ 1, we have that for each t ≥ 1 and σ≥ 1

ϕ(tσ) = (tσ)k1− (tσ)k2 = tk1σ
k1− tk2σ

k2

= σ
k1
(

tk1− tk2σ
k2−k1

)
≥ σ

k1
(

tk1− tk2
)
= σ

k1ϕ(t)

where, we have used σk2−k1 ≤ 1. It follows that

tσ = φ(ϕ(tσ))≥ φ

(
σ

k1ϕ(t)
)
.

Let s = ϕ(t) and ξ = σk1 , i.e., t = Φ(s) and ξ1/k1 = σ, one can see that 4.
holds.

�

To end the section, for the readers’ convenience, we recall the radial form of the
k-Hessian operator, see for example [1, 3, 4].
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Lemma 2. Assume u ∈C2 [0,R) is radially symmetric with u′ (0) = 0. Then, the
function u defined by u(x) = u(r) where r = |x|< R is C2 (BR), and

Λ
(
D2u(r)

)
=

{(
u′′ (r) , u′(r)

r , ..., u′(r)
r

)
for r ∈ (0,R) ,

(u′′ (0) ,u′′ (0) , ...,u′′ (0)) for r = 0;

Sk
(
Λ
(
D2u(r)

))
=

Ck−1
N−1u′′(r)

(
u′(r)

r

)k−1
+Ck−1

N−1
N−k

k

(
u′(r)

r

)k
for r ∈ (0,R) ,

Ck
N (u′′ (0))k for r = 0;

where the prime denotes differentiation with respect to r.

4. PROOFS OF THE MAIN RESULTS

Proofs of Theorems 1-3. Setting r = |x| we prove the existence of a radial solution
u1 (r) ∈C2 to the problem (1.1). Observe that we can rewrite (1.1) as follows:

Ck1−1
N−1

[
rN−k1

k1

(
u
′
1(r)

)k1
]′
−α1Ck2−1

N−1

[
rN−k2

k2

(
u
′
1(r)

)k2
]′
=

λ1rN−1 f
(
r,u1 (r) ,

∣∣u′1 (r)∣∣) . (4.1)

Then, the radial solution of (4.1) is a solution u, of the ordinary differential equa-
tion (4.1) with the initial conditions

u1 (0) = c0 and u′1 (0) = 0. (4.2)

For r > 0 it follows that

Ck1−1
N−1 rN−k1

k1

(
u
′
1(r)

)k1
−

α1Ck2−1
N−1 rN−k2

k2

(
u
′
1(r)

)k2
=∫ r

0
λ1sN−1 f

(
s,u1 (s) ,

∣∣u′1 (s)∣∣)ds,

or, equivalently(
u
′
1(r)

α1
N;k1,k2

r

)k1

−

(
u
′
1(r)

α1
N;k1,k2

r

)k2

=
∫ r

0

λ1k1r−NsN−1 f (s,u1 (s) , |u′1 (s)|)

Ck1−1
N−1

(
α1

N;k1,k2

)k1
ds, r > 0.

(4.3)
From the definition of φ in Lemma 1, we see that (4.3) is equivalent to

u
′
1(r)

α1
N;k1,k2

r
= φ

 λ1r−N

Ck1−1
N−1

(
α1

N;k1,k2

)k1

∫ r

0
sN−1 f

(
s,u1 (s) ,

∣∣u′1 (s)∣∣)ds

 , r > 0. (4.4)
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Since limr→0+ u′1(r) = 0 = u
′
1(0) = 0 via L’Hôpital’s rule and (4.2), the equation

(4.4) can be extended by continuity

u
′
(r) = α

1
N;k1,k2

rφ

 λ1k1r−N

Ck1−1
N−1

(
α1

N;k1,k2

)k1

∫ r

0
sN−1 f

(
s,u1 (s) ,

∣∣u′1 (s)∣∣)ds

 , r ≥ 0,

for any C1-function u. Then, (4.1) with the initial conditions (4.2) can be equivalently
written as an integral equation

u1 (r) = c0 +α1
N;k1,k2∫ r

0
tφ

 λ1k1t−N

Ck1−1
N−1

(
α1

N;k1,k2

)k1

∫ t

0
sN−1 f

(
s,u1 (s) ,

∣∣u′1 (s)∣∣)ds

dt, r ≥ 0

u1 (0) = c0 and u′1 (0) = 0.
(4.5)

To establish the existence of a solution to this problem (4.5), we use the Schauder-
Tychonov fixed point theorem and hence u1 (x) := u1 (r) is a radial entire solution of
(1.1). �

Next, we are ready to prove our main results.

Proof of the Theorem 1. Our conditions permit to choose λ1
0 > 0 such that

λ1
0k1

NCk1−1
N−1

F
(

2α1
N;k1,k2

)
(

α1
N;k1,k2

)k1
≤ 1

kk2
1

.

Denote by C1 the Fréchet space of all C1- functions in [0,∞), with the topology of
uniform convergence of functions and their first derivatives on compact subintervals
of [0,∞). Let c0 ∈

(
0,2α1

N;k1,k2

)
arbitrarily fixed and we consider the closed convex

set

K =
{

u1 ∈C1 ∣∣c0 ≤ u1 (r)≤ c0 +2α
1
N;k1,k2

r2, 0≤ u′1 (r)≤ 4α
1
N;k1,k2

r, r ≥ 0
}
.

(4.6)
We define the mapping T : K→C1 by

(Tu1)(r) = c0 +α
1
N;k1,k2

∫ r

0
tφ(w(t))dt, r ≥ 0, u ∈ K, (4.7)

where

w(t) =
λ1k1t−N

Ck1−1
N−1

(
α1

N;k1,k2

)k1

∫ t

0
sN−1 f

(
s,u1 (s) ,

∣∣u′1 (s)∣∣)ds, λ1 ∈
[
−λ

1
0,λ

1
0
]
.
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From the above settings, the assumptions (C1) and (C2), if u1 ∈ K, then for all
r ≥ 0 and λ1 ∈

[
−λ1

0,λ
1
0
]

we have

|w(t)| ≤ |λ1|k1t−N

Ck1−1
N−1

(
α1

N;k1,k2

)k1

∣∣ f (t,2α
1
N;k1,k2

(
1+ t2) ,4α

1
N;k1,k2

t
)∣∣∫ t

0
sN−1ds

=
|λ1|k1

NCk1−1
N−1

(
α1

N;k1,k2

)k1

∣∣ f (t,2α
1
N;k1,k2

(
1+ t2) ,4α

1
N;k1,k2

t
)∣∣

≤
λ1

0k1

NCk1−1
N−1

F
(

2α1
N;k1,k2

)
(

α1
N;k1,k2

)k1
≤ 1

kk2
1

<
k1− k2

k1

(
k2

k1

)k2/(k1−k2)

,

showing that T is well-defined on K.
Next, we observe that ϕ(2) = 2k1−2k2 = 2k2

(
2k1−k2−1

)
≥ 1, from where

2 = φ(ϕ(2))≥ φ(1) .

Also, with the use of Lemma 1, if u ∈ K we have

α
1
N;k1,k2

φ(w(t))≤ α
1
N;k1,k2

φ

(
1

kk2
1

)

≤ α
1
N;k1,k2

φ

((
1
k1

+1
)k2
)

≤ α
1
N;k1,k2

φ

((
1
k1

+1
)k2
)

≤ α
1
N;k1,k2

(
1
k1

+1
)

φ(1)

≤ 2α
1
N;k1,k2

(
1
k1

+1
)
≤ 4α

1
N;k1,k2

, t ≥ 0,

and hence

c0 ≤ (Tu1)(r)≤ c0 +2α
1
N;k1,k2

r2, r ≥ 0.

Furthermore

0≤ (Tu1)
′ (r)≤ α

1
N;k1,k2

rφ(w(r))≤ 4α
1
N;k1,k2

r, r ≥ 0, (4.8)

implying that T maps K into itself.
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Next, we prove the continuity of T in C1- topology. To do this, let {un
1 (r)}n≥0 be

a sequence in K converging to u1 ∈ K in this topology, and define

wn (t) =
λk1t−N

Ck1−1
N−1

(
α1

N;k1,k2

)k1

∫ t

0
sN−1 f

(
s,un

1 (s) ,
∣∣(un

1)
′ (s)
∣∣)ds, t ≥ 0, λ1 ∈

[
−λ

1
0,λ

1
0
]
.

Using (4.8) we have

|wn (t)−w(t)| ≤ λ
1
0
(
α

1
N;k1,k2

)k1 sup
0≤r≤t

∣∣ f (r,un
1 (r) ,

∣∣(un
1)
′ (r)
∣∣)− f

(
r,u1 (r) ,

∣∣u′1 (r)∣∣)∣∣
and ∣∣(Tun

1)
′ (t)− (Tun

1)
′ (t)
∣∣= α

1
N;k1,k2

t |φ(wn (t))−φ(w(t))| .
The continuity of φ implies that (Tun

1)
′ (t)→ (Tu1)

′ (t) as n→∞ and the convergence
is uniformly on every compact subinterval of [0,∞). Likewise, from (4.7) (Tun

1)(t)→
(Tu1)(t) as n→ ∞ uniformly on such subintervals, implying the continuity of T in
C1.

To prove that T (K) has compact closure in C1 via Arzela-Ascoli’s theorem, we
note that (Tu1)(r) ∈C2 ([0,∞)) for all u1 ∈ K and

(Tu1)
′′ (r) =

(
(Tu1)

′ (r)
)′
= αN;k1,k2 (rφ(w(r)))′

= α
1
N;k1,k2

φ(w(r))+α
1
N;k1,k2

rφ
′ (w(r))w′ (r)

= α
1
N;k1,k2

φ(w(r))+λ1

k1

(
α1

N;k1,k2

)1−k1

Ck1−1
N−1

φ
′ (w(r)) [ f

(
r,u1 (r) ,

∣∣u′1 (r)∣∣)
−Nr−N

∫ r

0
sN−1 f

(
s,u1 (s) ,

∣∣u′1 (s)∣∣)ds]

for all r ≥ 0. Then, Lemma 1 imply the uniform bound∣∣(Tu1)
′′ (r)

∣∣≤ α
1
N;k1,k2

φ

(
1

kk2
1

)
+2λ

1
0k1
(
α

1
N;k1,k2

)1−k1
φ
′

(
− 1

kk2
1

)
, r ≥ 0.

Thus
sup
∣∣(Tu1)

′′ (r)
∣∣< ∞ for any r ∈ [a,b]⊂ [0,∞) .

By the Mean Value Theorem∣∣(Tu1)
′ (r2)− (Tu1)

′ (r1)
∣∣≤ sup

r∈[a,b]

∣∣(Tu1)
′′ (r)

∣∣ |r2− r1| ,

with
r1,r2 ∈ [a,b]⊂ [0,∞) ,

we obtain that (T K)′ = {(Tu1)
′ |u1 ∈ K } is locally equicontinuous on any compact

of [0,∞). Similarly, T K is locally equicontinuous on compact sets from [0,∞), and
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the local uniform boundedness of T K and (T K)′ is easily verified. Therefore, from
Ascoli’s Theorem, it follows that T K is relatively compact in the C1-topology.

Finally, we can then apply the Schauder-Tychonov fixed point theorem to conclude
that there exists an element u1 ∈ K such that Tu1 = u1. We have proved that u1
satisfies (4.5), yielding a positive entire solution u1 (x) = u1 (|x|) of equation (1.1) in
RN .

To finish the proof of Theorem 1, the fact that u1 (r) satisfies (2.1) follows from
the inequalities

c0 +α
1
N;k1,k2

(k2/k1)
1/(k1−k2) r2

2
≤ u1 (r)≤ c0 +2α

1
N;k1,k2

r2, r ≥ 0, (4.9)

where the left inequality in (4.9) is a consequence of the fact

φ(t)> (k2/k1)
1/(k1−k2) for t >

k2− k1

k1

(
k2

k1

)k2/(k1−k2)

,

and the right inequality in (4.9) is obvious from (4.6). On the other hand since any
c0 ∈

(
0,2α1

N;k1,k2

)
will serve as an initial value u1 (0) = c0 in (4.5), there exists an

infinitude of positive radial entire solutions of equation (1.1). �

Proof of Theorems 2 and 3. The proofs of Theorems 2 and 3 are virtually the same
as that for Theorem 1, and the details will be omitted. For any further comments
regarding the details, see the paper of Kusano and Swanson [5]. �

Proofs of Theorems 4-6. Setting r = |x| we prove the existence of a radial solution
(u1,u2) ∈C2×C2 to the problem (1.2). Denote

G1 (|x| ,u1,u2) = f1 (|x| ,u1,u2, |∇u1| , |∇u2|)

and
G2 (|x| ,u1,u2) = f2 (|x| ,u1,u2, |∇u1| , |∇u2|) .

We observe that we can rewrite (1.2) as follows:

Ck1−1
N−1

[
rN−k1

k1

(
u
′
1(r)

)k1
]′
−α1Ck2−1

N−1

[
rN−k2

k2

(
u
′
1(r)

)k2
]′
=

λ1rN−1G1 (r,u1 (r) ,u2 (r)) ,

Ck1−1
N−1

[
rN−k1

k1

(
u
′
2(r)

)k1
]′
−α2Ck2−1

N−1

[
rN−k2

k2

(
u
′
2(r)

)k2
]′
=

λ2rN−1G2 (r,u1 (r) ,u2 (r)) .

(4.10)

Then, the radial solution of (4.10) is a solution u of the ordinary differential system
(4.10) with the initial conditions

(u1 (0) ,u2 (0)) = (c1,c2) and
(
u′1 (0) ,u

′
2 (0)

)
= (0,0) . (4.11)
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It follows that
u
′
1(r) = α1

N;k1,k2
rφ

(
λ1r−N

Ck1−1
N−1

(
α1

N;k1 ,k2

)k1

∫ r
0 sN−1G1 (s,u1 (s) ,u2 (s))ds

)
, r ≥ 0,

u
′
2(r) = α2

N;k1,k2
rφ

(
λ2r−N

Ck1−1
N−1

(
α2

N;k1 ,k2

)k1

∫ r
0 sN−1G2 (s,u1 (s) ,u2 (s))ds

)
, r ≥ 0.

for any C1-function (u1,u2). Then, for r ≥ 0, (4.10) with the initial conditions (4.11)
can be equivalently written as an integral system of equations

u1 (r) = c1 +α1
N;k1,k2

∫ r
0 tφ

(
λ1k1t−N

Ck1−1
N−1

(
α1

N;k1 ,k2

)k1

∫ t
0 sN−1G1 (s,u1 (s) ,u2 (s))ds

)
dt,

u2 (r) = c2 +α2
N;k1,k2

∫ r
0 tφ

(
λ2k1t−N

Ck1−1
N−1

(
α2

N;k1 ,k2

)k1

∫ t
0 sN−1G2 (s,u1 (s) ,u2 (s))ds

)
dt,

(u1 (0) ,u2 (0)) = (c1,c2) and (u′1 (0) ,u
′
2 (0)) = (0,0) .

(4.12)
To establish the existence of a solution to this problem (4.12), we use the Schauder-

Tychonov fixed point theorem and hence (u1 (x) ,u2 (x)) := (u1 (r) ,u2 (r)) is a radial
entire solution of (1.2). �

Next, we are ready to prove our main results.

Proof of the Theorem 4. Let i = 1,2. We choose λi
0 > 0, such that

λi
0k1

NCk1−1
N−1

(
αi

N;k1,k2

)k1
Fi
(
2α

1
N;k1,k2

,2α
2
N;k1,k2

)
≤ 1

kk2
1

.

For simplicity, denote by C1 the Fréchet space of all C1- functions in [0,∞), with the
topology of uniform convergence of functions and their first derivatives on compact
subintervals of [0,∞).

For a fixed choice of ci in
(

0,2αi
N;k1,k2

)
and λi a small positive parameter, the

solutions of (1.2) are fixed point of the compact operator (T1,T2) : K1×K2→C1×C1

defined by

(Tiui)(r) = ci +α
i
N;k1,k2

∫ r

0
tφ(wi (t))dt, r ≥ 0, u ∈ K, (4.13)

where

wi (t) =
λik1t−N

Ck1−1
N−1

(
αi

N;k1,k2

)k1

∫ t

0
sN−1Gi (s,u1 (s) ,u2 (s))ds, λi ∈

[
−λ

i
0,λ

i
0
]
,

on the closed convex set

Ki =
{

u ∈C1 ∣∣ci ≤ ui (r)≤ ci +2α
i
N;k1,k2

r2, 0≤ u′i (r)≤ 4α
i
N;k1,k2

r, r ≥ 0
}
. (4.14)
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Similar to the proof of Theorem 1, if (u1,u2) ∈ K1×K2, for all r ≥ 0 and λi ∈[
−λi

0,λ
i
0

]
we have

|wi (t)| ≤
λi

0k1

NCk1−1
N−1

Fi

(
2α1

N;k1,k2
,2α2

N;k1,k2

)
(

αi
N;k1,k2

)k1
≤ 1

kk2
1

<
k1− k2

k1

(
k2

k1

)k2/(k1−k2)

.

From the above analysis, (T1,T2) is well-defined on K1×K2. Also, if ui ∈ Ki we have

α
i
N;k1,k2

φ(wi (t))≤ 4α
i
N;k1,k2

, t ≥ 0,

and hence
ci ≤ (Tiui)(r)≤ ci +2α

i
N;k1,k2

r2, r ≥ 0.

Therefore

0≤ (Tiui)
′ (r)≤ α

i
N;k1,k2

rφ(wi (r))≤ 4α
i
N;k1,k2

r, r ≥ 0, (4.15)

implying that (T1,T2) maps K1×K2 into itself.
Next, we prove the continuity of (T1,T2) in C1×C1- topology. To do this, let

{(un
1 (r) ,u

n
2 (r))}n≥0 be a sequence in K1×K2 converging to (u1,u2)∈K1×K2 in this

topology, and define

wn
i (t) =

λik1t−N

Ck1−1
N−1

(
αi

N;k1,k2

)k1

∫ t

0
sN−1Gi (s,un

1 (s) ,u
n
2 (s))ds, t ≥ 0, λi ∈ [−λ0,λ0] .

Using (4.15) we have

|wn
i (t)−wi (t)| ≤ λ

i
0α

k1
N;k1,k2

sup
0≤r≤t

|Gi (r,un
1 (r) ,u

n
2 (r))−Gi (r,u1 (r) ,u2 (r))|

and ∣∣(Tiun
i )
′ (t)− (Tiui)

′ (t)
∣∣= α

i
N;k1,k2

t |φ(wn
i (t))−φ(wi (t))| .

Due to the continuity of φ we get the convergences (Tiun
i )
′ (t)→ (Tiui)

′ (t) as n→ ∞

uniformly on every compact subinterval of [0,∞). Likewise, from (4.13) (Tiun
i )(t)→

(Tiui)(t) as n→ ∞ uniformly on such subintervals. So (T1,T2) is continuous in C1×
C2-topology.

We prove that TiKi has compact closure in C1. We note that (Tiui)(r) ∈C2 ([0,∞))
for all ui ∈ Ki and

(Tiui)
′′ (r) = α

i
N;k1,k2

φ(wi (r))+λi

k1

(
αi

N;k1,k2

)1−k1

Ck1−1
N−1

φ
′ (wi (r)) [Gi (r,u1 (r) ,u2 (r))

−Nr−N
∫ r

0
sN−1Gi (s,u1 (s) ,u2 (s))ds],
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for all r ≥ 0. Lemma 1 imply the uniform bound∣∣(Tiui)
′′ (r)

∣∣≤ α
i
N;k1,k2

φ

(
1

kk2
1

)
+2λ0k1

(
α

i
N;k1,k2

)1−k1
φ
′

(
− 1

kk2
1

)
, r ≥ 0,

and so (TiKi)
′ = {(Tiui)

′ |ui ∈ Ki } is locally equicontinuous in [0,∞). Similarly TiKi
is locally equicontinuous, and the local uniform boundedness of TiKi and (TiKi)

′ is
easily verified. Therefore, from Ascoli’s Theorem, it follows that TiKi and (TiKi)

′ are
relatively compact in any compact interval of [0,∞). Consequently, by a diagonal
sequential process, we conclude that TiKi is relatively compact in the C1-topology.
Finally, we apply the Schauder-Tychonov fixed point theorem to conclude that there
exists an element (u1,u2) ∈ K1×K2 such that (T1u1,T2u2) = (u1,u2).

Then (u1,u2) satisfies (4.12), yielding a positive entire solution

(u1 (x) ,u2 (x)) := (u1 (|x|) ,u2 (|x|)) ,
to the original system (1.2).

The fact that ui (r) satisfies (2.2) follows from the inequalities

ci +α
i
N;k1,k2

(k2/k1)
1/(k1−k2) r2

2
≤ ui (r)≤ ci +2α

i
N;k1,k2

r2, r ≥ 0, (4.16)

where the left inequality in (4.16) is a consequence of the fact

φ(t)> (k2/k1)
1/(k1−k2) for t >

k2− k1

k1

(
k2

k1

)k2/(k1−k2)

,

and the right inequality in (4.16) is obvious from (4.14). On the other hand since any

(c1,c2) ∈
(
0,2α

1
N;k1,k2

)
×
(
0,2α

2
N;k1,k2

)
,

will serve as an initial value (u1 (0) ,u2 (0)) = (c1,c2) in (4.12), there exists an in-
finitude of positive radial entire solutions of system (1.2) and, thus, Theorem 4 is
proved. �

Proof of Theorems 5 and 6. Details of the proofs of Theorems 5 and 6 are omitted,
since are virtually the same as that for Theorem 4, see also the paper of Kusano and
Swanson [5] for any further comments, resulting a fixed point (u1,u2) of the mapping
(T1,T2) defined by (4.13) in the set (4.14). �
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