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Abstract. In the present article deal with the existence and multiplicity of solutions to a class
of p(x)-Kirchhoff type problem with Steklov boundary-value. By variational approach and the-
ory of the variable exponent Sobolev spaces, under appropriate assumptions on f , we obtain
existence of infinitely solutions and at least one nontrivial weak solution.
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1. INTRODUCTION

The purpose of this article is to study the following nonlinear Steklov boundary
value problem {

M
(∫

Ω

|∇u|p(x)
p(x) dx

)
∆p(x)u = |u|p(x)−2 u in Ω,

|∇u|p(x)−2 ∂u
∂v = λ f (x,u) on ∂Ω,

(E)

where Ω ⊂ RN (N ≥ 2) is a smooth bounded domain, λ is a positive parameter
p ∈ C

(
Ω
)
, ∆p(x)u = div

(
|∇u|p(x)−2∇u

)
is a p(x)-Laplacian operator, M : (0,∞) →

(0,∞) is a continuous Kirchohoff function and f : ∂Ω×R → R is a Carathéodory
function, ∂u

∂v is the outer unit normal derivative on ∂Ω.
Problem (E) is related to the stationary version of a model, the so-called Kirchhoff

equation, introduced by Kirchhoff [17]. In 1883, Kirchhoff established a model given
by the equation

ρ
∂2u
∂t2 −

P0

h
+

E
2L

L∫
0

∣∣∣∣∂u
∂x

∣∣∣∣2 dx

 ∂2u
∂x2 = 0,

where L, E, ρ, P0, h are constants. The above equation is an extension of the classical
D’Alambert’s wave equation, by considering the effects of the changes in the length
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of the strings during the vibrations. Moreover, equation (E) can be used for mod-
elling several physical and biological systems, where u describes a process which
depends on the average of itself, such as the population density [10].

Lions [19] has proposed an abstract framework for the Kirchhoff-type equations.
After this work of Lions, various equations of Kirchhoff-type have attracted much
attention [6, 9]. The study of Kirchhoff-type equations has initially been extended
to the case involving the p-Laplacian operator, and then the equations containing the
p(x)-Laplacian operator [11, 16].

The study of variation problems with variable exponent has extremely been attract
in recently. Because such problems are used to model dynamical phenomena arising
from the study of electrorheological fluids [20], elastic mechanics [25], like image
processing and stationary thermo-rheological viscous flows of non-Newtonian fluids
[2, 8, 21] and in the mathematical description of the processes filtration of an idea
barotropic gas through a porous medium [5].

The Steklov problems involving p(x)-Laplacian have been worked by some of the
authors [15, 22, 24]. Especially, the authors have studied the problems of type (E)
when M(t) = 1. For example, in [7], the author investigated the existence and multi-
plicity of solutions for Steklov problem with non-standard growth condition without
using the Ambrosetti-Rabinowitz type condition. In [3], the author proved the ex-
istencel of solutions by using Ekeland variational principle together with min-max
method. In [4], the authors obtained the existence and multiplicity of solutions for
the nonlinear Steklov boundary value problem, using Mountain Pass, Fountain and
Ricceri three critical points theorems. Moreover, in [1], they showed the existence
and multiplicity of solutions using variational methods under suitable assumptions
on the nonlinearity,.

Inspired by the papers above mentioned , we studied the Steklov problem involving
the p(x)-Kirchhoff type operator. The present article is composed of two sections. In
Section 2, we present some necessary preliminary knowledge of variable exponent
Lebesgue-Sobolev spaces. In Section 3, using the variational method, we give the
main results and their proofs.

2. PRELIMINARIES

To discuss problem (E), we define some definitions and basic properties of vari-
able exponent Lebesgue-Sobolev spaces Lp(x) (Ω), W 1,p(x) (Ω) and W 1,p(x)

0 (Ω) which
will be used later. For more details, see [18].

Set
C+

(
Ω
)
=
{

p : p ∈C
(
Ω
)
, p(x)> 1 for all x ∈ Ω

}
.

For any p(x) ∈C+

(
Ω
)
, we write

1 < p− := max
x∈Ω

p(x)≤ p(x)≤ p+ := min
x∈Ω

p(x)< ∞.
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Define the variable exponent Lebesgue space by

Lp(x) (Ω) =

{
u | u : Ω → R is a measureable and

∫
Ω

|u(x)|p(x) dx < ∞

}
,

with the norm

|u|Lp(x)(Ω) := |u|p(x) = inf

{
η > 0 :

∫
Ω

∣∣∣∣u(x)η

∣∣∣∣p(x) dx ≤ 1

}
.

Also, we can define C+ (∂Ω) and p−, p+ for any p(x) ∈C (∂Ω) , and denote

Lp(x) (∂Ω) =

{
u | u : ∂Ω → R is a measureable and

∫
∂Ω

|u(x)|p(x) dσ < ∞

}
,

with the norm

|u|Lp(x)(∂Ω) = |u|p(x) := inf

{
δ > 0 :

∫
∂Ω

∣∣∣∣u(x)δ

∣∣∣∣p(x) dσ ≤ 1

}
,

where dσ is the measure on the boundary.

Proposition 1 ([18, Theorem 2.1]). For any u ∈ Lp(x) (Ω) and v ∈ Lp′(x) (Ω) we
have the following Hölder-type inequality∣∣∣∣∫

Ω

uvdx
∣∣∣∣≤ ( 1

p−
+

1
(p−)′

)
|u|p(x) |v|p′(x) ,

where Lp′(x) (Ω) denotes the conjugate space of Lp(x) (Ω) and 1
p′(x) +

1
p(x) = 1.

The modular of the Lp(x) (Ω) space, which is the mapping ϕp(x) : Lp(x) (Ω) → R
defined by

ϕp(x) (u) =
∫

Ω

|u(x)|p(x) dx for all u ∈ Lp(x) (Ω) ,

and it satisfies the following proposition.

Proposition 2 ([14, Theorem 1.3]). For all u,un ∈ Lp(x) (Ω), n = 1,2, . . . we have

(i) |u|p(x) > 1(= 1,> 1)⇔ ϕp(x) (u)> 1(= 1,> 1) ,

(ii) min
(
|u|p

−

p(x), |u|
p+

p(x)

)
≤ ϕp(x) (u)≤ max

(
|u|p

−

p(x), |u|
p+

p(x)

)
,

(iii) |un −u|p(x) → 0(→ ∞)⇔ ϕp(x)(un −u)→ 0(→ ∞) .

Proposition 3 ([12, Proposition 2.4]). Let φ(u) =
∫

∂Ω
|u(x)|p(x) dσ for all u,

un ∈ Lp(x) (∂Ω), n = 1,2, . . . we have

(i) |u|Lp(x)(∂Ω) > 1 ⇒ |u|p
−

Lp(x)(∂Ω)
≤ φ(u)≤ |u|p

+

Lp(x)(∂Ω)
,

(ii) |u|Lp(x)(∂Ω) < 1 ⇒ |u|p
+

Lp(x)(∂Ω)
≤ φ(u)≤ |u|p

−

Lp(x)(∂Ω)
,

(iii) |un −u|p(x) → 0 (→ ∞)⇔ φ(un −u)→ 0 (→ ∞) .
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The variable exponent Sobolev space W 1,p(x) (Ω) is denined by

W 1,p(x) (Ω) =
{

u ∈ Lp(x) (Ω) : |∇u| ∈ Lp(x) (Ω)
}
,

and equipped with the norm

∥u∥1,p(x)= inf

{
κ > 0 :

∫
Ω

(∣∣∣∣∇u(x)
κ

∣∣∣∣p(x)+ ∣∣∣∣u(x)κ

∣∣∣∣p(x)
)

dx ≤ 1

}
,

or
∥u∥1,p(x) = |u|p(x)+ |∇u|p(x), ∀u ∈W 1,p(x) (Ω) .

The space W 1,p(x)
0 (Ω) is denoted by the closure of C∞

0 (Ω) in W 1,p(x) (Ω) with respect
to the norm ∥u∥1,p(x). We can define an equivalent norm

∥u∥= |∇u|p(x) for all u ∈W 1,p(x)
0 (Ω) .

Proposition 4 ([18, Theorem 3.1]; [14, Theorem 2.3]; [12, Theorem 2.1]; [13,
Lemma 3.1]).

(i) If 1 < p− ≤ p+ < ∞, then the spaces Lp(x) (Ω), W 1,p(x) (Ω) and W 1,p(x)
0 (Ω) are

separable and reflexive Banach spaces.
(ii) If q(x) ∈ C+

(
Ω
)

and q(x) < p∗ (x) for all x ∈ Ω then the embedding

W 1,p(x)
0 (Ω) ↪→ Lq(x) (Ω) is compact and continuous, where

p∗ (x) :=

{
N p(x)

N−p(x) if N > p(x) ,

∞ if N ≤ p(x) .

(iii) If q(x) ∈ C+ (∂Ω) and q(x) < p∂ (x) for all x ∈ ∂Ω then the trace embedding
W 1,p(x)

0 (Ω) ↪→ Lq(x) (∂Ω) is compact and continuous, where

p∂ (x) :=

{
(N−1)p(x)

N−p(x) if N > p(x)

∞ if N ≤ p(x) .

(iv) (Poincaré inequality). There is a positive constant C > 0 such that

|u|p(x) ≤C∥u∥ , ∀u ∈W 1,p(x)
0 (Ω) .

Proposition 5 ([13, Lemma 2.1]). Let p(x) and q(x) be measurable functions
such that 1 ≤ p(x)q(x) ≤ ∞ and p(x) ∈ L∞(Ω) for a.e. x ∈ Ω. Let u ∈ Lq(x)(Ω),
u ̸= 0. Then

min
(
|u|p

−

p(x)q(x) , |u|
p+

p(x)q(x)

)
≤
∣∣∣|u|p(x)∣∣∣

q(x)
≤ max

(
|u|p

−

p(x)q(x) , |u|
p+

p(x)q(x)

)
.

In particular, if p(x) = p is constant, then ||u|p|q(x) = |u|ppq(x). Throughout this paper,
we assume that f and M satisfy the following assumptions:
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(M0) M : (0,∞)→ (0,∞) is a continuous function such that

m1sα−1 ≤ M (s)≤ m2sα−1, ∀ s > 0

where m1, m2 and α are real numbers such that 0 < m1 ≤ m2 and α > 1.
(f1) f : ∂Ω×R→ R satisfies Carathéodory condition and

| f (x, t)| ≤ c1

(
1+ |t|q(x)−1

)
, ∀(x, t) ∈ ∂Ω×R,

where c1 > 0 is positive constant and q(x) ∈ C+ (∂Ω) such that p+ < q−

< q(x)< p∂ (x) for all x ∈ ∂Ω.

(f2) f (x, t) = o
(
|t|αp+−1

)
as t → 0, uniformly for x ∈ ∂Ω and αp+ < q−.

(f3) f (x,−t) =− f (x, t) for all (x, t) ∈ ∂Ω×R.
(AR) Ambrosetti-Rabinowitz’s Condition holds, i.e. there exists M > 0 and

θ > m2α(p+)α

m1(p−)α−1 such that

0 < θF(x, t)≤ f (x, t)t, |t| ≥ M for all x ∈ ∂Ω.

Moreover, we will use X instead of the variable exponent Sobolev space
W 1,p(x)

0 (Ω).

3. MAIN RESULTS AND PROOFS

We present the main results of the paper:

Theorem 1. Assume that (M0), (AR), (f1), (f2) and p+ < αp− hold. Then there
exists λ∗ > 0 such that for any λ ∈ (0,λ∗), problem (E) has at least one nontrivial
weak solution.

Theorem 2. Assume that (M0), (AR), (f1), (f2), (f3) and p+ < αp− hold. Then
there exists λ∗ > 0 such that for any λ ∈ (0,λ∗), Iλ has a sequence of critical points
{un} such that Iλ(un)→ ∞ as n → ∞ and problem (E) has infinite many pairs of weak
solutions.

Proposition 6 ([4, Theorem 2.9]). Let f : ∂Ω×R→R is a Carathéodory function
satisfying (f1) . For each u∈X set Ψ(u) =

∫
∂Ω

F (x,u)dσ. Then Ψ(u)∈C1(X ,R) and〈
Ψ

′
(u) ,υ

〉
=

∫
∂Ω

f (x,u)υ dσ for all υ ∈ X .

Moreover, the operator Ψ : X → X∗ is compact.

Proposition 7 ([14, Proposition 3.1]). If one denotes

ψ(u) =
∫

Ω

|∇u|p(x)

p(x)
dx
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then ψ ∈C1(X ,R) and the derivative operator of ψ, denoted by ψ′, is〈
ψ
′ (u) ,v

〉
=

∫
Ω

|∇u|p(x)−2 uvdx ∀u,v ∈ X

and one has

(i) ψ′ : X → X∗ is a continuous, bounded, strictly monotone operator and homeo-
morphism,

(ii) ψ′ is a mapping of (S+) type, that is if un ⇀ u in X and limsup
n→∞

⟨ψ′ (un) ,un −u⟩

≤ 0 implies, then un → u in X, where X =W 1,p(x)
0 (Ω).

We say that u ∈ X is a weak solution of (E) if

M

(∫
Ω

|∇u|p(x)

p(x)
dx

)∫
Ω

|∇u|p(x)−2
∇u∇vdx+

∫
Ω

|u|p(x)−2 uvdx = λ

∫
∂Ω

f (x,u)v dσ

where v ∈ X . We associate to the problem (E) the energy functional, defined as
Iλ : X → R,

Iλ (u) = M̂

(∫
Ω

|∇u|p(x)

p(x)
dx

)
+

∫
Ω

|u|p(x)

p(x)
dx−λ

∫
∂Ω

F (x,u)dσ,

where M̂ (t) =
t∫
0
M (s)ds and F (x, t) =

t∫
0

f (x,s)ds. Moreover, from (f1) and (M0) ,

Proposition 6 and Proposition 7, it is easy to see that the functional Iλ ∈C1 (X ,R) and
we can infer that critical points of functional Iλ are the weak solutions for problem
(E). Then, we have

⟨I′
λ
(u) ,υ⟩= M

(∫
Ω

|∇u|p(x)

p(x)
dx

)∫
Ω

|∇u|p(x)−2
∇u∇υdx

+
∫

Ω

|u|p(x)−2 uυdx−λ

∫
∂Ω

f (x,u)υdσ

for any u,υ ∈ X .

Definition 1. Let X be a Banach spaces and Iλ ∈C1(X ,R). We say that Iλ satisfies
Palais-Smale condition (PS) if any sequence {un} in X such that {Iλ (un)} is bounded
and I′

λ
(un)→ 0 as n → ∞ has a convergent subsequence.

Lemma 1. If (M0), (f1), (AR) and p+ < αp− hold, then for any λ ∈ (0,∞) the
functional Iλ satisfies (PS) condition.

Proof. Let us assume that there exists a sequence {un} in X such that

|Iλ(un)| ≤ c and I′
λ
(un)→ 0 as n → ∞. (3.1)
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Initially we prove that {un} is bounded in X . Considering ∥un∥> 1 for n large enough
and using (M0), (AR), (3.1) we obtain

c+1 ≥ Iλ(un)−
1
θ

〈
I′
λ
(un) ,un

〉
≥

(
m1

α(p+)α − m2

θ(p−)α−1

)(∫
Ω

|∇un|p(x) dx
)α

+
1

p+

∫
Ω

|un|p(x) dx

− 1
θ

∫
Ω

|un|p(x) dx−λ

(∫
∂Ω

1
θ

f (x,un)un −F (x,un)dσ

)
≥

(
m1

α(p+)α − m2

θ(p−)α−1

)
∥un∥αp− − c1

θ
∥un∥p+ .

When we divide the last inequality by ∥un∥αp− ,

c+1

∥un∥αp− ≥

(
m1

α(p+)α − m2

θ(p−)α−1

)
− c1

θ

∥un∥p+

∥un∥αp−

and pass to the limit as n → ∞, we have

0 ≥ m1

α(p+)α − m2

θ(p−)α−1

or

θ ≤ m2α(p+)α

m1 (p−)α−1 .

Since θ > m2α(p+)α

m1(p−)α−1 in the condition (AR), we obtain a contradiction. Thus {un}
is bounded in X ; from Proposition 4, there exists u in X such that, up to a sub-
sequence, {un} converges weakly to u in X . Later, we will show that un → u (con-
verges strongly) in X . By relation (3.1), we have that

〈
I′
λ
(un) ,un −u

〉
→ 0. There-

fore, we write〈
I′
λ
(un) ,un −u

〉
= M

(∫
Ω

|∇un|p(x)

p(x)
dx

)∫
Ω

|∇un|p(x)−2
∇un (∇un −∇u)dx

+
∫

Ω

|un|p(x)−2 (un −u) dx

−λ

∫
∂Ω

f (x,un)(un −u) dσ → 0

(3.2)

By Proposition 1, Proposition 4, Proposition 4 and (f1) we obtain∣∣∣∣∫
∂Ω

f (x,un)(un −u) dσ

∣∣∣∣≤ ∣∣∣∣∫
∂Ω

(
c1 + c1 |un|q(x)−1

)
(un −u) dσ

∣∣∣∣
≤ c1

∫
∂Ω

|(un −u)| dσ+ c2

∣∣∣|un|q(x)−1
∣∣∣
Lq′(x)

|un −u|Lq(x)(∂Ω) ,
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where c2 > 0 is a constant. If we consider the compact embedding X ↪→ Lq(x) (∂Ω) ,
that is, |un −u|Lq(x)(∂Ω) → 0 as n → ∞, we get∫

∂Ω

f (x,un)(un −u) dσ → 0. (3.3)

Similarly, by Proposition 1, Proposition 4, Proposition 5, we can write∫
Ω

|un|p(x)−2 un (un −u) dx → 0. (3.4)

On the other hand, we use (3.1), (3.3) and (3.4) in the above inequality (3.2) we
obtain

M

(∫
Ω

|∇un|p(x)

p(x)
dx

)∫
Ω

|∇un|p(x)−2
∇un (∇un −∇u)→ 0.

Moreover, from (M0), we conclude that∫
Ω

|∇un|p(x)−2
∇un (∇un −∇u)→ 0.

Eventually from Proposition 7 we obtain that un → u (strongly) in X . Therefore Iλ

satisfies the (PS) condition. □

Lemma 2. Assume that (M0), (AR), (f1) and (f2) hold. Then, the following
statements hold:

(i) There exist positive real numbers µ, τ and λ∗ for any λ ∈ (0,λ∗) such that

Iλ (u)≥ τ > 0, ∀u ∈ X with∥u∥= µ,

(ii) There exists u1 ∈ X such that ∥u1∥> µ and Iλ (u1)< 0.

Proof.
(i) Let us assume that ∥u∥ < 1. Since we have the continuous embeddings

X ↪→ Lp− (Ω) , X ↪→ Lαp+ (∂Ω) and X ↪→ Lq− (∂Ω) from Proposition 4, there
exist positive constants c3, c4 and c5 for all u ∈ X such that

|u|Lαp+ (∂Ω) ≤ c3 ∥u∥ , |u|Lq− (∂Ω) ≤ c4 ∥u∥

and
|u|Lp− (Ω) ≤ c5 ∥u∥ . (3.5)

In addition, using (f1) and (f2) , we write

|F (x, t)| ≤ ε |t|αp+ + cε |t|q(x) , ∀(x, t) ∈ ∂Ω×R. (3.6)

By taking into account (3.5) and (3.6), we get

Iλ (u)≥
m1

α(p+)α ∥u∥αp+ +
cp−

5
p+

∥u∥p+ −λε

∫
∂Ω

|u|αp+ dσ−λ

∫
∂Ω

|u|q(x) dσ
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≥

(
m1

α(p+)α +
cp−

5
p+

)
∥u∥αp+ −λεcαp+

3 ∥u∥αp+ −λcεcq−
4 ∥u∥q− .

By the above inequality, if we choose ε > 0 small enough such that 0 < 2λεcαp+
3

<

(
m1

α(p+)α +
cp−

5
p+

)
, we obtain

Iλ (u)≥

((
m1

2α(p+)α +
cp−

5
2p+

)
∥u∥αp+−q− −λc6

)
∥u∥q− .

On the other hand, we remark that αp+ < q

λ
∗ =

1
4c6

(
m1

α(p+)α +
cp−

5
p+

)
µαp+−q− .

Then, there exist τ > 0 and µ > 0 for any λ ∈ (0,λ∗) such that

Iλ (u)≥ τ > 0, ∀u ∈ X with ∥u∥= µ ∈ (0,1) .

This completes the proof.
(ii) By (AR), one easily deduces c7 > 0 such that

F (x, t)≥ c7 |t|θ , ∀ (x, t) ∈ ∂Ω×R. (3.7)

Using Proposition 2, Proposition 4 and (3.7) for any ω ∈ X\{0} and t > 1 large
enough, we have

Iλ (tω) = M̂

(∫
Ω

|∇tω|p(x)

p(x)
dx

)
+

∫
Ω

|tω|p(x)

p(x)
dx−λ

∫
∂Ω

F (x, tω)dσ

≤ m2

α(p−)α tαp+
(∫

Ω

|∇ω|p(x) dx
)α

+
t p+

p−

∫
Ω

|ω|p(x) dx

− tθ
λc7

∫
∂Ω

|ω|θ dσ.

Since θ > αp+, we obtain lim
t→∞

Iλ (tω) = −∞. Then, we can take u1 = tω such

that ∥u1∥> µ and Iλ (u1)< 0. The proof of Lemma 2 is complete.
□

Proof of Theorem 1. From Lemma 1, Lemma 2 and Iλ (0) = 0, Iλ satisfies the
Mountain Pass theorem [23]. Therefore, Iλ has at least one nontrivial weak.

We will use the following “Fountain theorem”to prove Theorem 2.
Since X is a separable and reflexive Banach space, then there exist e j ⊂ X and

e∗j ⊂ X∗ such that

X = span
{

e j : j = 1,2, . . .
}
, X∗ = span

{
e∗j : j = 1,2, . . .

}
,
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and 〈
ei,e∗j

〉
=

{
1, if i ̸= j
0, if i = j

where ⟨., .⟩ denotes the duality product between X and X∗. For convenience, we have

X j = span
{

e j
}
, Yk =⊕k

j=1X j, Zk =⊕∞
j=kX j.

□

Lemma 3 ([7, Theorem 2.6]). Assume that Iλ ∈ C1(X ,R) is an even functional
satisfying the condition (PS). Moreover, If there exist ρk > γk > 0, for each k =
1,2, . . . such that
(A1) inf

u∈Zk,∥u∥=γk

Iλ (u)→ ∞ as k → ∞ ,

(A2) max
u∈Yk,∥u∥=ρk

Iλ (u)≤ 0,

then Iλ has an unbounded sequence of critical values.

Lemma 4 ([7, Lemma 2.7]). If q(x) ∈C+ (∂Ω) and q(x)< p∂ (x) for any x ∈ ∂Ω,
denote

βk = sup
{
|u|Lq(x)(∂Ω) : ∥u∥= 1, u ∈ Zk

}
,

then limk→∞ βk = 0.

Proof of Theorem 2. It is enough to prove that Iλhas an unbounded sequence of
critical points. Since Iλ satisfies (PS) condition from Lemma 1 and Iλ is an even
functional from the assumptions (f3), we only need to show whether it satisfies the
conditions (A1) and (A2) in Lemma 3.
(A1) For any u ∈ Zk with ∥u∥> 1, by (M0), (f1) and αp− > p+, we write

Iλ (u)≥
m1

α(p+)α ∥u∥αp− +
1

p+
∥u∥p− −λc1

∫
∂Ω

(
1+ |t|q(x)−1

)
dσ

≥
(

m1

α(p+)α +
1

p+

)
∥u∥p− −λc1 max

{
|u|q

+

Lq(x)(∂Ω)
, |u|q

−

Lq(x)(∂Ω)

}
− c8.

It follows that

Iλ (u)≥


(

m1
α(p+)α + 1

q−

)
∥u∥p− −λc9 − c8 if |u|Lq(x)(∂Ω) ≤ 1(

m1
α(p+)α + 1

q−

)
∥u∥p− −λc9β

q+
k ∥u∥q+ − c8 if |u|Lq(x)(∂Ω) > 1

≥
(

m1

α(p+)α +
1

q−

)
∥u∥p− −λc9β

q+
k ∥u∥q+ − c10.

For ∥u∥= γk =
(

λc9q+β
q+
k

) 1
p−−q+

, we obtain

Iλ (u)≥
(

m1

α(p+)α +
1

q−
− 1

q+

)
γ

p−
k − c10
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≥ m1

α(p+)α γ
p−
k − c10,

where c8, c9 and c10 are positive constants. Since βk → 0 and p− < q+ we
obtain γk → ∞ as k → ∞. Consequently,

Iλ (u)→ ∞ as ∥u∥→ ∞ for u ∈ Zk.

The statement of (A1) is satisfied.
(A2) From (AR), we have

F (x, t)≥ c11 |t|θ − c12,

where c11, c12 are positive constants. Let u ∈Yk with ∥u∥= ρk > 1. We write

Iλ (u)≤
m2

α(p−)α ∥u∥αp+ +
1

p−
∥u∥p+ −λ

∫
∂Ω

F(x,u)dσ

≤ m2

α(p−)α ∥u∥αp+ +
1

p−
∥u∥p+ −λc11

∫
∂Ω

|u|θ dσ+ c12.

Since the space Yk has finite dimension, all norms are equivalents. Hence, we
obtain

Iλ (u)≤
m2

α(p−)α ∥u∥αp+ −λcθ
11 ∥u∥θ + c12.

Finally, we have

Iλ (u)→−∞ as n →+∞ for any u ∈ Yk

because θ > αp+. We show that there exists ρk > γk > 0 such that

max
u∈Yk,∥u∥=ρk

Iλ (u)≤ 0 for each k = 1,2, ...

Therefore, the statement of (A2) is satisfied. We complete the proof of The-
orem 2.

□
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