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Abstract. We prove a conjecture proposed recently in Linear Algebra and its Applications about
an exact formula for certain double banded (0,1) Toeplitz matrices. Moreover, we extend the
result to a more general setting.
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1. INTRODUCTION

For any integers n > t > 2, let ∆(n, t) be the determinant of the n×n matrix whose
(i, j)-entry is 1, if

j− i ∈ {−2,−1,0,1, t} ,
and 0, otherwise. In [7], Shitov proves that ∆(n,n− k) is of period 4, for n > 2k.
The procedure is quite ingenious and, as an immediate consequence, two conjectures
stated in [2] by Andelić and da Fonseca on ∆(n,n− 1) and ∆(n,n− 2) are proved.
For alternative approaches, the reader is referred to [1, 5, 6]. A more general double
banded (0,1) Toeplitz matrix has been considered by the authors in [4], where an
explicit formula to the period of the determinants of those matrices is determined.

Based on numerical experiments, Shitov [7] proposes several conjectures towards
two directions. One direction is the following:

Conjecture 1. For any given integer c > 0, the sequence ∆(2k+ c,k+ c) admits
an exact formula.

As mentioned in [7, Statements 9 and 10], two straightforward instances of this
conjecture are ∆(8k,4k) = k2 +1 and ∆(8k+2,4k+2) = k2.

The aim of this note is to prove the above conjecture. Indeed, we will obtain a more
general result than what Shitov conjectured. A preparatory case will be considered
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in the next section. In Section 3, we prove Conjecture 1. In the last section, the
conjecture is extended to a more general setting.

2. THE PREPARATORY CASE

We start this section with the definition of a special double banded (0,1) Toeplitz
matrix.

Definition 1. For nonnegative integers n,c,s, let As
(
n, n+c

2

)
be the n× n matrix

whose (i, j)-entry is equal to 1, if

j− i ∈
{
−s,−s+1,−s+2,−s+3,

n+ c
2

}
,

and 0, otherwise. In particular, we set A1(n) for the n×n matrix whose (i, j)-entry is
equal to 1, if j− i =−1,0,1,2, and 0, otherwise.

Remark 1. Notice that we require

n>max{c+2,10− c−2s},
i.e., n > c+ 2 and n > 10− c− 2s. The reason why n > c+ 2 is because we want
to guarantee that the upper band (with entries 1) satisfying j− i = n+c

2 contains at
least one 1, i.e., n−c

2 > 1. On the other hand, we consider n> 10−c−2s because the
matrices should have two disjoint bands (following the type of matrices in Conjec-
ture 1).

We denote ∆s(n, n+c
2 ) = detAs

(
n, n+c

2

)
and ∆1(n) = detA1(n). It is worth mention-

ing that ∆2(2k+c,k+c) coincides with the notation ∆(2k+c,k+c) that Shitov used
in Conjecture 1.

Our first goal is to establish a formula for ∆1
(
n, n+c

2

)
.

Theorem 1. Assume that n>max{c+2,8− c}.
(i) Suppose that c is even.

• Assume that c≡ 0(mod 4). Then

∆1

(
n,

n+ c
2

)
=


1 if n≡ c(mod 8),
−n−c+6

8 if n≡ c+2(mod 8),
n−c+8

4 if n≡ c+4(mod 8),
−n−c+2

8 if n≡ c+6(mod 8).

• Assume that c≡ 2(mod 4). Then

∆1

(
n,

n+ c
2

)
=


0 if n≡ c(mod 8),
−n−c−2

8 if n≡ c+2(mod 8),
n−c+4

4 if n≡ c+4(mod 8),
−n−c−6

8 if n≡ c+6(mod 8).



THE DETERMINANTS OF CERTAIN DOUBLE BANDED (0,1) TOEPLITZ MATRICES 1309

(ii) Suppose that c is odd.
• Assume that c≡ 1(mod 4). Then

∆1

(
n,

n+ c
2

)
=


1 if n≡ c(mod 8),
n−c+6

8 if n≡ c+2(mod 8),
−n−c

4 if n≡ c+4(mod 8),
n−c+2

8 if n≡ c+6(mod 8).

• Assume that c≡ 3(mod 4). Then

∆1

(
n,

n+ c
2

)
=


0 if n≡ c(mod 8),
n−c+14

8 if n≡ c+2(mod 8),
−n−c+4

4 if n≡ c+4(mod 8),
n−c+10

8 if n≡ c+6(mod 8).

The proof of Theorem 1 is based on the following lemmas. They reveal the recur-
rence relations and initial conditions of ∆1

(
n, n+c

2

)
.

Notice that, as a special case of [4, Lemma 3.2], the recurrence relations of
∆1
(
n, n+c

2

)
follow immediately.

Lemma 1 ([4, Lemma 3.2]). For any integers n,c satisfying n>max{c+2,8−c}
and c> 0, we have

∆1

(
n,

n+ c
2

)
= ∆1

(
n−4,

n+ c
2

)

+


0 if n≡ c(mod 8),
(−1)c+1 if n≡ c+2,c+6(mod 8),
2(−1)c if n≡ c+4(mod 8).

Next, we determine the initial conditions of ∆1
(
n, n+c

2

)
.

Lemma 2. When c> 3,

∆1

(
n,

n+ c
2

)
=


∆1(c−2)+(−1)c+1 if n = c+2,
∆1(c)+2(−1)c if n = c+4,
∆1(c+2)+(−1)c+1 if n = c+6,
∆1(c+4) if n = c+8.

Proof. The proofs of the four cases are similar, so we only show the first case, i.e.,
when n = c+2. From Lemma 1, we have

∆1

(
n,

n+ c
2

)
= ∆1

(
n−4,

n+ c
2

)
+(−1)c+1 .

Since n = c+2, the above equation is in fact

∆1 (c+2,c+1) = ∆1 (c−2,c+1)+(−1)c+1 .
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The result follows now by observing that A1 (c−2,c+1) = A1(c−2). �

The values of ∆1(n) are known from [4, Theorem 3.3].

Lemma 3 ([4, Theorem 3.3]). When n> 1,

∆1(n) =


(−1)n if n≡ 0(mod 4),
(−1)n+1 if n≡ 1(mod 4),
0 if n≡ 2,3(mod 4).

From Remark 1, we require that n > max{c+ 2,8− c}. But in order to make
the recurrence relations shown in Lemma 1 applicable, we slightly adjust it into n>
max{c+2,10− c}. Keeping this requirement in mind, we calculate ∆1

(
n, n+c

2

)
with

small values of n, for each c, which can be regarded as the initial conditions of the
sequence ∆1

(
n, n+c

2

)
.

Lemma 4.
(i) When c = 0,

∆1

(
n,

n+ c
2

)
=


1 if n = 8,
−2 if n = 10,14,
5 if n = 12.

(ii) When c = 1,

∆1

(
n,

n+ c
2

)
=


1 if n = 7,9,
2 if n = 11,
−3 if n = 13.

(iii) When c = 2,

∆1

(
n,

n+ c
2

)
=


2 if n = 6,
0 if n = 8,10,
−1 if n = 12.

(iv) Assume that c> 3 is odd.
• If c≡ 1(mod 4), then

∆1

(
n,

n+ c
2

)
=

{
1 if n = c+2,c+6,c+8,
−1 if n = c+4.

• If c≡ 3(mod 4), then

∆1

(
n,

n+ c
2

)
=


2 if n = c+2,c+6,
−2 if n = c+4,
0 if n = c+8.
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(v) Assume that c> 4 is even.
– If c≡ 0(mod 4), then

∆1

(
n,

n+ c
2

)
=


−1 if n = c+2,c+6,
3 if n = c+4,
1 if n = c+8.

– If c≡ 2(mod 4), then

∆1

(
n,

n+ c
2

)
=

{
0 if n = c+2,c+6,c+8,
2 if n = c+4.

Proof. The items (i)-(iii) can be obtained directly. When c> 3, (iv) and (v) follow
from Lemmas 2 and 3. �

Finally, when n > max{c + 2,8− c}, we can obtain ∆1
(
n, n+c

2

)
as it is shown

in Theorem 1, by combining the recurrence relations of Lemma 1 and the initial
conditions found in Lemma 4.

3. A CONJECTURE OF SHITOV

In this section, we present the explicit expressions for ∆2
(
n, n+c

2

)
, which solve

Conjecture 1. We remark that, with n = 2k+ c,

∆2

(
n,

n+ c
2

)
= ∆2(2k+ c,k+ c) = ∆(2k+ c,k+ c) ,

according to the notation of Shitov.

Theorem 2. Assume that n>max{c+2,6− c} and c> 0.
(i) Suppose that c is even.

• Assume that c≡ 0(mod 4). Then

∆2

(
n,

n+ c
2

)
=



(n−c
8

)2
+1 if n≡ c(mod 8),

−
(n−c+6

8

)2
if n≡ c+2(mod 8),(n−c−4

8

)2
if n≡ c+4(mod 8),

(3n−3c−2)(n−c+2)
64 if n≡ c+6(mod 8).

• Assume that c≡ 2(mod 4). Then

∆2

(
n,

n+ c
2

)
=



(n−c
8

)2 if n≡ c(mod 8),

− (n−c)2+12(n−c)−92
64 if n≡ c+2(mod 8),

(n−c+20)(n−c+4)
64 if n≡ c+4(mod 8),

3(n−c)2+36(n−c)+124
64 if n≡ c+6(mod 8).

(ii) Suppose that c is odd.
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• Assume that c≡ 1(mod 4). Then

∆2

(
n,

n+ c
2

)
=



(n−c+8
8

)2
if n≡ c(mod 8),

−
(n−c−2

8

)2
if n≡ c+2(mod 8),

(n−c)2+8(n−c)+80
64 if n≡ c+4(mod 8),

(3n−3c+14)(n−c+2)
64 if n≡ c+6(mod 8).

• Assume that c≡ 3(mod 4). Then

∆2

(
n,

n+ c
2

)
=


(n−c)(n−c−16)

64 if n≡ c(mod 8),

− (n−c)2−4(n−c)−124
64 if n≡ c+2(mod 8),(n−c+4

8

)2
if n≡ c+4(mod 8),

3(n−c)2−12(n−c)+28
64 if n≡ c+6(mod 8).

In order to provide the extension from s = 1 (Theorem 1) to s = 2 (Theorem 2),
we recall the classical Dodgson’s determinant-evaluation rule [3].

Lemma 5 ([3]). For any n×n matrix A, n> 2, we have

detAdetA2 = detA11 detAnn−detA1n detAn1 ,

where Ai j is the submatrix obtained from A by deleting the ith row and jth column,
and A2 is the principal submatrix of A induced by {2, . . . ,n−1}.

Applying Dodgson’s determinant-evaluation rule to A1
(
n+1, n+c+2

2

)
, we obtain

∆1

(
n+1,

n+ c+2
2

)
∆1

(
n−1,

n+ c+2
2

)
=

(
∆1

(
n,

n+ c+2
2

))2

−∆0

(
n,

n+ c+4
2

)
∆2

(
n,

n+ c
2

)
. (3.1)

Observe that A0
(
n, n+c+4

2

)
is an upper triangular matrix whose main diagonal entries

are all equal to 1. This means that ∆0
(
n, n+c+4

2

)
= 1. An equivalent form of (3.1) can

be obtained immediately as follows:

∆2

(
n,

n+ c
2

)
=

(
∆1

(
n,

n+ c+2
2

))2

−∆1

(
n+1,

n+ c+2
2

)
∆1

(
n−1,

n+ c+2
2

)
. (3.2)

The three determinants ∆1(∗,∗) on the right-hand side of (3.2) are known from
Theorem 1. It is worth indicating that here we need the precondition that n > c+6,
or equivalently, n > max{c+ 6,6− c}, which guarantees the using of Theorem 1 to
the three determinants ∆1(∗,∗). Then the expression of ∆2

(
n, n+c

2

)
can be obtained

after some straightforward calculations, proving Theorem 2.
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As to the remaining two cases n = c+2 and n = c+4, they just correspond to the
two conjectures proposed in [2], which were confirmed in [6] (see also [1, 4, 5, 7].
Following the notations in the paper, they claim that

∆2 (c+2,c+1) =


−1 if c≡ 0(mod 4),
0 if c≡ 1(mod 4),
1 if c≡ 2(mod 4),
2 if c≡ 3(mod 4),

and

∆2 (c+4,c+2) =


0 if c≡ 0(mod 4),
2 if c≡ 1(mod 4),
3 if c≡ 2(mod 4),
1 if c≡ 3(mod 4),

which agree with Theorem 2 as well.
Therefore, setting n = 2k+ c, Theorem 2 presents the exact formula for ∆2(2k+

c,k+ c), for any fixed integers k > 1 and k+ c> 3 (other integers k,c are against the
requirement n > max{c+2,6− c} mentioned in Remark 1), confirming the conjec-
ture of Shitov.

As examples, we can extend Statements 9 and 10 in [7], claiming that ∆2(8k,4k) =
k2 +1 and ∆2(8k+2,4k+2) = k2. In fact, from Theorem 2, we have:

Proposition 1. For all integers k > 1 and c> 0,

∆2(8k+ c,4k+ c) =


k2 +1 if c≡ 0(mod 4),
(k+1)2 if c≡ 1(mod 4),
k2 if c≡ 2(mod 4),
k(k−2) if c≡ 3(mod 4).

4. AN EXTENSION

It is worth mentioning that the conjecture of Shitov is not only true for ∆(2k +
c,k + c), but also valid for the determinants of a much larger family of matrices.
First we introduce this family of matrices, which is a generalization of the matrix
As
(
n, n+c

2

)
defined in Definition 1.

Definition 2. For nonnegative integers n,r,s, t, let As,t(n,r) be the n× n matrix
whose (i, j)-entry is equal to 1, if

j− i ∈ {−s,−s+1,−s+2,−s+3,r,r+1, . . . ,r+ t−1} ,
and 0, otherwise.

Remark 2. In particular, when t = 1 and r = n+c
2 , As,t(n,r) would be reduced to

the matrix As
(
n, n+c

2

)
investigated in previous sections.
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Set ∆s,t(n,r) = detAs,t(n,r). Now we recall several formulae obtained in our pre-
vious publication [4, Theorems 3.3 and 3.4], which lead to an explicit expression of
∆1,t(n,r), in terms of the determinants of form ∆1(∗).

Assume that n ≡ p(mod 4) and n− r− ` ≡ q` (mod 4), for any nonnegative in-
teger `. When n > r, set

ν = max{s ∈ Z : n− r−4s > 0} ,
where Z represents the set of the integers. Clearly n− r− 4ν = q0, if q0 > 0, and
n− r = 4(ν+1), if q0 = 0.

Theorem 3 ([4, Theorems 3.3 and 3.4]).
(i) Assume that r = 0,1,2,3. For n> 1, we have

∆1,t(n,r) =


(−1)n if n≡ 0(mod r+ t +1),
(−1)n+1 if n≡ 1(mod r+ t +1),
0 if n≡ 2,3, . . . ,r+ t (mod r+ t +1).

(ii) Assume that 46 r 6 n−1. If r > n−1
2 , we have

∆1,t(n,r) = (−1)n−p
∆1(p)+(−1)n

ν

∑
j=0

((−1)qmin{t,n−r−4 j}+1∆1(qmin{t,n−r−4 j}+1)

+(−1)q1+1
∆1(q1)) .

(iii) Assume that r > n. For n> 1, we have

∆1,t(n,r) =


(−1)n if n≡ 0(mod 4),
(−1)n+1 if n≡ 1(mod 4),
0 if n≡ 2,3(mod 4).

Remark 3. We divided the result into three parts. This is due to the fact that
A1,t(n,r) has one band when r = 0,1,2,3 or r > n, and two (disjoint) bands when
46 r 6 n−1.

Recall that the formulae about determinants of form ∆1(∗) are known (see Lem-
ma 3). Thus we can get the following corollary immediately.

Corollary 1. The sequence ∆1,t(n,r) admits an exact formula under the conditions
mentioned in Theorem 3.

As in the previous section, based on the formulae of ∆1,t(n,r) (Theorem 3), we
can obtain a formula of ∆2,t(n,r):

∆2,t(n,r) =
(
∆1,min{t,n−r−1}(n,r+1)

)2

−∆1,t(n+1,r+1)∆1,min{t,n−r−2}(n−1,r+1) ,

with the help of Lemma 5 (Dodgson’s determinant-evaluation rule).
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Corollary 2. The sequence ∆2,t(n,r) admits an exact formula, when r = 0,1,2
with n> 2, or 36 r 6 n−1 and r > n−2

2 , or r > n with n> 2.

The above corollary extends the conjecture of Shitov to a much larger family of
matrices.
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