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Abstract. We prove a conjecture proposed recently in Linear Algebra and its Applications about
an exact formula for certain double banded (0, 1) Toeplitz matrices. Moreover, we extend the
result to a more general setting.
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1. INTRODUCTION

For any integers n >t > 2, let A(n,t) be the determinant of the n x n matrix whose

(i,j)-entry is 1, if
j—ie{-2,-1,0,1,t},

and 0, otherwise. In [7], Shitov proves that A(n,n — k) is of period 4, for n > 2k.
The procedure is quite ingenious and, as an immediate consequence, two conjectures
stated in [2] by Andeli¢ and da Fonseca on A(n,n — 1) and A(n,n —2) are proved.
For alternative approaches, the reader is referred to [1, 5, 6]. A more general double
banded (0,1) Toeplitz matrix has been considered by the authors in [4], where an
explicit formula to the period of the determinants of those matrices is determined.

Based on numerical experiments, Shitov [7] proposes several conjectures towards
two directions. One direction is the following:

Conjecture 1. For any given integer ¢ > 0, the sequence A(2k + ¢,k + ¢) admits
an exact formula.

As mentioned in [7, Statements 9 and 10], two straightforward instances of this
conjecture are A(8k,4k) = k* + 1 and A(8k + 2,4k +2) = k>.

The aim of this note is to prove the above conjecture. Indeed, we will obtain a more
general result than what Shitov conjectured. A preparatory case will be considered
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in the next section. In Section 3, we prove Conjecture 1. In the last section, the
conjecture is extended to a more general setting.

2. THE PREPARATORY CASE

We start this section with the definition of a special double banded (0, 1) Toeplitz
matrix.

Definition 1. For nonnegative integers n,c, s, let A (n, "—erc) be the n x n matrix
whose (i, j)-entry is equal to 1, if

2

and 0, otherwise. In particular, we set A (n) for the n x n matrix whose (i, j)-entry is
equal to 1,if j—i= —1,0,1,2, and 0, otherwise.

j—ie€ {—s,—s+1,—s+2,—s+3,n+c} ,

Remark 1. Notice that we require
n > max{c+2,10 —c —2s},

ie,n=c+2andn > 10— c—2s. The reason why n > ¢+ 2 is because we want
to guarantee that the upper band (with entries 1) satisfying j —i = "T“ contains at
least one 1, i.e., % > 1. On the other hand, we consider n > 10 — ¢ — 2s because the
matrices should have two disjoint bands (following the type of matrices in Conjec-

ture 1).

We denote A (n, 1<) = detA; (n, 25¢) and A (n) = detA (n). It is worth mention-
ing that Ay (2k + ¢,k + ¢) coincides with the notation A(2k + ¢,k + ¢) that Shitov used
in Conjecture 1.

n+c

Our first goal is to establish a formula for A; (n, T)
Theorem 1. Assume that n > max{c+2,8 —c}.

(1) Suppose that c is even.
o Assume that c =0(mod 4). Then

(1 ifn=c(mod 8),
A n+c —1=Lt6ifn=c+2(mod 8),
n77 = — .
! 2 neetS = ¢4 4(mod 8),

—1=¢t2 jfp=c+6(mod8).
o Assume that c =2 (mod 4). Then

0 ifn=c(mod 8),
A n+c —"7§72 ifn=c+2(mod 8),
n77 = — .
: 2 neetd =44 (mod 8),

—1=¢=8  jfp=c+6(mod8).
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(ii) Suppose that c is odd.
o Assume that c = 1(mod 4). Then

1 ifn=c(mod 8),

A n+c =Lt jfn=c+2(mod8),
n7 - —
! 2 —1¢ifp=c+4(mod8),
et jfn=c+6(mod8).

o Assume that ¢ =3 (mod 4). Then
0 ifn=c(mod 8),

A (n n+c)_ w5 ifn=ci2(mods)
1 3 _% ifn=c+4(mod 8),
# ifn=c+6(mod 8).

The proof of Theorem 1 is based on the following lemmas. They reveal the recur-

rence relations and initial conditions of Ay (n, 23<).

Notice that, as a special case of [4, Lemma 3.2], the recurrence relations of
Ay (n,2£<) follow immediately.

Lemma 1 ([4, Lemma 3.2]). For any integers n,c satisfying n > max{c+2,8 —c}
and ¢ > 0, we have

n—+c n—+c
A — | =A 4,
(n15) = (-4 75)

0 ifn=c(mod 8),
+¢ (=)t ifn=c+2,c+6(mod8),
2(=1)¢  ifn=c+4(mod3).

Next, we determine the initial conditions of A; (n, "T“)

Lemma 2. When ¢ > 3,

Al(c=2)+ (=) ifn=c+2
A ntc\ _ JAi(e)+2(-1)° ifn=c+4,
‘(”’ 2 ) Al(c+2)+ (=1 ifn=c+6,
Ai(c+4) ifn=c+8.

Proof. The proofs of the four cases are similar, so we only show the first case, i.e.,
when n = ¢+ 2. From Lemma 1, we have

Ay <n”;rc) — Al (n—4,n;c> (1)t

Since n = ¢ + 2, the above equation is in fact
Ap(c+2,c+1) =A1(c—2,c+ 1)+ (=1),
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The result follows now by observing that A; (c —2,c+1) = A (c—2). O
The values of A;(n) are known from [4, Theorem 3.3].
Lemma 3 ([4, Theorem 3.3]). Whenn > 1,

(=1)" ifn=0(mod 4),
Ar(n) =< (=) ifn=1(mod 4),
0 ifn=2,3(mod 4).

From Remark 1, we require that n > max{c+ 2,8 —c}. But in order to make
the recurrence relations shown in Lemma 1 applicable, we slightly adjust it into n >

max{c+ 2,10 — c}. Keeping this requirement in mind, we calculate A; (n, ”—;C) with
small values of n, for each ¢, which can be regarded as the initial conditions of the

sequence A (n, 2£€).

Lemma 4.
(i) When c =0,
1 ifn=S_8,
n+c zfn
Ay n,T =4¢ -2 ifn=10,14,
5 ifn=12.
(i1) Whenc =1,
1 ifn="17,9,
n+c zfn ’
Ay n,T =42 ifn=11,
-3 ifn=13.
(ii1) When c =2,
2 ifn=0=6,
n+c l,fn
Al n,T =40 ifn=28,10,
-1 ifn=12

(iv) Assume that ¢ > 3 is odd.
e [fc=1(mod4), then

A ( n+c> 1 ifn=c+2,c+6,c+8,
n7 = .
! 2 1 ifn=c+4.

e Ifc=3(mod4), then

2 ifn=c+2,c+6,
n—+c .
A <n,2): -2 ifn=c+4
0 ifn=c+8.
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(v) Assume that ¢ > 4 is even.
- Ifc=0(mod 4), then

—1 ifn=c+2,c+6,
n—+c .
Ay <n,2)= 3 ifn=c+4,
1 ifn=c+8.

- Ifc =2(mod 4), then

A < n+c> 0 ifn=c+2,c+6,c+8,
n e
! 2 2 ifn=c+4

Proof. The items (i)-(iii) can be obtained directly. When ¢ > 3, (iv) and (v) follow
from Lemmas 2 and 3. O

Finally, when n > max{c+ 2,8 — c}, we can obtain A; (n,%$¢) as it is shown

in Theorem 1, by combining the recurrence relations of Lemma 1 and the initial
conditions found in Lemma 4.

3. A CONJECTURE OF SHITOV

In this section, we present the explicit expressions for A; (n, ”T“), which solve
Conjecture 1. We remark that, with n = 2k +c,

Ao <n'l;rc> = A2k +c,k+¢) = Ak + ¢,k +c),

according to the notation of Shitov.

Theorem 2. Assume that n > max{c+2,6—c} andc >0

(1) Suppose that c is even.
e Assume that ¢ = 0(mod 4). Then

(%) +1 ifn=c(mod 8),
—c+6 1 =
Az(n,n+c>: — (" +) ifn=c+2(mod8),
2 (2= ) ifn=c+4(mod8),
("362% ifn=c+6(mod 8).
o Assume that c =2 (mod 4). Then

(5)° ifn=c(mod8),
X (n W)_ P29 ey — 42 (mod 8),
2{m— (e 20)(n=c+4) ifn=c+4(mod8),
3(n—c)2+3664(n—c)+124 lanC—f-6(m0d 8)

(i1) Suppose that c is odd.
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o Assume that c = 1(mod 4). Then

(”_§+8)2 ) ifn=c(mod 8),

A <n n+c> —(”_g_z) ifn=c+2(mod ),
2 y T4 ] —
2 (n=c)?+8(n—c)+80 ifn=c+4(mod8),

(3n—3c+16i)(n—c+2) ifn=c+6(mod8).

o Assume that ¢ =3 (mod 4). Then

% ianC(mOdS),
) (n HC)_ PS4 ey — 40 (mod 8),
2\ 2 (2=5t)’ ifn=c+4(mod8),

3(n7c)27é‘2‘(nfc)+28 ifn=c+6 ( mod 8)

In order to provide the extension from s = 1 (Theorem 1) to s = 2 (Theorem 2),
we recall the classical Dodgson’s determinant-evaluation rule [3].

Lemma 5 ([3]). For any n X n matrix A, n > 2, we have
detAdetA; = detA detA,,, —detA;,detA,,

where A;j is the submatrix obtained from A by deleting the ith row and jth column,
and A; is the principal submatrix of A induced by {2,...,n—1}.

Applying Dodgson’s determinant-evaluation rule to Ay (n+ 1, 2£5t2), we obtain

2 2
Al (n+1’n+;+>m (n_17'1+§+>

2\\? 4
- <A1 <nn+§+>> — Ao <n”+;+> A (rz”;rc) RN D)

Observe that Ag (n, %) is an upper triangular matrix whose main diagonal entries

are all equal to 1. This means that Ag (n, W) = 1. An equivalent form of (3.1) can
be obtained immediately as follows:

n+c n+c+2\\>
A — | =(A _—

2 2
_A <n+1,"+§+> Al <n—1,”+§+> (32

The three determinants Aj(x,+) on the right-hand side of (3.2) are known from
Theorem 1. It is worth indicating that here we need the precondition that n > ¢+ 6,
or equivalently, n > max{c + 6,6 — ¢}, which guarantees the using of Theorem 1 to
the three determinants A; (x,*). Then the expression of A, (n,”4<) can be obtained
after some straightforward calculations, proving Theorem 2.
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As to the remaining two cases n = ¢ + 2 and n = ¢ + 4, they just correspond to the
two conjectures proposed in [2], which were confirmed in [6] (see also [1,4,5,7].
Following the notations in the paper, they claim that

>

—1 ifc=0(mod4),
0 if c=1(mod 4),

As(ct2,c41) =
22t D=3 1 e — 2 (mod 4)
( )

2 ifc=3(mod4),

and
if c=0(mod 4),
if c=1(mod 4),
if c=2(mod 4),
)

A2(6+4,C+2): E
if c=3(mod 4),

—_— W N O

which agree with Theorem 2 as well.

Therefore, setting n = 2k + ¢, Theorem 2 presents the exact formula for Ay (2k +
¢,k+c), for any fixed integers k > 1 and k+ ¢ > 3 (other integers k, ¢ are against the
requirement 7 > max{c -+ 2,6 — ¢} mentioned in Remark 1), confirming the conjec-
ture of Shitov.

As examples, we can extend Statements 9 and 10 in [7], claiming that A, (8k,4k) =
k*+1 and Ar(8k+2,4k+2) = k2. In fact, from Theorem 2, we have:

Proposition 1. For all integers k > 1 and ¢ > 0,

k241 if c=0(mod 4),
(k+1)*>  ifc=1(mod 4),
k? if c =2(mod 4),
k(k—2) ifc=3(mod4).

Ao(8k+c,4k+c) =

4. AN EXTENSION

It is worth mentioning that the conjecture of Shitov is not only true for A(2k +
¢,k + c), but also valid for the determinants of a much larger family of matrices.
First we introduce this family of matrices, which is a generalization of the matrix
Ay (n,5¢) defined in Definition 1.

Definition 2. For nonnegative integers n,r,s,t, let A;,(n,r) be the n x n matrix
whose (i, j)-entry is equal to 1, if
j—ie{-s,—s+1,—s+2,—s+3.rnr+1,....r+1—1},
and 0, otherwise.

Remark 2. In particular, when t = 1 and r = 2£<, A, ,(n,r) would be reduced to

2 K
the matrix A (n, "T*C) investigated in previous sections.
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Set As;(n,r) = detA,;(n,r). Now we recall several formulae obtained in our pre-
vious publication [4, Theorems 3.3 and 3.4], which lead to an explicit expression of
A +(n,r), in terms of the determinants of form A (x).

Assume that n = p(mod 4) and n — r — ¢ = gy (mod 4), for any nonnegative in-
teger £. When n > r, set

v=max{s€Z:n—r—4s>0},

where Z represents the set of the integers. Clearly n —r —4v = g, if go > 0, and
n—r=4(v+1),if go=0.

Theorem 3 ([4, Theorems 3.3 and 3.4]).
(i) Assume that r =0,1,2,3. Forn > 1, we have
(—=1)" ifn=0(modr+r+1),
Ar(nr) =< (=)™ ifn=1(mod r+t+1),
0 ifn=23,....,r+t(modr+zr+1).

(ii) Assume that4 <r<n—1.1Ifr> %, we have
A%
Al.,t (nv }") = (_ 1 )nprl (p) + <_ 1 )n Z (<_ 1 )qmi“{t’nir%j}HAl (qmin{t,n—r—4j}+1)
i=0

+ (=) Ai(q1)).
(iii) Assume that r > n. For n > 1, we have
(=" ifn=0(mod 4),
(=)™ ifn=1(mod 4),
0 ifn=2,3(mod 4).

Ay s(n,r) =

Remark 3. We divided the result into three parts. This is due to the fact that
Ay (n,r) has one band when r =0,1,2,3 or r > n, and two (disjoint) bands when
4<r<n—1.

Recall that the formulae about determinants of form A;(*) are known (see Lem-
ma 3). Thus we can get the following corollary immediately.

Corollary 1. The sequence A ;(n,r) admits an exact formula under the conditions
mentioned in Theorem 3.

As in the previous section, based on the formulae of A;,(n,r) (Theorem 3), we
can obtain a formula of Ay ;(n,r):

2
Mgy (n,r) = (At mingrn—r—1} (n,r +1))
— A (n+ Lr+ DA mingra—r—2y(n = 1,7 +1),

with the help of Lemma 5 (Dodgson’s determinant-evaluation rule).
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Corollary 2. The sequence Ay ;(n,r) admits an exact formula, when r = 0,1,2
withn>2, or3<r<n—1landr> %, orr=nwithn>2.

The above corollary extends the conjecture of Shitov to a much larger family of
matrices.
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