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Abstract. In this paper, we establish the existence of at least two distinct weak solutions for
fourth-order PDEs with variable exponents, subject to Navier boundary conditions in a smooth
bounded domain in RN , under a suitable subcritical growth condition with the classical Amb-
rosetti-Rabinowitz condition. The approach is based on variational methods and critical point
theory.

2010 Mathematics Subject Classification: 35J35; 35J60

Keywords: p(x)-biharmonic operator, variable exponent, existence, weak solutions, variational
methods, critical point

1. INTRODUCTION

Differential equations and variational problems with variable exponents growth
conditions have been studied more in the last few years. These problems are con-
nected to modeling of nonlinear electrorheological fluids and elastic mechanics. In
addition, the study of these problems has become an important subject by progress in
physics and other topics. In this sense, we refer the reader to [1, 4, 7, 12, 16, 17, 20].
Fourth-order differential equations become visible in many applications such as,
micro-electro-mechanical systems, surface diffusion on solids, flow in Hele-Shaw
cells [11]. The existence of solutions of p(x)-biharmonic problems has been studied
by several authors (see [2, 3, 8, 13, 14]).

For instance, El Amrouss et al. [8] studied a class of p(x)-biharmonic of the form{
∆

2
p(x)u = λ|u|p(x)−2u+ f (x,u) in Ω,

u = ∆u = 0 on ∂Ω,

where Ω is a bounded domain in RN with smooth boundary ∂Ω, N ≥ 1, λ ≤ 0,
∆2

p(x)u := ∆(|∆u|p(x)−2∆u) is the p(x)-biharmonic operator, p is a continuous func-
tion on Ω with infx∈Ω

p(x)> 1 and f : Ω×R→R is a Carathéodory function. Using
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the Mountain Pass Theorem, they obtained the existence of at least one solution and
the existence of infinitely many solutions of this problem.

Recently, motivated by this interest, in [2], the authors established the existence
and multiplicity of solutions to the following problem{

∆
2
p(x)u+ |u|

p(x)−2u = λ|u|q(x)−2u+µ|u|γ(x)−2u in Ω,

u = ∆u = 0 on ∂Ω,

where where Ω is a bounded domain in RN with smooth boundary ∂Ω, N≥ 1, p, q and
γ are continuous functions on Ω with infx∈Ω

p(x)> 1, infx∈Ω
q(x)> 1, infx∈Ω

γ(x)> 1
and λ and µ are parameters such that λ2 +µ2 6= 0.

In this paper, we want to consider the following fourth-order elliptic equation with
Navier boundary conditions{

∆
2
p(x)u+ |u|

p(x)−2u = λ f (x,u) in Ω,

u = ∆u = 0 on ∂Ω,
(1.1)

where Ω is a bounded domain in RN with smooth boundary ∂Ω, N ≥ 1, p(·) ∈C(Ω)
such that 1 < p− := min

x∈Ω

p(x) ≤ p(x) ≤ p+ := max
x∈Ω

p(x) < +∞, f : Ω×R→ R is a

Carathéodory function satisfying

(f1) | f (x, t)| ≤ a1 +a2|t|q(x)−1, ∀(x, t) ∈Ω×R,

for some non-negative constants a1,a2, and q(x) is a continuous function on Ω with
1 < q(x)< p∗2(x) for each x ∈Ω, where

p∗2(x) :=

{
N p(x)

N−2p(x) , 2p(x)< N,

+∞, 2p(x)≥ N.

In this work, our goal is to obtain the existence of two distinct weak solutions for
problem (1.1).

Recall that a function f : Ω×R→ R is said to be a Carathéodory function, if
(C1) the function x→ f (x, t) is measurable for every t ∈ R;
(C2) the function t→ f (x, t) is continuous for almost every x ∈Ω.

2. PRELIMINARIES AND BASIC DEFINITIONS

To study problem (1.1), we need some some theories on spaces Lp(x)(Ω) and
W k,p(x)(Ω). Let Ω be a bounded domain in RN with smooth boundary ∂Ω. Set

C+(Ω) :=
{

h : h ∈C(Ω), h(x)> 1, ∀x ∈Ω
}
.

For any h ∈C+(Ω), we define

h+ := max
{

h(x) : x ∈Ω
}
, h− := min

{
h(x) : x ∈Ω

}
.
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For any p ∈C+(Ω), we define the variable exponent Lebesgue space

Lp(x)(Ω) :=
{

u : Ω→ R : u is measurable and
∫

Ω

|u(x)|p(x)dx <+∞

}
.

We can introduce the so-called Luxemburg norm on Lp(x)(Ω) by

‖u‖Lp(x)(Ω) := inf

{
λ > 0 :

∫
Ω

∣∣∣∣u(x)λ

∣∣∣∣p(x)dx≤ 1

}
,

and
(

Lp(x)(Ω),‖·‖Lp(x)(Ω)

)
becomes a Banach space.

Proposition 1 (Theorems 1.6 and 1.10 of [10]). The space
(

Lp(x)(Ω),‖·‖Lp(x)(Ω)

)
is separable, uniformly convex, reflexive Banach space and its conjugate space is
Lq(x)(Ω), where

1
p(x)

+
1

q(x)
= 1 ∀x ∈Ω.

For u ∈ Lp(x)(Ω) and v ∈ Lq(x)(Ω), we have∣∣∣∣∫
Ω

uv dx
∣∣∣∣≤ ( 1

p−
+

1
q−

)
‖u‖Lp(x)(Ω)‖v‖Lq(x)(Ω) ≤ 2‖u‖Lp(x)(Ω)‖v‖Lq(x)(Ω).

The Sobolev space with variable exponent W k,p(x)(Ω) is defined as

W k,p(x)(Ω) :=
{

u ∈ Lp(x)(Ω) : Dαu ∈ Lp(x)(Ω), |α| ≤ k
}
,

where

Dαu :=
∂|α|

∂x1α1∂x2α2 · · ·∂xN
αN

u,

with α = (α1, . . . ,αN) is a multi-index and |α| :=
N
∑

i=1
αi.

The space W k,p(x)(Ω) endowed with the norm

‖u‖k,p(x) = ∑
|α|≤k
‖Dαu‖Lp(x)(Ω)

also becomes a separable and reflexive Banach space (Theorem 2.1 of [10]). For
more details, we refer the reader to [9, 10, 15, 22].

Denote

p∗k(x) :=

{
N p(x)

N−kp(x) , kp(x)< N,

+∞, kp(x)≥ N

for any x ∈Ω, k ≥ 1.
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Proposition 2 (Theorem 2.3 of [10]). For p,r ∈C+(Ω) such that r(x)≤ p∗k(x) for
all x ∈Ω, there is a continuous embedding

W k,p(x)(Ω) ↪→ Lr(x)(Ω).

If we replace ≤ with <, the embedding is compact.

By W k,p(x)
0 (Ω), we denote the closure of C∞

0 (Ω) in W k,p(x)(Ω). Further, denote by
X the space W 2,p(x)(Ω)∩W 1,p(x)

0 (Ω) endowed with the norm

‖u‖ := inf

{
µ > 0 :

∫
Ω

(∣∣∣∣∆u(x)
µ

∣∣∣∣p(x)+ ∣∣∣∣u(x)µ

∣∣∣∣p(x)
)

dx≤ 1

}
. (2.1)

Remark 1.
(1) According to [23], the norm ‖.‖2,p(x) is equivalent to the norm ‖∆ ·‖Lp(x)(Ω)

in the space X . Consequently, the norms ‖·‖2,p(x), ‖·‖ and ‖∆ ·‖Lp(x)(Ω) are
equivalent.

(2) By the above remark and Proposition 2, there is a continuous and compact
embedding of X into Lq(x)(Ω), where q ∈C(Ω) and 1≤ q(x)< p∗2(x) for all
x ∈Ω.

In the sequel, we will denote by cq the best constant for which one has

‖u‖Lq(x)(Ω) ≤ cq ‖u‖ (2.2)

for all u ∈ X .

Proposition 3 (Proposition 3.2 of [8]). If we denote

ρ(u) :=
∫

Ω

(
|∆u(x)|p(x)+ |u(x)|p(x)

)
dx,

then, for u,un ∈ X , we have
(1) ‖u‖< 1 (respectively = 1; > 1)⇔ ρ(u)< 1 (respectively = 1; > 1);
(2) ‖u‖ ≤ 1⇒‖u‖p+ ≤ ρ(u)≤ ‖u‖p−;
(3) ‖u‖ ≥ 1⇒‖u‖p− ≤ ρ(u)≤ ‖u‖p+;
(4) ‖un‖→ 0 (respectively→+∞ )⇔ ρ(un)→ 0 (respectively→+∞).

Let us define F(x,ξ) :=
∫ ξ

0 f (x, t)dt for every (x,ξ) in Ω×R. Moreover, we intro-
duce the functional Iλ : X → R associated with (1.1),

Iλ(u) := Φ(u)−λΨ(u),

for every u ∈ X , where

Φ(u) :=
∫

Ω

1
p(x)

(
|∆u(x)|p(x)+ |u(x)|p(x)

)
dx, Ψ(u) :=

∫
Ω

F(x,u(x))dx. (2.3)
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Fixing the real parameter λ, a function u : Ω→ R is said to be a weak solution of
(1.1) if u ∈ X and∫

Ω

|∆u(x)|p(x)−2
∆u(x)∆v(x)dx+

∫
Ω

|u(x)|p(x)−2u(x)v(x)dx

−λ

∫
Ω

f (x,u(x))v(x)dx = 0,

for every v ∈ X . Hence, the critical points of Iλ are exactly the weak solutions of
(1.1).

Definition 1. Let Φ and Ψ be two continuously Gâteaux differentiable functionals
defined on a real Banach space X and fix r ∈ R. The functional I := Φ−Ψ is said to
verify the Palise-Smale condition (in short (PS)-condition) if any sequence {un} in X
such that

(a) {I(un)} is bounded,
(b) lim

n→∞
‖I′(un)‖X∗ = 0,

has a convergent subsequence.

Our main tool is the following critical points theorem.

Theorem 1 (Theorem 3.2 of [5]). Let X be a real Banach space and let Φ,Ψ : X→
R be two continuously Gâteaux differentiable functionals such that Φ is bounded
from below and Φ(0) = Ψ(0) = 0. Fix r > 0 such that sup{Φ(u)<r}Ψ(u) < +∞ and

assume that, for each λ ∈
]
0, r

sup{Φ(u)<r}Ψ(u)

[
, the functional Iλ := Φ− λΨ satisfies

(PS)-condition and it is unbounded from below. Then, for each λ∈
]
0, r

sup{Φ(u)<r}Ψ(u)

[
,

the functional Iλ admits two distinct critical points.

3. MAIN RESULTS

In this section we establish the main abstract result of this paper. We recall
that cq is the constant of the embedding X ↪→ Lq(x)(Ω) for each q ∈ C(Ω) and 1 ≤
q(x)< p∗2(x) for all x ∈Ω, and c1 stands for cq with q = 1 (see (2.2)).

Before introducing our result, we observe that putting

[α]h := max
{

α
h− ,αh+

}
, [α]h := min

{
α

h− ,αh+
}
,

It is easy to verify that

[α]
1
h := max

{
α

1
h− ,α

1
h+

}
, [α] 1

h
:= min

{
α

1
h− ,α

1
h+

}
.

Theorem 2. Let f : Ω×R→ R be a Carathéodory function such that condition
(f1) holds. Moreover, assume that

(f2) there exist θ > p+ and M > 0 such that

0 < θF(x, t)≤ t f (x, t)
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for each x ∈Ω and |t| ≥M. Then, for each λ ∈ ]0,λ∗[, problem (1.1) admits at least
two distinct weak solutions, where

λ
∗ :=

q−

q−a1c1(p+)
1

p− +a2[cq]
q(p+)

q+

p−
.

Proof. Our aim is to apply Theorem 1 to problem (1.1) in the case r = 1 to the
space X with the norm ‖·‖ defined in (2.1) and to the functionals Φ,Ψ : X → R
defined in (2.3) for all u ∈ X . Clearly, Φ(0) = Ψ(0) = 0. The functional Φ is in
C1(X ,R) and Φ′ : X → X∗ is a homeomorphism (see Theorem 3.4 of [8]). Moreover,
thanks to condition (f1) and to the compact embedding X ↪→ Lq(x)(Ω), Ψ is in
C1(X ,R) and has compact derivative and

Ψ
′(u)(v) =

∫
Ω

f (x,u(x))v(x)dx,

for every v ∈ X . Now we prove that Iλ = Φ−λΨ satisfies (PS)-condition for every
λ > 0. Namely, we will prove that any sequence {un} ⊂ X satisfying

d := sup
n

Iλ(un)<+∞,
∥∥I′λ(un)

∥∥
X∗ → 0, (3.1)

contains a convergent subsequence. Thus it is sufficient to verify that {‖un‖} is
bounded. Assume ‖un‖> 1 for convenience. For n large enough, we have by (3.1)

d ≥ Iλ(un) =
∫

Ω

1
p(x)

(
|∆un(x)|p(x)+ |un(x)|p(x)

)
dx−λ

∫
Ω

F(x,un(x))dx,

then, by (f2) and Proposition 3,

Iλ(un)≥
1

p+

∫
Ω

(
|∆un(x)|p(x)+ |un(x)|p(x)

)
dx− λ

θ

∫
Ω

f (x,un(x))un(x)dx

=

(
1

p+
− 1

θ

)∫
Ω

(
|∆un(x)|p(x)+ |un(x)|p(x)

)
dx

+
1
θ

[∫
Ω

(
|∆un(x)|p(x)+ |un(x)|p(x)

)
dx−λ

∫
Ω

f (x,un(x))un(x)dx
]

≥
(

1
p+
− 1

θ

)
‖un‖p−+

1
θ
〈I′

λ
(un),un〉.

Due to (3.1), we can actually assume that
∣∣ 1

θ
〈I′

λ
(un),un〉

∣∣≤ ‖un‖ . Thus

d +‖un‖ ≥ Iλ(un)−
1
θ
〈I′

λ
(un),un〉 ≥

(
1

p+
− 1

θ

)
‖un‖p− .

Since θ > p+ and p− > 1, it follows from this quadratic inequality that {‖un‖} is
bounded. By the Eberlian-Smulyan theorem, passing to a subsequence if necessary,
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we can assume that un ⇀ u. Then Ψ′(un)→ Ψ′(u) because of compactness. Since
I′
λ
(un) = Φ′(un)−λΨ′(un)→ 0, then we gain the following convergence

Φ
′(un)→ λΨ

′(u).

Since Φ′ is a homeomorphism, then un→ u and so Iλ satisfies (PS)-condition.
At this step we prove that there is a positive constant C such that

F(x, t)≥C|t|θ (3.2)

for all x ∈Ω and |t|> M. For this, setting a(x) := min|ξ|=MF(x,ξ) and

ϕt(s) := F(x,st) ∀s > 0, (3.3)

by (f2), for every x ∈Ω and |t|> M one has

0 < θϕt(s) = θF(x,st)≤ st · f (x,st) = sϕ
′
t(s) ∀s > M

|t|
.

Therefore, ∫ 1

M/|t|

ϕ′t(s)
ϕt(s)

ds≥
∫ 1

M/|t|

θ

s
ds.

Then

ϕt(1)≥ ϕt

(
M
|t|

)
|t|θ

Mθ
.

Taking into account of (3.3), we obtain

F(x, t)≥ F
(

x,
M
|t|

t
)
|t|θ

Mθ
≥ a(x)

|t|θ

Mθ
≥C|t|θ,

where C > 0 is a constant. Thus, (3.2) is proved.
Fixed u0 ∈ X\{0} for each t > 1 one has

Iλ(tu0)≤
1

p−
t p+‖u0‖p−λCtθ

∫
Ω

|u0(x)|θdx.

Since θ > p+, this condition guarantees that Iλ is unbounded from below. Fixed
λ ∈ ]0,λ∗[ for each u ∈ X such that u ∈ Φ−1 (]−∞,1[), thanks to Proposition 3, one
has

‖u‖ ≤
[
p+Φ(u)

] 1
p <

[
p+
] 1

p =
(

p+
) 1

p− . (3.4)

By Theorem 1.3 of [10] and from the compact embedding X ↪→ Lq(x)(Ω), we have∫
Ω

|u(x)|q(x)dx≤
[
‖u‖Lq(x)(Ω)

]q
≤ [cq ‖u‖]q, (3.5)

for each u ∈ X . Moreover, the compact embedding X ↪→ L1(Ω), (f1), (3.4) and (3.5)
imply that for each u ∈Φ−1 (]−∞,1[), we have

Ψ(u)≤ a1

∫
Ω

|u(x)|dx+
a2

q−

∫
Ω

|u(x)|q(x) ≤ a1c1 ‖u‖+
a2

q−
[cq ‖u‖]q
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≤ a1c1
(

p+
) 1

p− +
a2

q−
[cq]

q(p+
) q+

p− ,

and so

sup
Φ(u)<1

Ψ(u)≤ a1c1
(

p+
) 1

p− +
a2

q−
[cq]

q(p+
) q+

p− =
1
λ∗

<
1
λ
. (3.6)

From (3.6) one has

λ ∈ ]0,λ∗[⊆

]
0,

r
sup{Φ(u)<r}Ψ(u)

[
.

So, all hypotheses of Theorem 1 are verified. Therefore for each λ ∈ ]0,λ∗[ the
functional Iλ admits two distinct critical points that are weak solutions of problem
(1.1). �

Remark 2. We observe that, if f is non-negative and f (x,0) 6= 0 in Ω, then The-
orem 2 ensures the existence of two positive weak solutions for problem (1.1) (see,
e.g., Theorem 11.1 of [18]).

A special case of Theorem 2 reads as follows.

Theorem 3. Let f : R→ R be a non-negative continuous function with f (0) 6= 0,
satisfying for some q ∈ (p, p∗2),

lim
|t|→∞

f (t)
|t|q−1 = 0,

where p > 1 and

p∗2 :=

{
N p

N−2p , 2p < N,

+∞, 2p≥ N.

Then, there exists λ∗ > 0, such that, for any λ ∈ ]0,λ∗[ the following problem{
∆

2
pu+ |u|p−2u = λ f (u) in Ω,

u = ∆u = 0 on ∂Ω,

admits two positive weak solutions.

Remark 3. Thanks to Talenti’s inequality, it is possible to obtain an estimate of
the embedding’s constants c1,cq. By the Sobolev embedding theorem, there exists a
positive constant c such that (see Proposition B.7 of [19])

‖u‖Lp−∗ (Ω)
≤ c‖u‖ (∀u ∈ X) . (3.7)

The best constant that appears in (3.7) is (see [21])

c :=
1

N
√

π

 N!Γ
(N

2

)
2Γ

(
N
p−

)
Γ

(
N +1− N

p−

)
 1

N

η
1− 1

p− , (3.8)
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where

η :=
N(p−−1)

N− p−
.

Due to (3.8), as a simple consequence of Hölder’s inequality, it follows that

cq ≤
meas(Ω)

p−∗−q+

p−∗q+

N
√

π

 N!Γ
(N

2

)
2Γ

(
N
p−

)
Γ

(
N +1− N

p−

)
 1

N

η
1− 1

p− ,

where “meas(Ω)” denotes the Lebesgue measure of the set Ω.

In conclusion, we present a concrete example of application of Theorem 2 whose
construction is motivated by Example 4.1 of [6].

Example 1. We consider the function f defined by

f (x, t) :=

{
c+dqtq(x)−1 if x ∈Ω, t ≥ 0,
c−dq(−t)q(x)−1 if x ∈Ω, t < 0.

for each (x, t)∈Ω×R, where p,q∈C(Ω) verify the condition 1< p+ < q−≤ q(x)<
p∗(x) for each x ∈Ω and c,d are two positive constants. Fixed p+ < θ < q− and

r > max

{[
(θ−1)c

d(q−−θ)

]h

,
[ c

d

]h
}
,

with h(·) = 1
q(·)−1 . We prove that f verifies the assumptions requested in Theorem 2.

condition (f1) of Theorem 2 is easily verified. We observe that

F(x, t) = ct +d|t|q(x),
for each (x, t) ∈ Ω×R. Taking into account that, condition (f2) is verified (see Ex-
ample 4.1 of [6]) and clearly f (x,0) 6= 0 in Ω, problem (1.1) has at least two non-
trivial weak solutions for every λ ∈ ]0,λ∗[, where λ∗ is the constant introduced in the
statement of Theorem 2.
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