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Abstract. In this article, we study contact metric manifolds admitting almost quasi-Yamabe
solitons (g,V,m,\). First we prove that there does not exist a nontrivial almost quasi-Yamabe
soliton whose potential vector field V is pointwise collinear with the Reeb vector field & on a
contact metric manifold. For V being orthogonal to &, we consider the three dimensional cases.
Next we consider a non-Sasakian contact metric (i, u)-manifold admitting a nontrivial closed
almost quasi- Yamabe soliton and give a classification. Finally, for a closed almost quasi-Yamabe
soliton on K-contact manifolds, we prove that either the soliton is trivial or r —A = m if r — X is
nonnegative and attains a maximum on M, where r is the scalar curvature.
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1. INTRODUCTION

Yamabe soliton, introduced by R. Hamilton, is a Riemannian metric g of a com-
plete Riemannian manifold (M, g) satisfying

1

S Lvg=(r—Ag (1.1)

for A € R and a smooth vector field V, where Ly is the Lie derivative along V and
r is the scalar curvature of M. For A = 0 the Yamabe soliton is steady, for A < 0 is
expanding, and for A > 0 is shrinking. In particular, if the potential vector field V is
a gradient field, the Yamabe soliton is said to be a Yamabe gradient soliton. Yamabe
solitons have been studied under some conditions (cf.[4,8, 11,16, 18]). In the Yamabe
soliton equation (1.1), if A is a smooth function, (g,V,A) is called an almost Yamabe
soliton, introduced by E. Barbosa and E. Ribeiro in [1], and T. Seko and S. Maeta
in [23] completely classified almost Yamabe solitons on hypersurfaces in Euclidean
spaces.
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Later many researchers generalized the notion of Yamabe soliton. For instance,
Huang and Li [17] proposed the concept of quasi-Yamabe gradient soliton, namely
the Riemannian metric g satisfies the equation

sz—%df@)df:(r—k)g (1.2)

for some f € C*(M), A € R and a constant m > 0. Such a soliton is also considered by
Neto [20] and Wang [27]. V. Pirhadi and A. Razavi in [22] modified A to be a smooth
function and obtained some formulas and a necessary and sufficient condition under
which an arbitrary compact almost Yamabe soliton is necessarily gradient. Further-
more, Neto-Oliveira [21] defined the generalized quasi Yamabe gradient soliton by
replacing % by a smooth function in equation (1.2). Recently, Blaga [2] and Chen-
Deshmukh [9] studied more generalized quasi Yamabe solitons. In this article, we
consider almost quasi-Yamabe soliton, which is defined as follows:

Definition 1. A Riemannian metric is said to be almost quasi-Yamabe soliton if
there exist a constant m > 0, a smooth vector field V and a C* function A such that
1 I, b
—Lyg——V' V' =(r—»\)g (1.3)
2 m
holds, where V’ is the 1-form associated to V and r stands for the scalar curvature.
Denote the almost quasi Yamabe soliton by (g,V,m,\).

If the 1-form V” is closed, the almost quasi-Yamabe soliton (g, V,m, ) is said to be
closed. Using the terminology of Yamabe solitons, we call an almost quasi-Yamabe
soliton shrinking, steady or expanding, respectively, if L < 0,A =0, or A > 0. When
V =0, an almost quasi-Yamabe soliton is said to be trivial. Otherwise, it will be
called nontrivial. Tt is mentioned that an almost quasi-Yamabe soliton (g,V,m,A) is
reduced to an almost Yamabe soliton when m = oo. If V = Df is a gradient vector
field, it is called an almost quasi-Yamabe gradient soliton, denoted by (g, f,m,\).
Notice that equation (1.2) recovers the Yamabe gradient soliton when m = oo,

For the odd-dimensional manifold, we notice that Sharma [24] proved that a 3-
dimensional Sasakian manifold with a Yamabe soliton has constant scalar curvature,
and V is Killing. Venkatesha-Naik [26] further generalized Sharma’s results to a
3-dimensional contact metric manifold with commuting Ricci operator. For other
results the reader can see [12, 13,25,28].

In the present paper, we consider almost quasi- Yamabe solitons on contact metric
manifolds and it is organized as follows: In Section 2, we recall some definitions
and related conclusions on contact metric manifolds. In Section 3, we first prove an
nonexistence for a general contact metric manifold with a nontrivial almost quasi-
Yamabe soliton whose potential vector field is pointwise collinear with the Reeb
vector field. For V being orthogonal to the Reeb vector field, we also obtain two



ALMOST QUASI-YAMABE SOLITONS ON CONTACT METRIC MANIFOLDS 1035

results. In the following Section 4 and Section 5, we study respectively contact met-
ric (k,u)-manifolds and K-contact manifolds admitting closed almost quasi-Yamabe
solitons.

2. PRELIMINARIES

Let M?**! be a (2n+ 1)-dimensional smooth manifold. If there exists a global
1-form m (called contact form) on M such that N A (dn)" # O everywhere, M>"*!
is said to be a contact manifold. The contact form induces a unique vector field &,
called Reeb vector field, satisfyingn(§) = 1 and dn (&, -) = 0. Every contact manifold
has an almost contact structure (¢,&,1), where ¢ is a (1,1)-tensor field such that

¢2: _I+n®§7no¢:07¢0§:0
A Riemannian metric g on M can be defined by
dn(X,Y) =g(¢X,Y), g(X,§)=n(X)

for any X,Y € X(M). We note that the Riemannian metric g, ¢ and contact form n
can be related each other by

g(¢X,¢Y) :g(ny)—TI(X)Tl(Y)-

We refer to (¢,&,1, ) as a contact metric structure and to the manifold M>"*! carry-
ing such a structure as a contact metric manifold.
We define the tensor h = %qu), where L denotes the Lie derivative and satisfies

trace(h) =0, hE=0, oOh=—ho, g(hX,Y)=g(X,hY), (2.1

trace(¢h) = 0. (2.2)
Furthermore, we also have
Vx€ = —0X — 0hX (2.3)

and Vz0 = 0. A contact metric manifold (M*"*!,¢,& m,g) for which Reeb vector
field & is Killing, i.e. Lrg =0, is called a K-contact manifold. If h = 0 then we have
Lgg = 0, that means that M?"+1 is a K-contact manifold. For a K-contact manifold
(M?"+1 6,&,1,g) the following equations were proved in [3]:

Q& =2ng, (2.4)
R(X,E)& = —¢°X (2.5)

for any vector field X on M. An almost contact structure (¢, &, 1) is said to be normal
if the corresponding complex structure J on M x R is integrable. A normal contact
metric manifold is said to be a Sasakian manifold. A contact metric manifold is
Sasakian if and only if R(X,Y)§ =n(Y)X —n(X)Y for all vector fields X,Y on the
manifold.
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In addition, Blair-Koufogiorgos-Papantoniou [6] defined the notion of contact met-
ric (X, u)-manifold, i.e. the curvature tensor of a contact metric manifold satisfies
R(X,Y)& = k(M (Y)X —n(X)Y) +um(Y)hX —n(X)hY) (2.6)

for any vector fields X, Y, where K, u are constants.
The following two lemmas will be used in the sequel proofs.

Lemma 1. For an almost quasi-Yamabe gradient soliton (M, g, f,m,\), the curva-
ture tensor R can be expressed as
r—»A
m
for any vector fields X ,Y on M.

R(X,Y)Df =— {(X()Y —Y(/)X}+X(r—N)Y =Y (r—0)X 2.7)

Proof. Since equation (1.2) may be exhibited as

1
Vny:%Y(f)Df—F(r—?u)Y, (2.8)
we get
1
VxVyDf = —{X(Y(f))Df +Y(f)VxDf)} +X(r= MY + (r —A)VxY.
Using the previous two equations, a direct calculation gives

R(X,Y)Df =VxVyDf —VyVxDf—Vx yDf

r—

X{Y(f)X—X(f)Y}+X(r—k)Y—Y(r—7»)X.

m
n

Lemma 2 ([10]). For an almost quasi-Yamabe gradient soliton (M*'+1, g, f.m,\),
the following equation holds:

2n+1 , 1 1
(r= 2~ 5 &(DF.Dr) 5 (r—W)r

(2.9)

Alr—2A) = %g(Df,D(r—?»)) +

3. CONTACT METRIC MANIFOLDS WITH ALMOST QUASI-YAMABE SOLITONS

Theorem 1. There does not exist a nontrivial almost quasi-Yamabe soliton
(g,V,m,\) withV =n(V)E on a contact metric manifold.
Proof. We set V = FE for a non-zero function F. By (2.3), we have
VxV =X(F)§—F(0X + 0hX). 3.
Using (3.1), formula (1.3) becomes

(= g(X.Y) — X (FINY) + Y (PIMC)) + Fa(@hX.¥)+ —neom(r) = .

2
(3.2)
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Now replacing X and Y by ¢X and ¢Y, respectively, implies
(r—\)oX — FhX = 0.
Taking the inner product of the above relation with ¢X and contracting over X, we

get r — A = 0 by (2.2), which further implies 4 = 0 by the previous relation.
Now letting Y =& in (3.2) gives
2F?2
(—&F)+ = )nx) = x(F),

Further putting X = & implies &(F) = %2 Thus the above relation yields DF = %Zi
For any vector fields X, Y, it follows from (2.3) that

X(F), F?
g(VxDF,Y) = g(2F£§ ——0X,Y).
m m
Since g(VxDF,Y) = g(VyDF,X), we have
X(F Y(F 2F?
2 ) —2p ") = 2 o ).
m m m
Replacing X and Y by ¢X and ¢Y, respectively, we deduce F = 0, which is a contra-
diction. We thus complete the proof. O

For V being orthogonal to the Reeb vector field &, we intend to consider a three
dimensional non-Sasakian contact metric manifold (i.e. A& # 0). It is well-known
that there exits a local orthonormal frame field £ = {e, ¢e,&} such that he = ve and
hde = —vode, where Vv is a positive non-vanishing smooth function of M.

First of all, we have the following lemma:

Lemma 3 ([15]). In the open subset U, the Levi-Civita connection V is given by

Vée = aoe, V;;(])e = —ae, Vié =0,
V& =—(1+V)oe, Ve = be, Vebe = —be+ (1 +V)E,
Voe& = (1-V)e, Viede = ce, Voee = —coe + (v —1)E,
where a is a smooth function,
b= %[(I)e(v) +A] with A =Ric(e,§), (3.3)
c= % [e(v)+B] with B=Ric(¢e,5). (3.4)

The components of Ricci operator Q are given by
Qe = (%r— 1+v2— 2av)e+§(v)¢e +AE,

Qe =E(V)e+ (br—1+v2+2av) e + BE, (3.5)
Q% = Ae+ Boe +2(1 —V?)E,
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The scalar curvature
r=trace(Q) = 2(1 —v* —b> — > +2a +e(c) + Qe (b)). (3.6)
Moreover, it follows from Lemma 3 that
le,0e] = V.0e — Vyoe = —be+ che + 28,
[e,6] = V& —Vee = —(a+V+1)oe, 3.7
[0e,E] = V& — Vebe = (a—Vv+1)e.
Theorem 2. [f a non-Sasakian contact metric manifold admits a non-trivial almost
quasi-Yamabe gradient soliton (g, f,m,\) whose potential vector field is orthogonal

to the Reeb vector field, then (g, f,m,\) is a steady quasi-Yamabe gradient soliton
and M is locally isometric to E(2).

Proof. Since the potential vector field Df is orthogonal to &, we may write Df =
fie + fo0e, where fi, f>» are two smooth functions on M. For any vector field X,
equation (1.2) may be expressed as

VxDf — %X(f)pf: (r—M)X. (3.8)

Choosing X = & in (3.8) and using Lemma 3, we have

(§(f1) = faa)e+ (§(f2) + fia)9e = (r—M)E.

This shows
r=»% &(fi)—fa=0, &(f2)+fia=0. (3.9
Similarly, putting X = e in (3.8) and using Lemma 3, we obtain
1
e(fi)=bfr——fF =0, (3.10)
1
e(f2) +bfi = —fif2=0, (3.11)
(14+v)f2=0. (3.12)
Putting X = ¢e in (3.8) and using Lemma 3, we obtain
1
¢e(f1)+cf2—%f1f2=0, (3.13)
1
de(fa) —cfi— %fzz =0, (3.14)
0=(v—1)f1. (3.15)

Since Df is nonzero and v > 0, we know f; =0 and v =1 from (3.12) and (3.15).
Moreover, we deduce from (3.10), (3.14) and the third term of (3.9) thata=b=c =
0. Because v = 1, it follows from (3.3) and (3.4) that A = B = 0. This implies Q& = 0.
Making use of (3.6) we obtain r = 0. Moreover, (3.20) becomes

[e,d)e} = 2&) [(1)6,&] =0, [§>e] = 2¢e.
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We complete the proof by Milnor’s classification theorem ([19]). ]

Theorem 3. Let M? be non-Sasakian contact metric manifold with Q¢ = ¢Q. If
(g,V,m,\) is a nontrivial almost quasi-Yamabe soliton whose potential vector field
V is orthogonal to &, then (g,V,m,\) is a steady quasi-Yamabe soliton and M is flat.

Proof. We write V = fie+ fo0e, where f1, f> are two smooth functions on M. By
the assumpitons, we have A = B =0 and §(V) = a = 0 (see [!4, Proposition 2.5]).
Therefore (3.5) becomes

Qe = (%r— 1 +v2>e,
QObde = <%r7 1 +V2) Oe,
0& =2(1-V?)E.

Next making use of the above formulas and Lemma 3 we compute
(VeQ)& = —25(v*)E =0,
1
(V.Q)e =V, .(Qe) — QV,e = e<§r —1 +V2) e,

1
(VoeQ) e = Vo (Qhe) — QVgede = e (Er 1 +V2>¢e.
Since %Dr = divQ, we obtain
E(V) = O) ¢€(V) =0.

That shows b = ¢ = 0 from (3.3) and (3.4).
For any vector fields X,Y, equation (1.3) may be expressed as

¢(VxV.Y) +g(VyV.X) - %V(X)V(Y) —2(r-NeX.Y).  (3.16)

Letting X =Y = & in (3.16) gives r = A. Putting X = e and Y = § in (3.16) and using
Lemma 3, we obtain

§(fi)+f2(1+v)=0. (3.17)
Putting X = ¢e and Y = & and using Lemma 3, we obtain
&(f2)+filv—1)=0. (3.18)
Choosing X = e and Y = ¢e we get
0e(i) +e(f2) — = fifp = 0. (3.19)
On the other hand, since a = b = ¢ = 0, the Lie bracket (3.7) may be expressed as
[e,E] = —(1+V)be, [de,E] = (1—V)e. (3.20)

Applying the first term of (3.20) on f, and using (3.18), we obtain
&le(f2)) = (1+V)de(f2) = —e(fi)(v—1).
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Applying the second term of (3.20) on f; and using (3.17), we obtain
S(9e(f1)) + (1 =V)e(fi) = de(f2) (=1 —V).
Therefore, the previous two equations together with (3.19) give
E(fif2) =0.
Using (3.17) and (3.18), we thus derive
B+ +fi(v—1)=0.
Differentiating this along & and using (3.17) and (3.18) again, we have
vi—1=0.

This shows that v = 1 and (3.6) yields A = r = 0. Moreover, it is clear that Q& = 0.
We complete the proof by [5, Remark 3.1]. U

4. CONTACT METRIC (K,u)-MANIFOLDS WITH CLOSED ALMOST
QUASI-YAMABE SOLITONS

In this section we suppose that (M?"+1,¢,& 1, g) is a contact metric (i, u)-manifold,
namely the curvature tensor satisfies (2.6). Furthermore, the following relations are
provided (see [0]) :

OX = (2(n—1) —nu)X + 2(n— 1)+ whX + (n(2x+u) —2(n— H)M(X)E, (4.1)
n = (x—1)0%. (4.2)

Using (2.1), it follows from (4.1) that the scalar curvature r = 2n(2(n— 1) + K — nu)
and Q€ = 2nk€. By (4.2), we find easily that k < 1 and ¥ = 1 if and only if M is a
Sasakian manifold. In particular, for k¥ = u = 0, Blair proved the following result.

Theorem 4 ([3, Theorem 7.5]). A contact metric manifold M*'* satisfying
R(X,Y)E = 0 is locally isometric to E""! x §"(4) for n > 1 and flat for n = 1.

For a non-Sasakian (k,u)-manifold M, Boeckx [7] introduced an invariant

and proved the following conclusion:

Theorem 5 ([7, Corollary 5]). Let M be a non-Sasakian (X, u)-manifold. Then it
is locally isometric, up to a D-homothetic transformation, to the unit tangent sphere
bundle of some space of constant curvature (different from 1) if and only if Iyy > —1.

Making use of the above theorems we obtain
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Theorem 6. Let M*"! be a non-Sasakian (,u)-manifold. If M admits a non-
trivial closed almost quasi-Yamabe soliton (g,V,m,\), then M is flat for n = 1 and
for n > 1, M is either locally isometric, up to a D-homothetic transformation, to the
unit tangent sphere bundle of some space of constant curvature, or locally isometric
to E"1 x S"(4).

Proof. In view of equation (1.3), we obtain
1
VyV=(r—-ANY+—gV,Y)V 4.3)
m

for any vector Y. Since the scalar curvature r = 2n(2(n — 1) + ¥ — nu) is constant,
using (4.3) we compute

R(X,Y)V =VxVyV —VyVxV —Vx y|V

1 1
= =XMWY +—g(VxV.Y)V + —g(V.Y)VxV

1 1 4.4)
+Y(AM)X — ;g(VYV,X)V - ag(V,X)VyV

r—»A

V.X)Y.
- g(V,X)

—Y(VX — XY + r_mkg(v, Y)X —

Taking an inn product of the above formula with § and using (2.6), we have
—KkM¥)e(X,V) —n(X)g(Y,V)) —u((¥Y)g(hX,V) —n(X)g(hY,V))

r—»Aa
(V. Y)M(X) —g(V.X)n(Y)]+Y (An(X) =X A)n(Y).
Now replacing X and Y by ¢X and &, respectively, yields

vy
Kg(0X, V) +ug(hOX,V) = 0X () + —=g(9X.V)

for any vector field X. This is equivalent to

-\
(K — r—) OV + udhY = DA (4.5)
m
On the other hand, contracting (4.4) over Y and using (4.1) we obtain
(2(n—1) = nu)V + (2(n— 1)+ @AV + (n(2k+w) — 2(n— )N(V)E
-\
= 2n (D?»—i— i ) 4.6)
m
Now applying ¢ in this formula implies

(2(n—1)—nu)oV + (2(n—1) +u)0hV =2n (¢Dk+ - 7\'(1)V>, 4.7)

m
which, combining with (4.5), gives

—A

{(2(n— 1)—n/~l)/1—(2(n—1)_|_#)(]<_7”7> —2nyr_7‘

m

Jo
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= (2m=2(n— 1)~ ) 0DA, (4.8)
implying

{@0n 1)~ mau— 1) 40 (e ) 2 My

_ <2n,u—2(n— 1) —y)m € RE,

Case LIfd:=2nu—2(n—1)—u=0,ie. u= 2An=1) , then from (4.8) we know

2n—1
r— r—»A
2n—1)—nuu— (2(n—1 (K——)—z —0.
2(n—1) —nuu—(2(n—1)+p) - nu—
That is, x = n(("z;?f) for n > 1. Clearly, in this case we have
2(n—1)
1_% - 2271 _ 1 1

M= ™ Ve i
For n = 1, we have u = 0. Equation (4.6) is simplified as
r—A»a
m

which, combining with (4.5), yields kK = 0. Here we have used the conclusion that
0OV = 0, which is obtained by Theorem 1.
Case IL. If d = 2nu—2(n—1) — u # 0 then we can write

DL =cV +sE, 4.9)

kn(V)§ = DA+

v,

where

c= %{(2(:1— 1) —nu)u—(2(n— 1)+H)(‘<—r;k> _er—x}

m

and s is a smooth function. By (4.6), we have
(2(n— 1)+ @AV + (n(2k+w) — 2(n— )M(V)E
—A
- {2n(c+ r7> —(2(n—1)—ny)}v+2nsz_,. 4.10)

Now applying 4 in this formula and recalling (4.2) imply

2 _ =M -
Q2(n—1)+ ) (k—1)o V_{zn(c+ m) 2(n—1) ny)}hV. @.11)
Combining (4.10) with (4.11) we get

[{2n(c+ r;?u) —(2(n—1) —n,u)} (n(ZlH—y) —2(n— 1))
Y - 1))}

m

F2(n—1)+p)P(k— 1)]n(V)g - 2ns{2n(c+
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B r—A 2 )
- [{2}1(—0—1—7)—(2(11—1)—11/1)} FR-D+pPk-D]V. @12
Since ¢V # 0, this implies that

{2n<c+ r;’”) —2n— 1)—n/.1)}2—|—(2(n— Daulk—1)=0,  (4.13)

then A is constant. Hence equation (4.5) becomes

(Kr;‘)q)v S uOhV = 0. (4.14)

Furthermore, from (4.9) we find s = ¢ = 0 since V ¢ RE. Thus it follows from (4.12)
that

{2n(r—k>—(2(n—1)—n,u)}(1<—r—ml>n(V):O. (4.15)

m
II(a). When 2(n— 1) +pu # 0, it follows from (4.13) and (4.15) that

(K—r_k>n(V):0. (4.16)

m
Consequently, either Kk — % =0orn(V)=0.Ifx— % =0 then (4.14) yields u=0.
This implies n > 1 and equation (4.13) becomes

n*x? — (n? — 1)k =0,

. 2_ . . 2
ie.x=0orxk= "n2 L Since x < 1, relation k = "nzl does not hold.

If n(V) = 0, we differentiate this along & and obtain r = A by (4.3). Hence equa-
tions (4.14) and (4.7) respectively become

KOV +uohV =0 and (2(n—1)—nu)¢V+ (2(n—1)+u)ohV =0.
Using 0 to act on the above relations yields
KV +uhV =0,
2n—1)—nw)V+2(n—1)+u)hvV =0.

hus
! { K+uy/1—Kxk=0,
2n—1)—nu)+2(n—1)4u)v/1—-x=0.
o { K—uy/1—x=0,
2(n—1)—nu)— (2(n—1)+u)v/1—x=0.

Here v/1 — x is an eigenvalue of 4. The above two cases shall lead to

2(n—1)(14++v1—-x) K

Vi—K—n Vi—x’

ie.
X+ (n=2)x*+(2n—-3)x+n=0,
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where x = /1 — k. Clearly, the above relation does not hold for n > 1 since x > 0.
II(b). When 2(n — 1) + u = 0 then equation (4.13) yields

r—»A

m

n”—1=n

4.17)
Substituting this into (4.14) yields

—(1—K)—’12_,1’H:2(n—1)m.

If n =1 then x = u=0. For n > 1, the above relation is impossible since kK < 1. In
this case, M is flat.

Summing up the above discussion, we proved that k = u = 0 for n = 1 and for
n > 1, either k = u =0 or Iy > —1. Therefore we complete of the proof by Theorem
4 and Theorem 5. g

When V = Df, it is clear that VP is closed, thus we have

Corollary 1. A non-Sasakian contact metric (K, u)-manifold M*'*', admitting a
nontrivial quasi-Yamabe gradient soliton (g,f,m,\), is locally isomorphic to
E"H % §(4) for n > 1 and flat for n = 1.

Proof. Since r =2n(2(n—1)+x—nu) and A are constants, by (2.9) we have

S NE S W Y

m 2n

0

If A # r then
0=2n(2n+1)(r—A) —mr.
Equation (4.5) becomes

r
(K—m>¢V+u¢hV:O. (4.18)

For Case I in the proof of Theorem 6, K = % and u = 22(2:1)‘ A direct computa-
tion yields x — m = 0. This implies from (4.18) that Kk =u =0 and n = 1. For
Case Il(a), since r # A we see (V) # 0. Thus in this case we also have Kk = u = 0.
When r = A, for Case I in the proof of Theorem 6, equation (4.7) is simplified as
(n—1)V +2nhV =0.
Using 4 to act on this and recalling (4.2), we obtain
(n—1)?
n(2n—1)

(n—l)hV+2n<l— )V:o.

Thus the previous two formulas yields

(n—1)2—4n2<1— (n—1)°

— ) =0, ie.2n° 2 1=0.
n(2n—1)> 0,1i.e.2n”4+9n" —8n+ 0
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Obviously, it is impossible.
For Case I1, it follows from (4.5) that if kK = 0 then u = 0. If k # 0 then (V) =0 by
(4.16). Thus from Case Il(a) in the proof of Theorem 6, we know that is impossible.
Summarizing the above discussion, we know ¥k = g = 0. Thus the desired conclu-
sion is proved by Theorem 4. ([l

5. K-CONTACT MANIFOLDS WITH CLOSED ALMOST QUASI-YAMABE SOLITONS

In this section we study a K-contact manifold admitting a closed almost quasi-
Yamabe soliton.

Theorem 7. Let (g,V,m,\) be a closed almost quasi-Yamabe soliton on a K-
contact manifold M*"*'. If r — \ is nonnegative and attains a maximum in M then
either the soliton is trivial or r —k = m. Moreover, if M is compact, then (g,V,m,\)
is trivial under the condition that r — A is nonnegative.

Proof. As V"’ is closed, equation (1.3) is equivalent to
1
VyV=(r—-NY+—g(V,Y)V. (5.1)
m

Via this formula one derives easily
R(X,Y)V =VxVyV —VyVxV -V yV (5.2)

=X(r—\NY + %g(V,Y)(r—?»)X—Y(r—?»)X - %g(V,X)(r—?u)Y.

By (2.5), taking an inner product of (5.2) with § gives

X(r— 1)+ 7 P men) g n(x) - Fe(v x) = g(x,v).

Now replacing X by 0X yields
h— h—
oD(r—2) — Moy =0, ie. Dir—A) - """y cRe,
m

m

We write D(r — A) — M‘T_’”V = € for some function ¢ on M.
On the other hand, contracting (5.2) over X yields
-
2n(—D(r—x) + r—v) — ov.
m
. B . . i e i
Slnce Q& = 2n&, the previous two formulas imply ¢ = g(D(r — A) — =-"2V,&) =0,
ie.
-
D(r—a)=""""y. (5.3)
m
Differentiating (5.3) along X yields

Xr=M)y,  r=hmmg v ven(r—2).
m m
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Further, contracting this over X gives

V(r—A2) N r—A—m

m m

divV =A(r—A). (5.4)
Since A(r —A—m)? =2|D(r—A—m) > +2(r— A —m)A(r — A —m) and
divV = (2n+ 1)(r—4) + ~|V]2 (5.5)
m

obtained from (5.1), it follows from (5.3) and (5.4) that

A(r—A—m)? —6]D(r—7u—m)]2+2(r—7u—m)2(2nﬂn)l(r_x).

If r — A is nonnegative and attains a maximum in M then r —A = m or r — A = 0. For
r—A =0, equation (5.3) yields V = 0, i.e. the soliton is trivial.

If M is compact, it is easy to get from (5.5) that V = 0 under the assumption that
r — A is nonnegative. O

If V = Df, equation (5.3) becomes

r—A—m

Df =D(r—\). (5.6)
In view of (2.8), we know
Af = %|Df\2+ (2n+1)(r—1).

Inserting this into equation (5.4), we get

%g(Df,D(r—?\,)) + ”_7,;_’" Qn+1)(r—A\) + %|ny2] —A(r—L). (57

Making use of (2.9) and (5.6), it follows from (5.7) that
(4n(2n+1) —2r)(r—A) = g(Df,Dr). (5.8)
Thus the following conclusion is clear from (5.8) and (5.6).

Corollary 2. Let M*"*! be a K-contact manifold with an almost quasi-Yamabe
gradient soliton (g, f,m,\). If the scalar curvature r is constant then either (g, f,m,\)
is trivial, or r =2n(2n+1).
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