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Abstract. In this article, we study contact metric manifolds admitting almost quasi-Yamabe
solitons (g,V,m,λ). First we prove that there does not exist a nontrivial almost quasi-Yamabe
soliton whose potential vector field V is pointwise collinear with the Reeb vector field ξ on a
contact metric manifold. For V being orthogonal to ξ, we consider the three dimensional cases.
Next we consider a non-Sasakian contact metric (κ,µ)-manifold admitting a nontrivial closed
almost quasi-Yamabe soliton and give a classification. Finally, for a closed almost quasi-Yamabe
soliton on K-contact manifolds, we prove that either the soliton is trivial or r−λ = m if r−λ is
nonnegative and attains a maximum on M, where r is the scalar curvature.
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1. INTRODUCTION

Yamabe soliton, introduced by R. Hamilton, is a Riemannian metric g of a com-
plete Riemannian manifold (M,g) satisfying

1
2

LV g = (r−λ)g (1.1)

for λ ∈ R and a smooth vector field V , where LV is the Lie derivative along V and
r is the scalar curvature of M. For λ = 0 the Yamabe soliton is steady, for λ < 0 is
expanding, and for λ > 0 is shrinking. In particular, if the potential vector field V is
a gradient field, the Yamabe soliton is said to be a Yamabe gradient soliton. Yamabe
solitons have been studied under some conditions (cf.[4,8,11,16,18]). In the Yamabe
soliton equation (1.1), if λ is a smooth function, (g,V,λ) is called an almost Yamabe
soliton, introduced by E. Barbosa and E. Ribeiro in [1], and T. Seko and S. Maeta
in [23] completely classified almost Yamabe solitons on hypersurfaces in Euclidean
spaces.
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Later many researchers generalized the notion of Yamabe soliton. For instance,
Huang and Li [17] proposed the concept of quasi-Yamabe gradient soliton, namely
the Riemannian metric g satisfies the equation

∇
2 f − 1

m
d f ⊗d f = (r−λ)g (1.2)

for some f ∈C∞(M), λ∈R and a constant m> 0. Such a soliton is also considered by
Neto [20] and Wang [27]. V. Pirhadi and A. Razavi in [22] modified λ to be a smooth
function and obtained some formulas and a necessary and sufficient condition under
which an arbitrary compact almost Yamabe soliton is necessarily gradient. Further-
more, Neto-Oliveira [21] defined the generalized quasi Yamabe gradient soliton by
replacing 1

m by a smooth function in equation (1.2). Recently, Blaga [2] and Chen-
Deshmukh [9] studied more generalized quasi Yamabe solitons. In this article, we
consider almost quasi-Yamabe soliton, which is defined as follows:

Definition 1. A Riemannian metric is said to be almost quasi-Yamabe soliton if
there exist a constant m > 0, a smooth vector field V and a C∞ function λ such that

1
2

LV g− 1
m

V [⊗V [ = (r−λ)g (1.3)

holds, where V [ is the 1-form associated to V and r stands for the scalar curvature.
Denote the almost quasi Yamabe soliton by (g,V,m,λ).

If the 1-form V [ is closed, the almost quasi-Yamabe soliton (g,V,m,λ) is said to be
closed. Using the terminology of Yamabe solitons, we call an almost quasi-Yamabe
soliton shrinking, steady or expanding, respectively, if λ < 0,λ = 0, or λ > 0. When
V ≡ 0, an almost quasi-Yamabe soliton is said to be trivial. Otherwise, it will be
called nontrivial. It is mentioned that an almost quasi-Yamabe soliton (g,V,m,λ) is
reduced to an almost Yamabe soliton when m = ∞. If V = D f is a gradient vector
field, it is called an almost quasi-Yamabe gradient soliton, denoted by (g, f ,m,λ).
Notice that equation (1.2) recovers the Yamabe gradient soliton when m = ∞.

For the odd-dimensional manifold, we notice that Sharma [24] proved that a 3-
dimensional Sasakian manifold with a Yamabe soliton has constant scalar curvature,
and V is Killing. Venkatesha-Naik [26] further generalized Sharma’s results to a
3-dimensional contact metric manifold with commuting Ricci operator. For other
results the reader can see [12, 13, 25, 28].

In the present paper, we consider almost quasi-Yamabe solitons on contact metric
manifolds and it is organized as follows: In Section 2, we recall some definitions
and related conclusions on contact metric manifolds. In Section 3, we first prove an
nonexistence for a general contact metric manifold with a nontrivial almost quasi-
Yamabe soliton whose potential vector field is pointwise collinear with the Reeb
vector field. For V being orthogonal to the Reeb vector field, we also obtain two
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results. In the following Section 4 and Section 5, we study respectively contact met-
ric (κ,µ)-manifolds and K-contact manifolds admitting closed almost quasi-Yamabe
solitons.

2. PRELIMINARIES

Let M2n+1 be a (2n+ 1)-dimensional smooth manifold. If there exists a global
1-form η (called contact form) on M such that η∧ (dη)n 6= 0 everywhere, M2n+1

is said to be a contact manifold. The contact form induces a unique vector field ξ,
called Reeb vector field, satisfying η(ξ) = 1 and dη(ξ, ·) = 0. Every contact manifold
has an almost contact structure (φ,ξ,η), where φ is a (1,1)-tensor field such that
φ2 =−I +η⊗ξ, η◦φ = 0, φ◦ξ = 0.

A Riemannian metric g on M can be defined by

dη(X ,Y ) = g(φX ,Y ), g(X ,ξ) = η(X)

for any X ,Y ∈ X(M). We note that the Riemannian metric g, φ and contact form η

can be related each other by

g(φX ,φY ) = g(X ,Y )−η(X)η(Y ).

We refer to (φ,ξ,η,g) as a contact metric structure and to the manifold M2n+1 carry-
ing such a structure as a contact metric manifold.

We define the tensor h = 1
2 Lξφ, where L denotes the Lie derivative and satisfies

trace(h) = 0, hξ = 0, φh =−hφ, g(hX ,Y ) = g(X ,hY ), (2.1)

trace(φh) = 0. (2.2)

Furthermore, we also have

∇X ξ =−φX−φhX (2.3)

and ∇ξφ = 0. A contact metric manifold (M2n+1,φ,ξ,η,g) for which Reeb vector
field ξ is Killing, i.e. Lξg = 0, is called a K-contact manifold. If h = 0 then we have
Lξg = 0, that means that M2n+1 is a K-contact manifold. For a K-contact manifold
(M2n+1,φ,ξ,η,g) the following equations were proved in [3]:

Qξ = 2nξ, (2.4)

R(X ,ξ)ξ =−φ
2X (2.5)

for any vector field X on M. An almost contact structure (φ,ξ,η) is said to be normal
if the corresponding complex structure J on M×R is integrable. A normal contact
metric manifold is said to be a Sasakian manifold. A contact metric manifold is
Sasakian if and only if R(X ,Y )ξ = η(Y )X −η(X)Y for all vector fields X ,Y on the
manifold.
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In addition, Blair-Koufogiorgos-Papantoniou [6] defined the notion of contact met-
ric (κ,µ)-manifold, i.e. the curvature tensor of a contact metric manifold satisfies

R(X ,Y )ξ = κ(η(Y )X−η(X)Y )+µ(η(Y )hX−η(X)hY ) (2.6)

for any vector fields X ,Y , where κ,µ are constants.
The following two lemmas will be used in the sequel proofs.

Lemma 1. For an almost quasi-Yamabe gradient soliton (M,g, f ,m,λ), the curva-
ture tensor R can be expressed as

R(X ,Y )D f =− r−λ

m
{X( f )Y −Y ( f )X}+X(r−λ)Y −Y (r−λ)X (2.7)

for any vector fields X ,Y on M.

Proof. Since equation (1.2) may be exhibited as

∇Y D f =
1
m

Y ( f )D f +(r−λ)Y, (2.8)

we get

∇X ∇Y D f =
1
m
{X(Y ( f ))D f +Y ( f )∇X D f )}+X(r−λ)Y +(r−λ)∇XY.

Using the previous two equations, a direct calculation gives

R(X ,Y )D f = ∇X ∇Y D f −∇Y ∇X D f −∇[X ,Y ]D f

=
r−λ

m
{Y ( f )X−X( f )Y}+X(r−λ)Y −Y (r−λ)X .

�

Lemma 2 ([10]). For an almost quasi-Yamabe gradient soliton (M2n+1,g, f ,m,λ),
the following equation holds:

∆(r−λ) =
2
m

g(D f ,D(r−λ))+
2n+1

m
(r−λ)2− 1

4n
g(D f ,Dr)− 1

2n
(r−λ)r.

(2.9)

3. CONTACT METRIC MANIFOLDS WITH ALMOST QUASI-YAMABE SOLITONS

Theorem 1. There does not exist a nontrivial almost quasi-Yamabe soliton
(g,V,m,λ) with V = η(V )ξ on a contact metric manifold.

Proof. We set V = Fξ for a non-zero function F . By (2.3), we have

∇XV = X(F)ξ−F(φX +φhX). (3.1)

Using (3.1), formula (1.3) becomes

(r−λ)g(X ,Y )− 1
2
(X(F)η(Y )+Y (F)η(X))+Fg(φhX ,Y )+

F2

m
η(X)η(Y ) = 0.

(3.2)



ALMOST QUASI-YAMABE SOLITONS ON CONTACT METRIC MANIFOLDS 1037

Now replacing X and Y by φX and φY , respectively, implies

(r−λ)φX−FhX = 0.

Taking the inner product of the above relation with φX and contracting over X , we
get r−λ = 0 by (2.2), which further implies h = 0 by the previous relation.

Now letting Y = ξ in (3.2) gives(
−ξ(F)+

2F2

m

)
η(X) = X(F).

Further putting X = ξ implies ξ(F) = F2

m . Thus the above relation yields DF = F2

m ξ.
For any vector fields X ,Y , it follows from (2.3) that

g(∇X DF,Y ) = g(2F
X(F)

m
ξ− F2

m
φX ,Y ).

Since g(∇X DF,Y ) = g(∇Y DF,X), we have

2F
X(F)

m
η(Y )−2F

Y (F)

m
η(X) =

2F2

m
g(φX ,Y ).

Replacing X and Y by φX and φY , respectively, we deduce F = 0, which is a contra-
diction. We thus complete the proof. �

For V being orthogonal to the Reeb vector field ξ, we intend to consider a three
dimensional non-Sasakian contact metric manifold (i.e. h 6= 0). It is well-known
that there exits a local orthonormal frame field E = {e,φe,ξ} such that he = νe and
hφe =−νφe, where ν is a positive non-vanishing smooth function of M.

First of all, we have the following lemma:

Lemma 3 ([15]). In the open subset U, the Levi-Civita connection ∇ is given by

∇ξe = aφe, ∇ξφe =−ae, ∇ξξ = 0,

∇eξ =−(1+ν)φe, ∇ee = bφe, ∇eφe =−be+(1+ν)ξ,

∇φeξ = (1−ν)e, ∇φeφe = ce, ∇φee =−cφe+(ν−1)ξ,

where a is a smooth function,

b =
1

2ν
[φe(ν)+A] with A = Ric(e,ξ), (3.3)

c =
1

2ν
[e(ν)+B] with B = Ric(φe,ξ). (3.4)

The components of Ricci operator Q are given by
Qe =

(
1
2 r−1+ν2−2aν

)
e+ξ(ν)φe+Aξ,

Qφe = ξ(ν)e+
(

1
2 r−1+ν2 +2aν

)
φe+Bξ,

Qξ = Ae+Bφe+2(1−ν2)ξ.

(3.5)
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The scalar curvature

r = trace(Q) = 2(1−ν
2−b2− c2 +2a+ e(c)+φe(b)). (3.6)

Moreover, it follows from Lemma 3 that [e,φe] = ∇eφe−∇φee =−be+ cφe+2ξ,
[e,ξ] = ∇eξ−∇ξe =−(a+ν+1)φe,
[φe,ξ] = ∇φeξ−∇ξφe = (a−ν+1)e.

(3.7)

Theorem 2. If a non-Sasakian contact metric manifold admits a non-trivial almost
quasi-Yamabe gradient soliton (g, f ,m,λ) whose potential vector field is orthogonal
to the Reeb vector field, then (g, f ,m,λ) is a steady quasi-Yamabe gradient soliton
and M is locally isometric to E(2).

Proof. Since the potential vector field D f is orthogonal to ξ, we may write D f =
f1e+ f2φe, where f1, f2 are two smooth functions on M. For any vector field X ,
equation (1.2) may be expressed as

∇X D f − 1
m

X( f )D f = (r−λ)X . (3.8)

Choosing X = ξ in (3.8) and using Lemma 3, we have

(ξ( f1)− f2a)e+(ξ( f2)+ f1a)φe = (r−λ)ξ.

This shows
r = λ, ξ( f1)− f2a = 0, ξ( f2)+ f1a = 0. (3.9)

Similarly, putting X = e in (3.8) and using Lemma 3, we obtain

e( f1)−b f2−
1
m

f 2
1 = 0, (3.10)

e( f2)+b f1−
1
m

f1 f2 = 0, (3.11)

(1+ν) f2 = 0. (3.12)

Putting X = φe in (3.8) and using Lemma 3, we obtain

φe( f1)+ c f2−
1
m

f1 f2 = 0, (3.13)

φe( f2)− c f1−
1
m

f 2
2 = 0, (3.14)

0 = (ν−1) f1. (3.15)

Since D f is nonzero and ν > 0, we know f2 = 0 and ν = 1 from (3.12) and (3.15).
Moreover, we deduce from (3.10), (3.14) and the third term of (3.9) that a = b = c =
0. Because ν= 1, it follows from (3.3) and (3.4) that A= B= 0. This implies Qξ= 0.
Making use of (3.6) we obtain r = 0. Moreover, (3.20) becomes

[e,φe] = 2ξ, [φe,ξ] = 0, [ξ,e] = 2φe.
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We complete the proof by Milnor’s classification theorem ([19]). �

Theorem 3. Let M3 be non-Sasakian contact metric manifold with Qφ = φQ. If
(g,V,m,λ) is a nontrivial almost quasi-Yamabe soliton whose potential vector field
V is orthogonal to ξ, then (g,V,m,λ) is a steady quasi-Yamabe soliton and M is flat.

Proof. We write V = f1e+ f2φe, where f1, f2 are two smooth functions on M. By
the assumpitons, we have A = B = 0 and ξ(ν) = a = 0 (see [14, Proposition 2.5]).
Therefore (3.5) becomes 

Qe =
(

1
2 r−1+ν2

)
e,

Qφe =
(

1
2 r−1+ν2

)
φe,

Qξ = 2(1−ν2)ξ.

Next making use of the above formulas and Lemma 3 we compute

(∇ξQ)ξ =−2ξ(ν2)ξ = 0,

(∇eQ)e = ∇e(Qe)−Q∇ee = e
(1

2
r−1+ν

2
)

e,

(∇φeQ)φe = ∇φe(Qφe)−Q∇φeφe = φe
(1

2
r−1+ν

2
)

φe.

Since 1
2 Dr = divQ, we obtain

e(ν) = 0, φe(ν) = 0.

That shows b = c = 0 from (3.3) and (3.4).
For any vector fields X ,Y , equation (1.3) may be expressed as

g(∇XV,Y )+g(∇YV,X)− 2
m

V (X)V (Y ) = 2(r−λ)g(X ,Y ). (3.16)

Letting X =Y = ξ in (3.16) gives r = λ. Putting X = e and Y = ξ in (3.16) and using
Lemma 3, we obtain

ξ( f1)+ f2(1+ν) = 0. (3.17)
Putting X = φe and Y = ξ and using Lemma 3, we obtain

ξ( f2)+ f1(ν−1) = 0. (3.18)

Choosing X = e and Y = φe we get

φe( f1)+ e( f2)−
2
m

f1 f2 = 0. (3.19)

On the other hand, since a = b = c = 0, the Lie bracket (3.7) may be expressed as

[e,ξ] =−(1+ν)φe, [φe,ξ] = (1−ν)e. (3.20)

Applying the first term of (3.20) on f2 and using (3.18), we obtain

ξ(e( f2))− (1+ν)φe( f2) =−e( f1)(ν−1).
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Applying the second term of (3.20) on f1 and using (3.17), we obtain

ξ(φe( f1))+(1−ν)e( f1) = φe( f2)(−1−ν).

Therefore, the previous two equations together with (3.19) give

ξ( f1 f2) = 0.

Using (3.17) and (3.18), we thus derive

f 2
2 (ν+1)+ f 2

1 (ν−1) = 0.

Differentiating this along ξ and using (3.17) and (3.18) again, we have

ν
2−1 = 0.

This shows that ν = 1 and (3.6) yields λ = r = 0. Moreover, it is clear that Qξ = 0.
We complete the proof by [5, Remark 3.1]. �

4. CONTACT METRIC (κ,µ)-MANIFOLDS WITH CLOSED ALMOST
QUASI-YAMABE SOLITONS

In this section we suppose that (M2n+1,φ,ξ,η,g) is a contact metric (κ,µ)-manifold,
namely the curvature tensor satisfies (2.6). Furthermore, the following relations are
provided (see [6]) :

QX = (2(n−1)−nµ)X +(2(n−1)+µ)hX +(n(2κ+µ)−2(n−1))η(X)ξ, (4.1)

h2 = (κ−1)φ2. (4.2)

Using (2.1), it follows from (4.1) that the scalar curvature r = 2n(2(n−1)+κ−nµ)
and Qξ = 2nκξ. By (4.2), we find easily that κ ≤ 1 and κ = 1 if and only if M is a
Sasakian manifold. In particular, for κ = µ = 0, Blair proved the following result.

Theorem 4 ([3, Theorem 7.5]). A contact metric manifold M2n+1 satisfying
R(X ,Y )ξ = 0 is locally isometric to En+1×Sn(4) for n > 1 and flat for n = 1.

For a non-Sasakian (κ,µ)-manifold M, Boeckx [7] introduced an invariant

IM =
1− µ

2√
1−κ

and proved the following conclusion:

Theorem 5 ([7, Corollary 5]). Let M be a non-Sasakian (κ,µ)-manifold. Then it
is locally isometric, up to a D-homothetic transformation, to the unit tangent sphere
bundle of some space of constant curvature (different from 1) if and only if IM >−1.

Making use of the above theorems we obtain
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Theorem 6. Let M2n+1 be a non-Sasakian (κ,µ)-manifold. If M admits a non-
trivial closed almost quasi-Yamabe soliton (g,V,m,λ), then M is flat for n = 1 and
for n > 1, M is either locally isometric, up to a D-homothetic transformation, to the
unit tangent sphere bundle of some space of constant curvature, or locally isometric
to En+1×Sn(4).

Proof. In view of equation (1.3), we obtain

∇YV = (r−λ)Y +
1
m

g(V,Y )V (4.3)

for any vector Y . Since the scalar curvature r = 2n(2(n− 1)+κ− nµ) is constant,
using (4.3) we compute

R(X ,Y )V = ∇X ∇YV −∇Y ∇XV −∇[X ,Y ]V

=−X(λ)Y +
1
m

g(∇XV,Y )V +
1
m

g(V,Y )∇XV

+Y (λ)X− 1
m

g(∇YV,X)V − 1
m

g(V,X)∇YV

= Y (λ)X−X(λ)Y +
r−λ

m
g(V,Y )X− r−λ

m
g(V,X)Y.

(4.4)

Taking an inn product of the above formula with ξ and using (2.6), we have

−κ(η(Y )g(X ,V )−η(X)g(Y,V ))−µ(η(Y )g(hX ,V )−η(X)g(hY,V ))

=
r−λ

m
[g(V,Y )η(X)−g(V,X)η(Y )]+Y (λ)η(X)−X(λ)η(Y ).

Now replacing X and Y by φX and ξ, respectively, yields

κg(φX ,V )+µg(hφX ,V ) = φX(λ)+
r−λ

m
g(φX ,V )

for any vector field X . This is equivalent to(
κ− r−λ

m

)
φV +µφhV = φDλ. (4.5)

On the other hand, contracting (4.4) over Y and using (4.1) we obtain

(2(n−1)−nµ)V +(2(n−1)+µ)hV +(n(2κ+µ)−2(n−1))η(V )ξ

= 2n
(

Dλ+
r−λ

m
V
)
. (4.6)

Now applying φ in this formula implies

(2(n−1)−nµ)φV +(2(n−1)+µ)φhV = 2n
(

φDλ+
r−λ

m
φV
)
, (4.7)

which, combining with (4.5), gives{
(2(n−1)−nµ)µ− (2(n−1)+µ)

(
κ− r−λ

m

)
−2nµ

r−λ

m

}
φV
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=
(

2nµ−2(n−1)−µ
)

φDλ, (4.8)

implying {
(2(n−1)−nµ)µ− (2(n−1)+µ)

(
κ− r−λ

m

)
−2nµ

r−λ

m

}
V

−
(

2nµ−2(n−1)−µ
)

Dλ ∈ Rξ.

Case I. If d := 2nµ−2(n−1)−µ = 0, i.e. µ = 2(n−1)
2n−1 , then from (4.8) we know

(2(n−1)−nµ)µ− (2(n−1)+µ)
(

κ− r−λ

m

)
−2nµ

r−λ

m
= 0.

That is, κ = (n−1)2

n(2n−1) for n > 1. Clearly, in this case we have

IM =
1− µ

2√
1−κ

=
1− 2(n−1)

2n−1√
1−κ

=
1

(2n−1)
√

1−κ
>−1.

For n = 1, we have µ = 0. Equation (4.6) is simplified as

κη(V )ξ = Dλ+
r−λ

m
V,

which, combining with (4.5), yields κ = 0. Here we have used the conclusion that
φV 6= 0, which is obtained by Theorem 1.

Case II. If d = 2nµ−2(n−1)−µ 6= 0 then we can write

Dλ = cV + sξ, (4.9)

where

c =
1
d

{
(2(n−1)−nµ)µ− (2(n−1)+µ)

(
κ− r−λ

m

)
−2nµ

r−λ

m

}
and s is a smooth function. By (4.6), we have

(2(n−1)+µ)hV +(n(2κ+µ)−2(n−1))η(V )ξ

=
{

2n
(

c+
r−λ

m

)
− (2(n−1)−nµ)

}
V +2nsξ. (4.10)

Now applying h in this formula and recalling (4.2) imply

(2(n−1)+µ)(κ−1)φ2V =
{

2n
(

c+
r−λ

m

)
− (2(n−1)−nµ)

}
hV. (4.11)

Combining (4.10) with (4.11) we get[{
2n
(

c+
r−λ

m

)
− (2(n−1)−nµ)

}(
n(2κ+µ)−2(n−1)

)
+(2(n−1)+µ)2(κ−1)

]
η(V )ξ−2ns

{
2n
(

c+
r−λ

m

)
− (2(n−1)−nµ)

}
ξ
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=
[{

2n
(
− c+

r−λ

m

)
− (2(n−1)−nµ)

}2
+(2(n−1)+µ)2(κ−1)

]
V. (4.12)

Since φV 6= 0, this implies that{
2n
(

c+
r−λ

m

)
− (2(n−1)−nµ)

}2
+(2(n−1)+µ)2(κ−1) = 0, (4.13)

then λ is constant. Hence equation (4.5) becomes(
κ− r−λ

m

)
φV +µφhV = 0. (4.14)

Furthermore, from (4.9) we find s = c = 0 since V /∈Rξ. Thus it follows from (4.12)
that {

2n
(r−λ

m

)
− (2(n−1)−nµ)

}(
κ− r−λ

m

)
η(V ) = 0. (4.15)

II(a). When 2(n−1)+µ 6= 0, it follows from (4.13) and (4.15) that(
κ− r−λ

m

)
η(V ) = 0. (4.16)

Consequently, either κ− r−λ

m = 0 or η(V ) = 0. If κ− r−λ

m = 0 then (4.14) yields µ= 0.
This implies n > 1 and equation (4.13) becomes

n2
κ

2− (n2−1)κ = 0,

i.e. κ = 0 or κ = n2−1
n2 . Since κ < 1, relation κ = n2−1

n2 does not hold.
If η(V ) = 0, we differentiate this along ξ and obtain r = λ by (4.3). Hence equa-

tions (4.14) and (4.7) respectively become

κφV +µφhV = 0 and (2(n−1)−nµ)φV +(2(n−1)+µ)φhV = 0.

Using φ to act on the above relations yields

κV +µhV = 0,

(2(n−1)−nµ)V +(2(n−1)+µ)hV = 0.

Thus {
κ+µ

√
1−κ = 0,

(2(n−1)−nµ)+(2(n−1)+µ)
√

1−κ = 0.
or {

κ−µ
√

1−κ = 0,
(2(n−1)−nµ)− (2(n−1)+µ)

√
1−κ = 0.

Here
√

1−κ is an eigenvalue of h. The above two cases shall lead to

2(n−1)(1+
√

1−κ)√
1−κ−n

=
κ√

1−κ
,

i.e.
x3 +(n−2)x2 +(2n−3)x+n = 0,
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where x =
√

1−κ. Clearly, the above relation does not hold for n > 1 since x > 0.
II(b). When 2(n−1)+µ = 0 then equation (4.13) yields

n2−1 = n
r−λ

m
. (4.17)

Substituting this into (4.14) yields

−(1−κ)− n2−n−1
n

= 2(n−1)
√

1−κ.

If n = 1 then κ = µ = 0. For n > 1, the above relation is impossible since κ < 1. In
this case, M is flat.

Summing up the above discussion, we proved that κ = µ = 0 for n = 1 and for
n > 1, either κ = µ = 0 or IM >−1. Therefore we complete of the proof by Theorem
4 and Theorem 5. �

When V = D f , it is clear that V [ is closed, thus we have

Corollary 1. A non-Sasakian contact metric (κ,µ)-manifold M2n+1, admitting a
nontrivial quasi-Yamabe gradient soliton (g, f ,m,λ), is locally isomorphic to
En+1×Sn(4) for n > 1 and flat for n = 1.

Proof. Since r = 2n(2(n−1)+κ−nµ) and λ are constants, by (2.9) we have

0 =
2n+1

m
(r−λ)2− 1

2n
(r−λ)r.

If λ 6= r then

0 =2n(2n+1)(r−λ)−mr.

Equation (4.5) becomes (
κ− r

2n(2n+1)

)
φV +µφhV = 0. (4.18)

For Case I in the proof of Theorem 6, κ = (n−1)2

n(2n−1) and µ = 2(n−1)
2n−1 . A direct computa-

tion yields κ− r
2n(2n+1) = 0. This implies from (4.18) that κ = µ = 0 and n = 1. For

Case II(a), since r 6= λ we see η(V ) 6= 0. Thus in this case we also have κ = µ = 0.
When r = λ, for Case I in the proof of Theorem 6, equation (4.7) is simplified as

(n−1)V +2nhV = 0.

Using h to act on this and recalling (4.2), we obtain

(n−1)hV +2n
(

1− (n−1)2

n(2n−1)

)
V = 0.

Thus the previous two formulas yields

(n−1)2−4n2
(

1− (n−1)2

n(2n−1)

)
= 0, i.e. 2n3 +9n2−8n+1 = 0.
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Obviously, it is impossible.
For Case II, it follows from (4.5) that if κ= 0 then µ= 0. If κ 6= 0 then η(V ) = 0 by

(4.16). Thus from Case II(a) in the proof of Theorem 6, we know that is impossible.
Summarizing the above discussion, we know κ = µ = 0. Thus the desired conclu-

sion is proved by Theorem 4. �

5. K-CONTACT MANIFOLDS WITH CLOSED ALMOST QUASI-YAMABE SOLITONS

In this section we study a K-contact manifold admitting a closed almost quasi-
Yamabe soliton.

Theorem 7. Let (g,V,m,λ) be a closed almost quasi-Yamabe soliton on a K-
contact manifold M2n+1. If r−λ is nonnegative and attains a maximum in M then
either the soliton is trivial or r−λ = m. Moreover, if M is compact, then (g,V,m,λ)
is trivial under the condition that r−λ is nonnegative.

Proof. As V [ is closed, equation (1.3) is equivalent to

∇YV = (r−λ)Y +
1
m

g(V,Y )V. (5.1)

Via this formula one derives easily

R(X ,Y )V = ∇X ∇YV −∇Y ∇XV −∇[X ,Y ]V (5.2)

= X(r−λ)Y +
1
m

g(V,Y )(r−λ)X−Y (r−λ)X− 1
m

g(V,X)(r−λ)Y.

By (2.5), taking an inner product of (5.2) with ξ gives

X(r−λ)+
r−λ

m
η(V )η(X)−ξ(r−λ)η(X)− r−λ

m
g(V,X) = g(φ2X ,V ).

Now replacing X by φX yields

φD(r−λ)− r−λ−m
m

φV = 0, i.e. D(r−λ)− r−λ−m
m

V ∈ Rξ.

We write D(r−λ)− r−λ−m
m V = cξ for some function c on M.

On the other hand, contracting (5.2) over X yields

2n
(
−D(r−λ)+

r−λ

m
V
)
= QV.

Since Qξ = 2nξ, the previous two formulas imply c = g(D(r−λ)− r−λ−m
m V,ξ) = 0,

i.e.

D(r−λ) =
r−λ−m

m
V. (5.3)

Differentiating (5.3) along X yields

X(r−λ)

m
V +

r−λ−m
m

∇XV = ∇X D(r−λ).
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Further, contracting this over X gives

V (r−λ)

m
+

r−λ−m
m

divV = ∆(r−λ). (5.4)

Since ∆(r−λ−m)2 = 2|D(r−λ−m)|2 +2(r−λ−m)∆(r−λ−m) and

divV = (2n+1)(r−λ)+
1
m
|V |2 (5.5)

obtained from (5.1), it follows from (5.3) and (5.4) that

∆(r−λ−m)2 = 6|D(r−λ−m)|2 +2(r−λ−m)2 (2n+1)(r−λ)

m
.

If r−λ is nonnegative and attains a maximum in M then r−λ = m or r−λ = 0. For
r−λ = 0, equation (5.3) yields V = 0, i.e. the soliton is trivial.

If M is compact, it is easy to get from (5.5) that V = 0 under the assumption that
r−λ is nonnegative. �

If V = D f , equation (5.3) becomes

r−λ−m
m

D f = D(r−λ). (5.6)

In view of (2.8), we know

∆ f =
1
m
|D f |2 +(2n+1)(r−λ).

Inserting this into equation (5.4), we get

1
m

g(D f ,D(r−λ))+
r−λ−m

m

[
(2n+1)(r−λ)+

1
m
|D f |2

]
= ∆(r−λ). (5.7)

Making use of (2.9) and (5.6), it follows from (5.7) that

(4n(2n+1)−2r)(r−λ) = g(D f ,Dr). (5.8)

Thus the following conclusion is clear from (5.8) and (5.6).

Corollary 2. Let M2n+1 be a K-contact manifold with an almost quasi-Yamabe
gradient soliton (g, f ,m,λ). If the scalar curvature r is constant then either (g, f ,m,λ)
is trivial, or r = 2n(2n+1).
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