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Abstract. In this paper, we study the existence and uniqueness of solutions for a tripled system of
fractional differential equations with nonlocal integro multi point boundary conditions by using
the p—Laplacian operator and the ¢—Caputo derivatives. The presented results are obtained by
the two fixed point theorems of Banach and Krasnoselskii. An illustrative example is presented
at the end to show the applicability of the obtained results. To the best of our knowledge, this is
the first time where such problem is considered.
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1. INTRODUCTION

The fractional calculus has many significant roles in various scientific fields of
research, see for instance [10,20]. As applied results,the fractional order differential
equations have attired attention of several scientists in different fields of research [8,

]. However, most of the published works have been achieved by using the fractional
derivatives of type Riemann-Liouville, Hadamard, Katugampola, Atangana-Baleanu,
Grunwald Letnikov and Caputo. The fractional derivatives of functions with respect
to some other functions [14] are different from the others since their kernels appear
in terms of other functions (called ¢). Recently, some fractional differential results
have been considered in [4-06, 1 1].

In most of the present articles, Schauder, Krasnoselskii, Darbo, or Monch theories
have been used to prove existence of solutions of nonlinear fractional differential
equations with some restrictive conditions [3, 1 8]. Some authors have worked on the
solutions for fractional problems with p—Laplacian operators. We cite, for example
[1,2,12,16] where it has been studied nonlinear fractional equation with p—Laplacian
operator for the solutions.

Here, we will mention some other research works for the reader. We begin by A.
Devi, A. Kumar, D. Baleanu and A. Khan [2] where they worked on the stability
results, for the following nonlinear FDEs involving Caputo derivatives of distinct
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orders and , Laplacian operator:

Dy, D™ (u(r) = X vi(r))] = —w(t,u(t)),t € (0,1]
Y [“D7 (u(t) = X vi()ll,— = 0,

u(0) = X, vi(0),

W' (1) =X, vi(1),

u/(0) =Y v)(0), for j=2,3,...,n—1,

where 0 < ri < 1l,n—1<r, <n,n>4, and v;,w are continuous functions. D"
and “D" denotes the derivative of fractional order r| and r, in Caputo’s sense,
respectively, and y,(z) = |z|” ~27 denotes the p—Laplacian operator and satisfies
%"Fé - 17(Wp)71 = VY.

We can also cite the paper of A. Mahdjouba et al. [17] where they have investigated
the existence and multiplicity of positive solutions of the following problem:

(W, [ D5 (u(t ))])’+a1( ) f (u(81(2)),v(82(1)) = 0,0 <t < 1,
(W5 [ D v(0))]) +aa(t) £ ((81(r)),v(82(1)) = 0,0 <1 < 1,
Dy u(0) = u(0) =u'(0), Ditu(l) =7y Dylumn),
Dp+v(0) =v(0) =V (0), Dgiv(l) =y Dgv(n),

wheren € (0,1),y € (O ) Dy > Dy’ , are the standard Riemann-Liouville frac-

7nr nr—m—1
tional derivatives with r € (2,3),m € (1,2) such that r > m+ 1, p—Laplacian operator
is defined as y,(z) = z|z|">,p > 1, and the functions f,g € C (R%,R).

Then, S. Etemad with his coauthors [9] have been concerned with the existence
study for the following tripled impulsive fractional problem

) +)cm( )= fu(t,x(t)),m=1,2,3, and t €J’
Xm(a) = Ppx,x), (@) = Opx,
A,y = In g (x (1)) A=y, = T (x(81)),

where J = [a,b],J) =J — {t1,0r,...tp},a =1ty < 1) < ... <1y <lpy =b, “Dy",
m = 1,2,3, are the Caputo fractional derivatives such that k,, € (1,2], fin : J X R3 —
R, x(t) = (x1(2),%2(t),x3(t)), Ines Imxc : R = R, k= 1,2, ..., p, are given functions,
®,,,®,, are given operators, Ax,,|,_, =x(1;) - ( ), Axm\t:,k =x (1) =X (1), and

x(tf) = hlir(r)l+xm (te+h),x(t,) = hlir(r)lﬁxm(tk +h).

In the present research work, we study the existence and uniqueness of solutions for
the following problem:

rlm

" [ D5 (m (1) = I G (8,1 (1), w2 (1), u (1)) ]
_H (t,ur (1), ua(t),us3(t)), m—l ,2,3, and 1 €J=(0,1]
v, [ D ’“p(um(t)—lgi“’G (t ul(t) ur(1),u3(1))1],_, =0, (1.1)
um(O) = 07 um( 3: i=1 lmum (Clm) Cim S ;1]

)—¢(0) =K >0.
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Here, we take D) i =1,2,m =1,2,3 as the p—Caputo fractional derivatives of or-
ders 7ip, 0 < 71y <1 <y <2, and ISE(P,O < © < 1y, the fractional integral of order
G, Aim € RY, and @ : J — R is an increasing function such that @’(¢) # 0, and y,,(z) =
2P~
allt € J, Gy, H,, : J x R — R is a given functions satisfying some assumptions that
will be specified later.

z denotes the p—Laplacian operator and satisfies % + é =1, (q;,,)_l =\, For

2. @—CAPUTO DERIVATIVES

In this section, we introduce some notations and definitions of @—Caputo
approach, for details, see [0, 14, 19].

Let @ : J — R be an increasing function with ¢'(¢) # 0, for all € J.

And throughout the paper, let C =C(J,R) denotes the Banach space of all con-

tinuous mappings from [0, 1] to R endowed with the norm ||u|| = sup u(z). Itis clear
t€[0,1]
that the space C x C x C endowed with the norm ||(uy,uz,u3)|| = ||uy || + ||uz || + ||u3]]

is a Banach space. We pose for all » > 0, and ¢ € [0,1], (¢ > s)

¢ (s) (9(1) —9(s))"”"
['(r) '

(pr(t7s):

Definition 1. For o > 0, the left-sided @—Riemann Liouville fractional integral of
order o for an integrable function u : J/ — R with respect to another function ¢ : J/ — R
that is an increasing differentiable function such that ¢'(¢) # 0, for all r € J is defined
as follows

t
1%9(1) = / 0o (1,5) 1(s)ds, @1

where I' is the gamma function. Note that equation (2.1) is reduced to the Riemann
Liouville and Hadamard fractional integrals when ¢(¢) = ¢ and ¢(¢) = In¢, respect-
ively.

Definition 2. Let n € N and let @,u € C" (J) be two functions such that @ is in-
creasing and @'(r) # 0, for all € J. The left-sided @—Riemann Liouville fractional
derivative of a function u of order o is defined by

s 1 d " n—ao
Q)jfpu(t) = <(p’(t) dt> N Bu(r)

= <(p,1(t)jt>n ] Qn—o (t,5) u(s)ds,

where n = [a] + 1.
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Definition 3. Let n € N and let @,u € C"(J) be two functions such that ¢ is in-
creasing and ¢/ (1) # 0, for all 7 € J. The left-sided ¢—Caputo fractional derivative of
a function u of order a is defined by

c (X;(Pu(t) — J*e 1 i " u(t)
at at (p’(t) dt ?
where n =[] + 1 for o ¢ N,n = o for a0 € N.
To simplify notation, we will use the symbol

ug‘] (1) = (qyl(t)jt)n”(t)'

From the definition, it is clear that

t
JQualt, )y (s)ds, if o ¢ N,

“Dilur) =
ugl] (1) if oo e N.

(2.2)

This generalization (2.2) yields to the Caputo fractional derivative operator when
¢(t) = t. Moreover, for ¢(r) = Int, it gives the Caputo Hadamard fractional derivat-
ive.

2.1. Auxiliary Lemma
Lemma 1. Let o, > 0, and u € L' (J). Then
I;;(Plffpu(t) = I$+B;(Pu(t), ae. telJ.
In particular, if u € C(J), then Iffplffpu(t) = Igj&(pu(t), tel.

Next, we recall the property describing the composition rules for fractional @-
integrals and @-derivatives.

Lemma 2. Let o > 0. The following holds:
Ifu e C([a,b]), then

DX I u(t) = u(t),t € [a,b)].

IfueC'(J),n—1<o<n,then

) ] n—lu[k] (a) k
1% D () = u(t) - Y 2% 9(0) — p(a)),
k=0 '

forallt € |a,b]. In particular, if 0 < o < 1, we have
Iﬁ(pc@afpu(t) =u(t) —u(a).

a

Lemma 3. Lett > a, o0 > 0 and > 0. Then
o 100 — o(@)P" = B fo) — g(a)P e,
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o <D 9(0) ~0(a))" " = gy o) (@)
o D™ [o(t) — ¢(a)] =0, for all k € {0,....n—1},n € N.

Lemmad4. Let 0. > 0,n € Nsuchthatn—1 < g <n. Then
. c@ZfIﬁé(pu(t) = Q)ZI“”At); if g > a.
o <D 1" Pu(t)u(t) = L7 "u(t); ifa > q.
Lemma 5. Given a function u € C" [a,b] and 0 < g < 1, we have

[120u() - 1) < (s (9() 00

Finally, we recall the fixed point theorems that will be used to prove the main
results. (We have C a Banach space in each theorem).

Lemma 6 (Banach fixed point theorem, [7]). Let U be a closed set in C and
T :U — U satisfies

|Tu—Tv| <olu—v|, for some o€ (0,1),and for u,v € U.
Then ‘T admits one fixed point in U.

Lemma 7 (Krasnoselskii fixed point theorem, [15]). Let M be a closed, bounded,
convex and nonempty subset of a Banach space U. Let A, B be operators such that

(i) Ax+ By € M, where x,y € M,
(i1) A is compact and continuous,
(iii) B is a contraction mapping.

Then there exists z € M such that z = Az + Bz.

Lemma 8 ([13]). For the p—Laplacian operator \y,, the following conditions hold
true:

(1) If181],102] > p>0,1 < p<2,8:8, >0, then

Wp(81) =W, (82) < (p—1)p" 2 (81 = 8o
(2) If p>2,181],|82| < ps >0, then

[Wp(81) =W, (82)| < (p—1)pL 72 (81 = 8o

Lemma 9 ([10]). For nonnegative a;,i =1,...,k,

k q k
(Za,) gk‘i—l <Za?>,q21.
i=1 i=1

Now, we pass to prove the following result.
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Lemma 10. For a given hy, g, € L'(J,,R3), the unique solution of the linear

fractional initial value problem

ot Wy [ D (e (1) = 15 8m (1)) ] =
m=1,2,3, and t €J = (0,1]

‘l’p[ rw(”m(t) ]0+ em(1)]],o =0,
um(0) =0, un(1) = Xl Nimttm (Cim) » Cim € (0,1]
¢(1)—¢(0)=K>0.

/ (pr2m t S Wq |:/ (prlm S e )de:| ds+/ (pG (S)dS
/ @ry,, (1,8)yy [/ @, (5,€) )de]d

+(0() - 9(0)) (Z Mo (2) - ,?’)) .

i=1

is given by

Proof. For 0 <ry, <1 <ry, <2, Lemma 2 yields
Wp [ D67 () = I gm(2) | = g hn (1) + €1
by conditions W, [ D" (tm(t) — gm(t)] ‘t:() =0 we get c1,, = 0. Then
[@53"@ (”m(t) - I(;ﬁ(pgm(t)] Yy [ I%h ( )]
SO

(1) = 152" [Wy [ 15" P hn(1)]] + 15 g (1) + c2m (9(7) — 9(0)) ,
by conditions u,,(0) = 0 and u,, (1) = Y7 At (Gi) , we get

n}‘tim m rzm Vlm
= Y " ()~ £ 1 g, 1 0]

i=1

3. MAIN RESULTS

(2.3)

2.4)

Taking into account Lemma 10, we define an operator 7 : Cx CX C—> CxXCx C

T(u17u2a”3) (t) = (‘Tl (ulaMZa”3) (l‘),% (u17u27u3) (07% (ul,u2yu3) ([))7

where (for m = 1,3)

3.1

T (11,102.163) (1) = / 00 15y | [0 (5.0 il (ehan(e)se))e] s

+/ (p(s ts S Lt]( ) u2<s),u3(s))ds
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=00 =000) [ 0. (1)¥, | [[ 00, 5:6)Hulesr(e)aee).an(e)) e s

+(9(1) —9(0) (z%m—‘;m“)lgo")) 62)
and
'(s —(s)) ! / —o(s))n!
Pra, (t,s)zw()(cp(rt)(mg( V2 o, (z,s)z‘”)(‘P(li)(rl;P)( D
/(s — (s o—1
00 (t,5) = 2L )((P(;)@(P( )

For the sake of convenience, we use the following notations (for m = 1,3) :

242(K+1)K’2m< Ky K1 )‘1‘1
" T(14ram) C(1+ri,)

K°IL, <
o= (e * )

1

29-2 (K 4+ 1) K™ K \9! ko
= ( + ) ( N > _{_7%4_9\/[’
C(1+7rm)  \D(1+7r) I'(1+o0)
" C(1+rim) ’
(=D +K)K> " Fy Ky KB
m = 7\fim .
s F(1+r2m)r(l+rlm) +F(1+G) +i:1’ ‘

3.1. An Existence and Uniqueness Result

Here, by using the Banach contraction mapping principle, we prove an existence
and uniqueness result.

Theorem 1. Let H,,,G,, : [0,1] x R? — R two continuous functions which satisfy
the condition

(A}) there exist positive real constants A, B,, such that, for all t € [0,1] and
uj,vi € Rji,m=1,3, we have

[ Hn(t,u1,u2,u3) — Hyn(€,v1,v2,v3)| < A (lur — vi| + |uz = va| + [uz — v3))
|G (t,u1,u2,u3) — Gu(e,v1,v2,v3)| < By (lur —vi| + |uz —vo| + |uz —v3]).
Then, system (1.1) admits a unique solution on [0, 1] provided that
3(%Ko1 + Koz + Ko3) < 1, and K51+ Ko+ Ks3 < 1 (3.3)

is valid.
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Proof. We transform system (1.1) into a fixed point problem, (u,v,w)(z) =
T (u,v,w)(z), where the operator 7 is defined as in (3.1). Applying the Banach con-
traction mapping principle (Lemma 6), we show that the operator 7 has a unique
fixed point, which is the unique solution of system (1.1).

Let sup H,(#,0,0,0) = A < oo, and sup G,,(#,0,0,0) = M < oo. Next, we set
1€[0,1] t€[0,1]
Up = {(ul,ug,ug) eECxCx C, H(ul,uz,ug)H < p},in which

p> max{ X 3Kim, 3K, m = 1,73}

Observe that Up is a bounded, closed, and convex subset of C. First, we show that
TUp c Up.
For any (u,v,w) € Up, ¢ € [0, 1], using the condition (A ), we have
|Hp (t,u,v,w)| < |Hp(t,u,v,w) — Hy(e,0,0,0)| + |Hy,(e,0,0,0)|
< ko ([ + [+ w]) +N < pAn + N
and
|G (t,u,v,w)| < pBy+ M.
Then, we obtain

T (e ,109) (1) < \ [ ot [ [ o, <s,e>Hm<e,u1<e>,uz<e>,u3<e>>de} ds

+ 'At Po (t,S) Gm(saul (S)7u2(s)’u3(s))ds

+1(0(t) — 0(0))] ‘/01 Oy, (1,8) Wy [/OY 9, (5,€) Hm(e,ul(e),uz(e),us(e))de] ds

+1(0() ~ 9(0))] (i""g’\um@,.)HMIgM)l) |

by Lemma 5 we get

| T (1, u2,u3) (1) <

(llf—;j— rKrzm [/ Or,,, (5,€) Hn(e,ui(e), Mz(e),u3(e))de]

KO(PBu+M) [y~ |y
+ T(11o) + ;pmmeM,

and by y,(z) = |z|9" %z, we have
K+ 1 Kr2m q_l

’_ I 1+l’2m
K"(p@m—I—M

T (1 02,5) (1) [ 0 (5.0) Hfean(€)x(e) as(e)de
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(pAn +A) K"\ (K +1) K™
S( T (1 + i) > T(1+ ram)

KO (pBu+M) i '
+—r(1+c) + (i_zlp\xlmlJrM)

(K+ I)Krz’” ( K"m
- F(1+r2m) F(1+r1m

K°B, KM
+ (W+;|}‘vz;n|)p+(l_i_6)+m/[-

1

gqg—1
q—1
' e+

Thanks to Lemma 9 , for all m = 1,3 we get

2072 (K4 1) K™ K o q—1,g—1 q—1
T (1 7o) (r(1+r1m)> (A )

K°B, K°
+< +Z|x,m|>p+ M o

| Do (w1, u2,u3) (t)] <

[(l+0) 5 I'(l1+o)
— m Tim 1
qu P(K+1)K™ ( An K™ )q 7!
C(1+4rom) L(L+rim)
K°B, i| | L% 2(K+ 1)K ( NK"m >‘f—‘
I'(1+o) Kim L (14 r2m) C(1+7rm)
K°M
M
BE N
< Kimp? ! + Ko p+7@m_§
Hence,
3
HT ”1a”2a”3 Z %mpqilﬂ‘?@rnp"‘%m) <p, (3.4)

which gives us 7Uc C Uo.

Next, we show that 7 : C x C x C — C x C x (C is a contraction.

Using condition (A), for any (uy,uz,u3),(vi,v2,v3) € C x C x C and for each
t €[0,1], we have

|‘I (ul,uz,u3) ‘T Vl,V2,V3)|

(t,5) W, (/ Or,. (5,€) Hyle,u1(e), 2(6),u3(e))de> ds

/ O, (,5) Wy (/ P, (5,€)Hple,vi(e), 2(6),V3(e))de> ds
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‘/ Qs (1,5) (s,u1(s),uz(s),u3(s)) — Gu(s,vi(s),v2(s),v3(s)))ds

+K‘/ Qr,,, (1,8) Wy </S ®r,, (s,€) Hm(e,ul(e),uz(e),u3(e))de> ds
/ Qr,,, (1,8) Wy </ @r,, (5,€)Hy(e,vi(e), V2(€),V3(€))d€) ds
+i; [ Xim | |14 (Ci) = vin (C)

by Lemma 5 and Lemma 8, we get

| Do (w1, 12, u3) — Ty (vi,v2,v3)|

B %’?3 Ve </o“’ (5€) H <eyu1<e>,uz<e>,us<e>>de>

7 ( /0 "9 (5,¢) Hy (e,vl(e),vz(e),V3(e))de> ‘

KSB, 1
+< ZMM‘) (Jlur —=vi| + ug = va| + |uz —v3])

I'(l+0) =
(1+K)K"™ (g —1) Kam
F(1—|—r2m

/ @, (5,€) Hy (e,vi(e),v2(e),v3(e))de

(g—1) Ay (1+K) K>+ %G, KOB, |
S[ Fr)TA iy o) " &

i=1

/ @r,, (5,€) Hy (e,ui(e),uz(e),us(e))de

“(Jur = vi] +uz —va| + |uz —v3|)
< ?Gm(\ul —V1|+’M2—V2‘+|M3—V3|).

Hence,
|T (ur,uz,u3) — Tu(vi,v2,v3)| < (Ks1 + K51+ Ks3) (Jur —vi| + Juz — va| + Juz —v3]).

Since K51+ K51+ Ksz < 1, by (3.3), the operator 7 is a contraction. Therefore,
using the Banach contraction mapping principle (Lemma 6), the operator 7 has a
unique fixed point. Hence, system (1.1) has a unique solution on [0, 1]. The proof is
completed. O
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3.2. An Existence Result
Now we apply Krasnoselskii fixed point theorem (Lemma 7) to prove our second
existence result. So, consider the following operator

T(ul,ug,ug u17u27u3 )(t)

3
(Pum (1, u2,u3) (1) + Y, (Po (1, 02,3 ) (1)

m=1

M1,M27M3)( )+ Po(uy,uz,u3)(t),

I
5 Mw u M

where
3
Pr(uy,uz,u3)(t) = Z (Prm (w1, uz,u3)(2),
m=1
3
Po(ur,up,uz) (1) = Y (Pom (1, uz,u3) (1),
m=1
and

(it 12)0) = [0 (050 | [ 01, (56) e (e)n(e)(0) e s
00) [ 0 150V | [ 00 (.6) e €)1 (e)x(e)e | as

and

(Pom (uy,u,uz)(t / Qg (1,5) Gy (s,u1(s),uz(s),us(s))ds

+((1) — 9(0)) (z M, gy~ Gnl0.21(0),102(0). u3<o>>> |

K

Theorem 2. Let H,,,G,, : [0,1] x R} — R be continuous functions which satisfy
condition (A1) in Theorem 1.

In addition, we assume that there exist two positive constants Y1, Yo, such that,
forallt € [0,1] and u;,v; € R,i,m = 1,3, we have

’Hm(tvu17u27u3)| STlm’
|G (2,01, uz,u3)| <Yop.

Movreover, assume that

C 3 — om=+T1m
E,Mim\éé,and (Z (¢=D)A.(1+K)K 7<4m> <1.
i=1

F(1+r2m)F(1+r1m)

m=1

Then, problem (1.1) admits at least one solution on [0,1].
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Proof. The proof will be given in several steps. Let

Us = {(u1,u2,u3) € C x C x C, ||(u1,u2,u3)|| < 8},

in which
TlmKrlm Q71 (K+1)K’2m K T2m +M
F(1+r1m) F(l+r2m) 1"(1+c
d > 3 max : -
m=1,3 3 7 Li=1 |7\fzm’

Step 1. We prove that
(T (ur,u2,u3))(1)| < 8.
Let (uy,uz,u3),(vi,v2,v3), (wi,wz,ws) € Us. As in the proof of Theorem 1, we have

|(£P1m(u1,u2,u3)(t)+(T2,n(u1,u2,u3)(t)|
Y, K NIV (K+1)K? KoYy, n
g( 1 > (K+DE™ | KL )+M+<Z7\fim‘>8§
i=1

w| o

C(1+rim) L(l+r,) T'(l+o
Hence

(T (ur,uz,u3)) ()] = |(Ti (ur,u2,u3)) (1) + (T (ur, uz, u3)) (1) + (T3 (ur, u2, u3)) ()

\
< (T (uryu2,u3)) ()| + (T2 (w1, u2,u3)) (1) | + [ (T3 (ur, uz,u3) ) (8]
i fP]m u],uz,u3)(t)+‘.sz(u1,u2,u3)(t)| < 0.

Accordingly, Y2, Py (1, u2,u3)(t) + Py (1, u2,u3)(¢) € Us and the condition (i)
of Lemma 7 is satisfied.

Step 2. P, is a contraction.
Let (u1,uz,u3), (vi,v2,v3) € Us. We have the following estimate

|fle I/tl,l/tz,l/t3)( ) Pim Vl,Vz,V3)( )H

<[ [ on 0w ([ 0. (0) e un(e)a ()))

/(p,zm (t,8) Wy </ ©r,, (s,€)Hp(e,vi(e),v2 ))de | ds
K] [ 00 (190 [ 00 .00l (€)n(e) ) ) s
~ [ on 19w ([ o (s Halen (e (et ) s

< QLB oy, ([ 9 5.0 e (0. anfe))te
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</ Prin (5 (e,vi(e), V2(6)7V3(e))de>

q ) +K) Kr2m+rlm 7@}1’[
( +r2m) +r1m>

(Jur —vi|+[uz —va| +[uz —v3]).
So
| Py (w1, uz,u3) (1) — P (vi,v2,v3)(1)]]

3 ( _1 om+rim
q—1) 2, (1+K)K Kam
< Uy —vy|+uy —vo| + |uz —vs|).
< (le_,] T+ ran) T (1571 (lur = vi] =+ |uz = v2| + [uz — v3))

— 2mtrm . .
Since ( 21 1 (g lllflfﬁjl)(l)!((lin l) K“"") < 1, the operator P, is a contraction.

Step 3. P, is compact and continuous.
Since H,,, G, are a continuous functions, this implies that the operator %5 is con-

tinuous on Us . Moreover, P (uj,u,u3) is uniformly bounded by (3.4). Next, we
show equicontinuity. Let (u,u,u3) € Us, we have

|(T2m(ul7u2vu3)(t)| ’ <

/0<t(P6 (l,S) Gm(s’ul(S)7u2(5)7u3(s))ds
o (ZlMKM ot ()] + 'Gm<°’“1<0>7u2<0>7u3<0>>\)

K

YmeG n
<| =—- i .
= <F(1+0) +Zp\1m‘+T2m> 6

i=1
So
3 o] n
Y,,,K
< _ ; . .
|(Py (1, 1z, u3) ()| < m; (F(l o) +,§{ Aim| +r2m> S (3.5)

Moreover, P»(u;,u,us) is uniformly bounded by (3.5). Next, we show equicontinuity
and 71,1, € [0, 1] such that , ; < t, we have

|(Pom (1, u2,u3) (t2) — (Pom (11, u2,u3)(t1)]
th 4l

A Qs (12,5) G (5,1 (s),u2(s),us(s))ds — A Qs (11,5) G (s, u1(s),ua(s),us(s))ds

< Fsy (ele) o))"

So

[(Pa(ur,u2,u3)(t2) — (Pour,uz,u3) ()]

/0 % 06 (12,5) Gon (5,101 (), 02 (s), 3 (s) s — /0 " 0o (11,5) Gon(5,101 (), 12 (s), 3 (s) s

IN

<
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3
< ¥ (g ol -0 ()"

Consequently,
’(f’z(ul,uz,ug)(tz) — (?2(141,142,143)(1‘1” — 0, asty — .

This shows that P Ug is equicontinuous. Hence, by Arzelia-Ascoli theorem P is
completely continuous on Ug . As a consequence of Krasnoselskii’s fixed point the-
orem, we conclude that it has a fixed point which is a solution of (1.1). The proof of
Theorem 2 is thus completely achieved. g

4. AN ILLUSTRATIVE EXAMPLE

Consider the following nonlinear equation for all # € (0, 1]:

CQ)O%;[ZWIJ ca)oi;[z (”(t) - I(;i;(p (He(’:(tl))z)) - ﬁ (1+L(£15t()t))2> ’
CQ)O%EZ\VP c@o%fz (V(t) - I(?i(p (thj(,l))?)) - ﬁ <1+‘Ev[)t))2> ’
) )

3.0 R :
Dy | Dy (W(t )= 1y <1+<Z<,>)2)

u(1) = Xy 7ie(G) v(1) = Xy oy v (6. w(1) = Xy pikw (6), G (0,1]

“4.1)
and
K=1,
1 1 e
Th=A4 == Y= =-Yi13=93=—
11 1 2 12 5) 4’ 13 3 >

1+e e
Yo =By :TaTZZZ‘BZZI;YB:%:E-

Thus, the assumptions (A ) are satisfied and Theorem 1-2 implies that (4.1) has a
unique solution on [0, 1].
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