Miskolc Mathematical Notes

THE DETERMINANTS OF CERTAIN DOUBLE BANDED $(0,1)$ TOEPLITZ MATRICES

ZHIBIN DU AND CARLOS M. DA FONSECA

Received 29 December, 2021

Abstract

We prove a conjecture proposed recently in Linear Algebra and its Applications about an exact formula for certain double banded $(0,1)$ Toeplitz matrices. Moreover, we extend the result to a more general setting.

2010 Mathematics Subject Classification: 15A15
Keywords: determinant, $(0,1)$ Toeplitz matrices

1. Introduction

For any integers $n>t \geqslant 2$, let $\Delta(n, t)$ be the determinant of the $n \times n$ matrix whose (i, j)-entry is 1 , if

$$
j-i \in\{-2,-1,0,1, t\},
$$

and 0 , otherwise. In [7], Shitov proves that $\Delta(n, n-k)$ is of period 4 , for $n \geqslant 2 k$. The procedure is quite ingenious and, as an immediate consequence, two conjectures stated in [2] by Anđelić and da Fonseca on $\Delta(n, n-1)$ and $\Delta(n, n-2)$ are proved. For alternative approaches, the reader is referred to [1,5,6]. A more general double banded $(0,1)$ Toeplitz matrix has been considered by the authors in [4], where an explicit formula to the period of the determinants of those matrices is determined.

Based on numerical experiments, Shitov [7] proposes several conjectures towards two directions. One direction is the following:

Conjecture 1. For any given integer $c \geqslant 0$, the sequence $\Delta(2 k+c, k+c)$ admits an exact formula.

As mentioned in [7, Statements 9 and 10], two straightforward instances of this conjecture are $\Delta(8 k, 4 k)=k^{2}+1$ and $\Delta(8 k+2,4 k+2)=k^{2}$.

The aim of this note is to prove the above conjecture. Indeed, we will obtain a more general result than what Shitov conjectured. A preparatory case will be considered

[^0]in the next section. In Section 3, we prove Conjecture 1. In the last section, the conjecture is extended to a more general setting.

2. THE PREPARATORY CASE

We start this section with the definition of a special double banded $(0,1)$ Toeplitz matrix.

Definition 1. For nonnegative integers n, c, s, let $A_{s}\left(n, \frac{n+c}{2}\right)$ be the $n \times n$ matrix whose (i, j)-entry is equal to 1 , if

$$
j-i \in\left\{-s,-s+1,-s+2,-s+3, \frac{n+c}{2}\right\}
$$

and 0 , otherwise. In particular, we set $A_{1}(n)$ for the $n \times n$ matrix whose (i, j)-entry is equal to 1 , if $j-i=-1,0,1,2$, and 0 , otherwise.

Remark 1. Notice that we require

$$
n \geqslant \max \{c+2,10-c-2 s\}
$$

i.e., $n \geqslant c+2$ and $n \geqslant 10-c-2 s$. The reason why $n \geqslant c+2$ is because we want to guarantee that the upper band (with entries 1) satisfying $j-i=\frac{n+c}{2}$ contains at least one 1 , i.e., $\frac{n-c}{2} \geqslant 1$. On the other hand, we consider $n \geqslant 10-c-2 s$ because the matrices should have two disjoint bands (following the type of matrices in Conjecture 1).

We denote $\Delta_{s}\left(n, \frac{n+c}{2}\right)=\operatorname{det} A_{s}\left(n, \frac{n+c}{2}\right)$ and $\Delta_{1}(n)=\operatorname{det} A_{1}(n)$. It is worth mentioning that $\Delta_{2}(2 k+c, k+c)$ coincides with the notation $\Delta(2 k+c, k+c)$ that Shitov used in Conjecture 1.

Our first goal is to establish a formula for $\Delta_{1}\left(n, \frac{n+c}{2}\right)$.
Theorem 1. Assume that $n \geqslant \max \{c+2,8-c\}$.
(i) Suppose that c is even.

- Assume that $c \equiv 0(\bmod 4)$. Then

$$
\Delta_{1}\left(n, \frac{n+c}{2}\right)= \begin{cases}1 & \text { if } n \equiv c(\bmod 8) \\ -\frac{n-c+6}{8} & \text { if } n \equiv c+2(\bmod 8) \\ \frac{n-c+8}{4} & \text { if } n \equiv c+4(\bmod 8) \\ -\frac{n-c+2}{8} & \text { if } n \equiv c+6(\bmod 8)\end{cases}
$$

- Assume that $c \equiv 2(\bmod 4)$. Then

$$
\Delta_{1}\left(n, \frac{n+c}{2}\right)= \begin{cases}0 & \text { if } n \equiv c(\bmod 8) \\ -\frac{n-c-2}{8} & \text { if } n \equiv c+2(\bmod 8) \\ \frac{n-c+4}{4} & \text { if } n \equiv c+4(\bmod 8) \\ -\frac{n-c-6}{8} & \text { if } n \equiv c+6(\bmod 8)\end{cases}
$$

(ii) Suppose that c is odd.

- Assume that $c \equiv 1(\bmod 4)$. Then

$$
\Delta_{1}\left(n, \frac{n+c}{2}\right)= \begin{cases}1 & \text { if } n \equiv c(\bmod 8) \\ \frac{n-c+6}{8} & \text { if } n \equiv c+2(\bmod 8), \\ -\frac{n-c}{4} & \text { if } n \equiv c+4(\bmod 8), \\ \frac{n-c+2}{8} & \text { if } n \equiv c+6(\bmod 8)\end{cases}
$$

- Assume that $c \equiv 3(\bmod 4)$. Then

$$
\Delta_{1}\left(n, \frac{n+c}{2}\right)= \begin{cases}0 & \text { if } n \equiv c(\bmod 8) \\ \frac{n-c+14}{8} & \text { if } n \equiv c+2(\bmod 8) \\ -\frac{n-c+4}{4} & \text { if } n \equiv c+4(\bmod 8), \\ \frac{n-c+10}{8} & \text { if } n \equiv c+6(\bmod 8)\end{cases}
$$

The proof of Theorem 1 is based on the following lemmas. They reveal the recurrence relations and initial conditions of $\Delta_{1}\left(n, \frac{n+c}{2}\right)$.

Notice that, as a special case of [4, Lemma 3.2], the recurrence relations of $\Delta_{1}\left(n, \frac{n+c}{2}\right)$ follow immediately.

Lemma 1 ([4, Lemma 3.2]). For any integers n, c satisfying $n \geqslant \max \{c+2,8-c\}$ and $c \geqslant 0$, we have

$$
\begin{aligned}
\Delta_{1}\left(n, \frac{n+c}{2}\right)= & \Delta_{1}\left(n-4, \frac{n+c}{2}\right) \\
& + \begin{cases}0 & \text { if } n \equiv c(\bmod 8) \\
(-1)^{c+1} & \text { if } n \equiv c+2, c+6(\bmod 8), \\
2(-1)^{c} & \text { if } n \equiv c+4(\bmod 8)\end{cases}
\end{aligned}
$$

Next, we determine the initial conditions of $\Delta_{1}\left(n, \frac{n+c}{2}\right)$.
Lemma 2. When $c \geqslant 3$,

$$
\Delta_{1}\left(n, \frac{n+c}{2}\right)= \begin{cases}\Delta_{1}(c-2)+(-1)^{c+1} & \text { if } n=c+2 \\ \Delta_{1}(c)+2(-1)^{c} & \text { if } n=c+4 \\ \Delta_{1}(c+2)+(-1)^{c+1} & \text { if } n=c+6 \\ \Delta_{1}(c+4) & \text { if } n=c+8\end{cases}
$$

Proof. The proofs of the four cases are similar, so we only show the first case, i.e., when $n=c+2$. From Lemma 1, we have

$$
\Delta_{1}\left(n, \frac{n+c}{2}\right)=\Delta_{1}\left(n-4, \frac{n+c}{2}\right)+(-1)^{c+1}
$$

Since $n=c+2$, the above equation is in fact

$$
\Delta_{1}(c+2, c+1)=\Delta_{1}(c-2, c+1)+(-1)^{c+1}
$$

The result follows now by observing that $A_{1}(c-2, c+1)=A_{1}(c-2)$.
The values of $\Delta_{1}(n)$ are known from [4, Theorem 3.3].
Lemma 3 ([4, Theorem 3.3]). When $n \geqslant 1$,

$$
\Delta_{1}(n)= \begin{cases}(-1)^{n} & \text { if } n \equiv 0(\bmod 4) \\ (-1)^{n+1} & \text { if } n \equiv 1(\bmod 4) \\ 0 & \text { if } n \equiv 2,3(\bmod 4)\end{cases}
$$

From Remark 1, we require that $n \geqslant \max \{c+2,8-c\}$. But in order to make the recurrence relations shown in Lemma 1 applicable, we slightly adjust it into $n \geqslant$ $\max \{c+2,10-c\}$. Keeping this requirement in mind, we calculate $\Delta_{1}\left(n, \frac{n+c}{2}\right)$ with small values of n, for each c, which can be regarded as the initial conditions of the sequence $\Delta_{1}\left(n, \frac{n+c}{2}\right)$.

Lemma 4.

(i) When $c=0$,

$$
\Delta_{1}\left(n, \frac{n+c}{2}\right)= \begin{cases}1 & \text { if } n=8 \\ -2 & \text { if } n=10,14 \\ 5 & \text { if } n=12\end{cases}
$$

(ii) When $c=1$,

$$
\Delta_{1}\left(n, \frac{n+c}{2}\right)= \begin{cases}1 & \text { if } n=7,9 \\ 2 & \text { if } n=11 \\ -3 & \text { if } n=13\end{cases}
$$

(iii) When $c=2$,

$$
\Delta_{1}\left(n, \frac{n+c}{2}\right)= \begin{cases}2 & \text { if } n=6 \\ 0 & \text { if } n=8,10 \\ -1 & \text { if } n=12\end{cases}
$$

(iv) Assume that $c \geqslant 3$ is odd.

- If $c \equiv 1(\bmod 4)$, then

$$
\Delta_{1}\left(n, \frac{n+c}{2}\right)= \begin{cases}1 & \text { if } n=c+2, c+6, c+8 \\ -1 & \text { if } n=c+4\end{cases}
$$

- If $c \equiv 3(\bmod 4)$, then

$$
\Delta_{1}\left(n, \frac{n+c}{2}\right)= \begin{cases}2 & \text { if } n=c+2, c+6 \\ -2 & \text { if } n=c+4 \\ 0 & \text { if } n=c+8\end{cases}
$$

(v) Assume that $c \geqslant 4$ is even.

- If $c \equiv 0(\bmod 4)$, then

$$
\Delta_{1}\left(n, \frac{n+c}{2}\right)= \begin{cases}-1 & \text { if } n=c+2, c+6 \\ 3 & \text { if } n=c+4 \\ 1 & \text { if } n=c+8\end{cases}
$$

$-I f c \equiv 2(\bmod 4)$, then

$$
\Delta_{1}\left(n, \frac{n+c}{2}\right)= \begin{cases}0 & \text { if } n=c+2, c+6, c+8 \\ 2 & \text { if } n=c+4\end{cases}
$$

Proof. The items (i)-(iii) can be obtained directly. When $c \geqslant 3$, (iv) and (v) follow from Lemmas 2 and 3.

Finally, when $n \geqslant \max \{c+2,8-c\}$, we can obtain $\Delta_{1}\left(n, \frac{n+c}{2}\right)$ as it is shown in Theorem 1, by combining the recurrence relations of Lemma 1 and the initial conditions found in Lemma 4.

3. A conjecture of Shitov

In this section, we present the explicit expressions for $\Delta_{2}\left(n, \frac{n+c}{2}\right)$, which solve Conjecture 1 . We remark that, with $n=2 k+c$,

$$
\Delta_{2}\left(n, \frac{n+c}{2}\right)=\Delta_{2}(2 k+c, k+c)=\Delta(2 k+c, k+c)
$$

according to the notation of Shitov.
Theorem 2. Assume that $n \geqslant \max \{c+2,6-c\}$ and $c \geqslant 0$.
(i) Suppose that c is even.

- Assume that $c \equiv 0(\bmod 4)$. Then

$$
\Delta_{2}\left(n, \frac{n+c}{2}\right)= \begin{cases}\left(\frac{n-c}{8}\right)^{2}+1 & \text { if } n \equiv c(\bmod 8) \\ -\left(\frac{n-c+6}{8}\right)^{2} & \text { if } n \equiv c+2(\bmod 8) \\ \left(\frac{n-c-4}{8}\right)^{2} & \text { if } n \equiv c+4(\bmod 8) \\ \frac{(3 n-3 c-2)(n-c+2)}{64} & \text { if } n \equiv c+6(\bmod 8)\end{cases}
$$

- Assume that $c \equiv 2(\bmod 4)$. Then

$$
\Delta_{2}\left(n, \frac{n+c}{2}\right)= \begin{cases}\left(\frac{n-c}{8}\right)^{2} & \text { if } n \equiv c(\bmod 8) \\ -\frac{(n-c)^{2}+12(n-c)-92}{64} & \text { if } n \equiv c+2(\bmod 8) \\ \frac{(n-c+20)(n-c+4)}{64} & \text { if } n \equiv c+4(\bmod 8), \\ \frac{3(n-c)^{2}+36(n-c)+124}{64} & \text { if } n \equiv c+6(\bmod 8)\end{cases}
$$

(ii) Suppose that c is odd.

- Assume that $c \equiv 1(\bmod 4)$. Then

$$
\Delta_{2}\left(n, \frac{n+c}{2}\right)= \begin{cases}\left(\frac{n-c+8}{8}\right)^{2} & \text { if } n \equiv c(\bmod 8) \\ -\left(\frac{n-c-2}{8}\right)^{2} & \text { if } n \equiv c+2(\bmod 8) \\ \frac{(n-c)^{2}+8(n-c)+80}{64} & \text { if } n \equiv c+4(\bmod 8) \\ \frac{(3 n-3 c+14)(n-c+2)}{64} & \text { if } n \equiv c+6(\bmod 8)\end{cases}
$$

- Assume that $c \equiv 3(\bmod 4)$. Then

$$
\Delta_{2}\left(n, \frac{n+c}{2}\right)= \begin{cases}\frac{(n-c)(n-c-16)}{64} & \text { if } n \equiv c(\bmod 8) \\ -\frac{(n-c)^{2}-4(n-c)-124}{} & \text { if } n \equiv c+2(\bmod 8) \\ \left(\frac{n-c+4}{8}\right)^{24} & \text { if } n \equiv c+4(\bmod 8) \\ \frac{3(n-c)^{2}-12(n-c)+28}{64} & \text { if } n \equiv c+6(\bmod 8)\end{cases}
$$

In order to provide the extension from $s=1$ (Theorem 1) to $s=2$ (Theorem 2), we recall the classical Dodgson's determinant-evaluation rule [3].

Lemma 5 ([3]). For any $n \times n$ matrix $A, n \geqslant 2$, we have

$$
\operatorname{det} A \operatorname{det} A_{2}=\operatorname{det} A_{11} \operatorname{det} A_{n n}-\operatorname{det} A_{1 n} \operatorname{det} A_{n 1}
$$

where $A_{i j}$ is the submatrix obtained from A by deleting the ith row and jth column, and A_{2} is the principal submatrix of A induced by $\{2, \ldots, n-1\}$.

Applying Dodgson's determinant-evaluation rule to $A_{1}\left(n+1, \frac{n+c+2}{2}\right)$, we obtain

$$
\begin{align*}
& \Delta_{1}\left(n+1, \frac{n+c+2}{2}\right) \Delta_{1}\left(n-1, \frac{n+c+2}{2}\right) \\
& =\left(\Delta_{1}\left(n, \frac{n+c+2}{2}\right)\right)^{2}-\Delta_{0}\left(n, \frac{n+c+4}{2}\right) \Delta_{2}\left(n, \frac{n+c}{2}\right) \tag{3.1}
\end{align*}
$$

Observe that $A_{0}\left(n, \frac{n+c+4}{2}\right)$ is an upper triangular matrix whose main diagonal entries are all equal to 1 . This means that $\Delta_{0}\left(n, \frac{n+c+4}{2}\right)=1$. An equivalent form of (3.1) can be obtained immediately as follows:

$$
\begin{align*}
\Delta_{2}\left(n, \frac{n+c}{2}\right)= & \left(\Delta_{1}\left(n, \frac{n+c+2}{2}\right)\right)^{2} \\
& -\Delta_{1}\left(n+1, \frac{n+c+2}{2}\right) \Delta_{1}\left(n-1, \frac{n+c+2}{2}\right) \tag{3.2}
\end{align*}
$$

The three determinants $\Delta_{1}(*, *)$ on the right-hand side of (3.2) are known from Theorem 1. It is worth indicating that here we need the precondition that $n \geqslant c+6$, or equivalently, $n \geqslant \max \{c+6,6-c\}$, which guarantees the using of Theorem 1 to the three determinants $\Delta_{1}(*, *)$. Then the expression of $\Delta_{2}\left(n, \frac{n+c}{2}\right)$ can be obtained after some straightforward calculations, proving Theorem 2.

As to the remaining two cases $n=c+2$ and $n=c+4$, they just correspond to the two conjectures proposed in [2], which were confirmed in [6] (see also [1, 4, 5, 7]. Following the notations in the paper, they claim that

$$
\Delta_{2}(c+2, c+1)= \begin{cases}-1 & \text { if } c \equiv 0(\bmod 4) \\ 0 & \text { if } c \equiv 1(\bmod 4) \\ 1 & \text { if } c \equiv 2(\bmod 4) \\ 2 & \text { if } c \equiv 3(\bmod 4)\end{cases}
$$

and

$$
\Delta_{2}(c+4, c+2)= \begin{cases}0 & \text { if } c \equiv 0(\bmod 4) \\ 2 & \text { if } c \equiv 1(\bmod 4) \\ 3 & \text { if } c \equiv 2(\bmod 4) \\ 1 & \text { if } c \equiv 3(\bmod 4)\end{cases}
$$

which agree with Theorem 2 as well.
Therefore, setting $n=2 k+c$, Theorem 2 presents the exact formula for $\Delta_{2}(2 k+$ $c, k+c$), for any fixed integers $k \geqslant 1$ and $k+c \geqslant 3$ (other integers k, c are against the requirement $n \geqslant \max \{c+2,6-c\}$ mentioned in Remark 1), confirming the conjecture of Shitov.

As examples, we can extend Statements 9 and 10 in [7], claiming that $\Delta_{2}(8 k, 4 k)=$ $k^{2}+1$ and $\Delta_{2}(8 k+2,4 k+2)=k^{2}$. In fact, from Theorem 2, we have:

Proposition 1. For all integers $k \geqslant 1$ and $c \geqslant 0$,

$$
\Delta_{2}(8 k+c, 4 k+c)= \begin{cases}k^{2}+1 & \text { if } c \equiv 0(\bmod 4), \\ (k+1)^{2} & \text { if } c \equiv 1(\bmod 4), \\ k^{2} & \text { if } c \equiv 2(\bmod 4), \\ k(k-2) & \text { if } c \equiv 3(\bmod 4) .\end{cases}
$$

4. An extension

It is worth mentioning that the conjecture of Shitov is not only true for $\Delta(2 k+$ $c, k+c)$, but also valid for the determinants of a much larger family of matrices. First we introduce this family of matrices, which is a generalization of the matrix $A_{s}\left(n, \frac{n+c}{2}\right)$ defined in Definition 1.

Definition 2. For nonnegative integers n, r, s, t, let $A_{s, t}(n, r)$ be the $n \times n$ matrix whose (i, j)-entry is equal to 1 , if

$$
j-i \in\{-s,-s+1,-s+2,-s+3, r, r+1, \ldots, r+t-1\}
$$

and 0 , otherwise.
Remark 2. In particular, when $t=1$ and $r=\frac{n+c}{2}, A_{s, t}(n, r)$ would be reduced to the matrix $A_{s}\left(n, \frac{n+c}{2}\right)$ investigated in previous sections.

Set $\Delta_{s, t}(n, r)=\operatorname{det} A_{s, t}(n, r)$. Now we recall several formulae obtained in our previous publication [4, Theorems 3.3 and 3.4], which lead to an explicit expression of $\Delta_{1, t}(n, r)$, in terms of the determinants of form $\Delta_{1}(*)$.

Assume that $n \equiv p(\bmod 4)$ and $n-r-\ell \equiv q_{\ell}(\bmod 4)$, for any nonnegative integer ℓ. When $n>r$, set

$$
v=\max \{s \in \mathbb{Z}: n-r-4 s>0\}
$$

where \mathbb{Z} represents the set of the integers. Clearly $n-r-4 v=q_{0}$, if $q_{0}>0$, and $n-r=4(v+1)$, if $q_{0}=0$.

Theorem 3 ([4, Theorems 3.3 and 3.4]).
(i) Assume that $r=0,1,2,3$. For $n \geqslant 1$, we have

$$
\Delta_{1, t}(n, r)= \begin{cases}(-1)^{n} & \text { if } n \equiv 0(\bmod r+t+1) \\ (-1)^{n+1} & \text { if } n \equiv 1(\bmod r+t+1) \\ 0 & \text { if } n \equiv 2,3, \ldots, r+t(\bmod r+t+1)\end{cases}
$$

(ii) Assume that $4 \leqslant r \leqslant n-1$. If $r \geqslant \frac{n-1}{2}$, we have

$$
\begin{aligned}
\Delta_{1, t}(n, r)= & (-1)^{n-p} \Delta_{1}(p)+(-1)^{n} \sum_{j=0}^{\nu}\left((-1)^{q_{\min \{t, n-r-4 j\}+1}} \Delta_{1}\left(q_{\min \{t, n-r-4 j\}+1}\right)\right. \\
& \left.+(-1)^{q_{1}+1} \Delta_{1}\left(q_{1}\right)\right) .
\end{aligned}
$$

(iii) Assume that $r \geqslant n$. For $n \geqslant 1$, we have

$$
\Delta_{1, t}(n, r)= \begin{cases}(-1)^{n} & \text { if } n \equiv 0(\bmod 4) \\ (-1)^{n+1} & \text { if } n \equiv 1(\bmod 4) \\ 0 & \text { if } n \equiv 2,3(\bmod 4)\end{cases}
$$

Remark 3. We divided the result into three parts. This is due to the fact that $A_{1, t}(n, r)$ has one band when $r=0,1,2,3$ or $r \geqslant n$, and two (disjoint) bands when $4 \leqslant r \leqslant n-1$.

Recall that the formulae about determinants of form $\Delta_{1}(*)$ are known (see Lemma 3). Thus we can get the following corollary immediately.

Corollary 1. The sequence $\Delta_{1, t}(n, r)$ admits an exact formula under the conditions mentioned in Theorem 3.

As in the previous section, based on the formulae of $\Delta_{1, t}(n, r)$ (Theorem 3), we can obtain a formula of $\Delta_{2, t}(n, r)$:

$$
\begin{aligned}
\Delta_{2, t}(n, r)= & \left(\Delta_{1, \min \{t, n-r-1\}}(n, r+1)\right)^{2} \\
& -\Delta_{1, t}(n+1, r+1) \Delta_{1, \min \{t, n-r-2\}}(n-1, r+1),
\end{aligned}
$$

with the help of Lemma 5 (Dodgson's determinant-evaluation rule).

Corollary 2. The sequence $\Delta_{2, t}(n, r)$ admits an exact formula, when $r=0,1,2$ with $n \geqslant 2$, or $3 \leqslant r \leqslant n-1$ and $r \geqslant \frac{n-2}{2}$, or $r \geqslant n$ with $n \geqslant 2$.

The above corollary extends the conjecture of Shitov to a much larger family of matrices.

References

[1] Y. Amanbek, Z. Du, Y. Erlangga, C. M. da Fonseca, B. Kurmanbek, and A. Pereira, "Explicit determinantal formula for a class of banded matrices." Open Math., vol. 18, no. 1, pp. 1227-1229, 2020, doi: 10.1515/math-2020-0100.
[2] M. Anđelić and C. M. da Fonseca, "Some determinantal considerations for pentadiagonal matrices." Linear Multilinear Algebra, vol. 69, no. 16, pp. 3121-3129, 2021, doi: 10.1080/03081087.2019.1708845.
[3] C. L. Dodgson, "Condensation of determinants." Proc. Roy. Soc. London, vol. 15, pp. 150-155, 1867, doi: 10.1098/rspl.1866.0037.
[4] Z. Du and C. M. da Fonseca, "A periodic determinantal property for $(0,1)$ double banded matrices." Linear Multilinear Algebra, vol. 70, no. 20, pp. 5316-5328, 2022, doi: 10.1080/03081087.2021.1913980.
[5] Z. Du, C. M. da Fonseca, and A. Pereira, "On determinantal recurrence relations of banded matrices." Kuwait J. Sci., vol. 49, no. 1, pp. 1-9, 2022, doi: 10.48129/kjs.v49i1.11165.
[6] B. Kurmanbek, Y. Amanbek, and Y. Erlangga, "A proof of Anđelić-Fonseca conjectures on the determinant of some Toeplitz matrices and their generalization." Linear Multilinear Algebra, vol. 70, no. 8, pp. 1563-1570, 2022, doi: 10.1080/03081087.2020.1765959.
[7] Y. Shitov, "The determinants of certain $(0,1)$ Toeplitz matrices." Linear Algebra Appl., vol. 618, pp. 150-157, 2021, doi: 10.1016/j.laa.2021.02.002.

Authors' addresses
Zhibin Du
(Corresponding author) School of Software, South China Normal University, Foshan, Guangdong 528225, China

E-mail address: zhibindu@126.com

Carlos M. da Fonseca

Kuwait College of Science and Technology, Doha District, Block 4, P.O. Box 27235, Safat 13133, Kuwait

Chair of Computational Mathematics, University of Deusto, 48007 Bilbao, Spain
E-mail address: c.dafonseca@kcst.edu.kw

[^0]: The first author was supported in part by China Postdoctoral Science Foundation, Grant No. 2021M701277, and Guangdong Basic and Applied Basic Research Foundation, Grant No. 2023A1515011472.

