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Abstract. In this paper, we obtain some existence results for multivalued contraction mappings in
the context of an O-complete orthogonal metric space (not necessarily complete metric space).
Also, we provide a partial solution to Reich’s problem for multivalued orthogonal contraction
mappings and extend Mizoguchi-Takahashi’s point theorem. In addition, we give an example to
demonstrate the applicability of our established results. We study the solution of a differential
equation and its Ulam’s stability as an application of the obtained results.

2010 Mathematics Subject Classification: 47H10; 54H25; 46J10; 46J15

Keywords: O-complete, fixed point, orthogonal multivalued contraction, orthogonal metric space

1. INTRODUCTION AND PRELIMINARIES

Gordji et al. [12] established the notion of orthogonal sets and subsequently ex-
tended the Banach fixed point theorem in the so-called orthogonal-complete metric
spaces to substitute the metric space completeness in fixed point results. Several
authors have investigated this concept as not necessarily complete metric spaces (see
[6, 7, 10, 23]).

With thanks to Nadler [18], Gordji et al. [12], the goal of this study is to prove
some results on Mizoguchi-Takahashi type contraction mappings in the framework
of an orthogonal metric space (which is not necessarily complete) and to adequate
criteria for the existence of fixed points for such class of mappings.

There are many results on the existence of solutions for multivalued problems (see
[1, 10, 15, 22, 23]). In 1974, Reich (see [19, 20]) questioned whether we might use
a nonempty closed and bounded set instead of a nonempty compact set. Despite the
fact that many fixed point theorists have researched this topic, it has not been entirely
solved. There are several partial affirmative answers to this problem; for example,
recently, Azé and Corvellec [5] give a partial positive answer to the conjecture using a
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simple variational approach and Mizoguchi et al. [17] generalize Nadler’s conclusion
in the establishment of metric space frameworks.

Daffer et al. [11] proved that α(t) = 1−atb−1, where a > 0, for some b ∈ (1,2) on
some interval [0,s], 0 < s < a−

1
b−1 , is a class of functions that satisfy all of Reich’s

conjecture’s conditions and used this class to get their results. Suzuki [24] remarked
that the corresponding result of [17] is a real generalization of the corresponding
result of Nadler [18].

Recently, Gordji et al. [12] established the concept of an orthogonal set (also
known as an O-set) and proved several fixed point theorems in the context of or-
thogonal metric spaces.

Definition 1. Let ⊥⊂ X × X be a binary relation, where X 6= ∅. If ⊥ satisfies
the following condition:
There exists x0 ∈ X such that (for all y ∈ X , y⊥ x0) or (for all y ∈ X , x0 ⊥ y), then
it is called an orthogonal set (briefly O-set). We denote this O-set by ( X ,⊥).

If d is a metric on O-set ( X ,⊥), then ( X ,⊥,d) is an orthogonal metric space
(OMS).

Example 1 ([12]). Let X =Z. Define m⊥ n if there exists k ∈Z such that m = k n.
It is easy to see that 0⊥ n for all n ∈ Z. Hence ( X ,⊥) is an O-set.

Example 2. Let ( X ,d) be a metric space and T : X → X be a Picard operator,
that is, T has a unique fixed point x∗ ∈ X and lim

n→+∞
Tn(y) = x∗ for all y ∈ X . We

define the binary relation ⊥ on X by x⊥ y if

lim
n→∞

d(x, Tn(y)) = 0.

Then, ( X ,⊥) is an O-set (see [12]).

Example 3. Define the binary relation ⊥ on an inner product space ( X ,〈., .〉) by
x⊥ y if 〈x,y〉= 0. Here, 0⊥ x for all x ∈ X . Hence, ( X ,⊥) is an O-set (see [12]).

For other definitions viz. O-sequence, Cauchy O-sequence, O-complete,
⊥-continuous, and ⊥-preserving we refer to [12].

It is easy to see that every complete metric space is O-complete but the converse
is not true (see [12]).

Let H be a Hausdorff-Pompeiu metric induced by metric d on a set X . Denote
CB( X) the family of all nonempty, closed and bounded subsets of X .

H : CB( X)×CB( X)→ R defined by, for every A,B ∈ CB( X),

H(A,B) = max

{
sup
x∈A

d(x,B),sup
y∈B

d(y,A)

}
,

where d(x,A) = inf{d(x,y) : y ∈ A}.
Now, we have the following open question:
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Let ( X ,d) be a O-complete OMS (not necessarily complete metric
space) and T : X → CB( X) satisfies the following

H( T x, Ty)≤ α(d(x,y)) d(x,y), (1.1)

for all x,y∈ X where α is a function from [0,∞) into [0,1) satisfying
limsup

s→t+
α(s)< 1 for all t ∈ [0,∞). Does T has a fixed point?

In the context of OMS, we propose a partial solution to Reich’s original problem
using weaker multivalued orthogonal contraction mappings, that is (1.1).

2. MAIN RESULTS

We get certain findings for multivalued orthogonal Mizoguchi-Takahashi type con-
tractions in the context of O-complete OMS (not necessarily complete metric space)
and then construct fixed points of mappings fulfilling these contractions in this sec-
tion.

We denote P be the family of all the functions α : [0,+∞) → [0,1) such that
limsup

r→t+
α(r)< 1, for all r ∈ [0,+∞).

Here, we define the orthogonal relation between two nonempty subsets of an or-
thogonal set.

Definition 2. Let ( X ,⊥) an orthogonal set. Suppose that A and B are two nonempty
subsets of X . The set A is orthogonal to set B given by symbol ⊥1 and defined as
follows: A⊥1 B, if for every a ∈ A and b ∈ B, a⊥ b.

We are now ready to provide our first outcome.

Theorem 1. Let T : X → CB( X) be a multivalued mapping on an O-complete
OMS ( X ,⊥,d). Assume that the following conditions hold:

(i) for all x,y ∈ X, x⊥ y implies T x⊥1 Ty,
(ii) there exists x0 ∈ X such that {x0} ⊥1 T x0 or T x0 ⊥1 {x0},

(iii) if {xn} is O-sequence in X such that xn → x∗ ∈ X, then there exists a sub-
sequence {xn(k)} of {xn} with xn(k) ⊥ x∗ or x∗ ⊥ xn(k) for all n ∈ N,

(iv) there exists α ∈ P such that

H(T x,Ty)≤ α(d(x,y)) d(x,y),

for all x,y ∈ X with x⊥ y.

Then there exists x ∈ X such that x ∈ T x, that is, a fixed point of T .

Proof. By assumption (i), there exists x1 ∈ T x0 such that x0 ⊥ x1 or x1 ⊥ x0. By
assumption (ii), we get T x0 ⊥1 T x1, that is there exists x2 ∈ T x1 such that x1 ⊥ x2
or x2 ⊥ x1.
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Define a function β ∈ P such that β(t) = α(t)+1
2 . Then β(t) < α(t) and for all

t ∈ [0,∞) limsup
r→t+0

β(r)< 1. Therefore, using (iv), we get

d(x1,x2)≤ H( T x0, T x1)≤ β(d(x0,x1)) d(x0,x1). (2.1)

Continuing this process inductively, we can construct an orthogonal sequence {xn}
in X such that xn+1 ∈ T xn, for all n ∈N∪{0}. Thus we have xn ⊥ xn+1 or xn+1 ⊥ xn
for all n ∈ N∪{0}.

d(xn+1,xn+2)≤ β(d(xn,xn+1)) d(xn,xn+1), (2.2)

since β(t)< 1, for all t ∈ [0,∞) and {d(xn+1,xn)} is strictly non-increasing sequence.
Suppose that tn = d(xn+1,xn)→ t, for some t ≥ 0.
Since limsup

s→t+0
β(s)< 1 and β(t)< 1, there exist r ∈ [0,1) and ε > 0 such that β(s)≤ r

for all s ∈ [t, t + ε]. Now, we can choose some m ∈ N∪{0} such that t ≤ tn ≤ t + ε

for all n ∈ N∪{0} with n≥ m. Here it is to note that

tn+1 ≤ β(tn) tn ≤ r tn,

and thus by ratio test, we get
∞

∑
n=1

tn < ∞.

This shows that {xn} is a Cauchy orthogonal sequence. Since X is an O-complete,
there exists x∗ ∈ X such that limn→+∞ xn = x∗.

Now, we claim that x∗ ∈ T x∗. Assume to the contrary that x∗ /∈ T x∗. Hence there
exists n1 ∈N such that x∗ /∈ {xn}n≥n1

and d(xn(k),T x∗)> 0. By using our assumption
(iii), we have xn(k) ⊥ x∗ or x∗ ⊥ xn(k). Using (iv), we get

d(xn(k)+1, T x∗)≤ H( T xn(k), T x∗)

≤ β(d(xn(k),x
∗)) d(xn(k),x

∗).

Taking k→+∞, we get x∗ ∈ T x∗ = T x∗. Hence we get the result. �

Remark 1. In 2012, Karapinar and Samet [16] gave some results using α-admissible
mappings. Later various generalizations have done using this (see [15,22]). It is inter-
esting to see the main result without using orthogonality on α-admissible mappings
for multivalued operators in the setting of orthogonal metric space.

3. CONSEQUENCES

3.1. Single valued result

As a consequence of Theorem 1, we have the following result for single valued
mappings by replacing condition (iii) with T is ⊥-continuous.

Theorem 2. Let T : X→ X be a self mapping on an O-complete OMS ( X ,⊥,d).
Assume that the following conditions hold:
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(i) for all x,y ∈ X, x⊥ y implies T x⊥ Ty,
(ii) there exists x0 ∈ X such that x0 ⊥ T x0 or T x0 ⊥ x0,

(iii) T is ⊥-continuous,
(iv) there exists α ∈ P such that

d( T x, Ty)≤ α(d(x,y)) d(x,y),

for all x,y ∈ X with x⊥ y.

Then T has a fixed point.

Proof. In this case, we may choose T as a multivalued mapping by assuming that
T x is a singleton set for every x ∈ X . Also, {xn} is a Cauchy orthogonal sequence
and lim

n→∞
xn = x∗, by arguing on the same lines of Theorem 1. As T is ⊥-continuous,

we have

d(x∗, T x∗) = lim
n→+∞

d( T xn, T x∗) = 0,

that is, x∗ is a fixed point of T . �

3.2. Coupled fixed point

Now we’ll explain how our findings enable us to construct coupled fixed point
theorems in O-complete OMS. We begin by recalling the following definition.

Let G : X× X→ X be a given mapping. We say that (x,y)∈ X× X is a coupled
fixed point of G if G(x,y) = x and G(y,x) = y.

Our result is based on the following simple lemma which tells us when a coupled
fixed point is a fixed point (see Samet [21]).

Lemma 1. Let G : X × X → X be a given mapping, where X 6= ∅. Define the
mapping T : Y = X × X → Y = X × X by T (x,y) = ( G(x,y), G(y,x)), for all
(x,y) ∈ X × X. Then, (x,y) is a fixed point of T if and only if (x,y) is a coupled
fixed point of G.

Theorem 3. Let ( X ,⊥,d) be an O-complete OMS and G : X× X → X be a self
mapping on X. Assume that the following conditions hold:

(i) there exists α ∈ P such that for all x,y,u,v ∈ X with x⊥ y,u⊥ v,

d( G(x,y), G(u,v))≤ α(d((x,y),(u,v))) d((x,y),(u,v)), (3.1)

(ii) G is ⊥-preserving,
(iii) there exists (x0,y0) ∈ X such that x0 ⊥ G(x0,y0) or G(x0,y0) ⊥ x0 and

y0 ⊥ G(y0,x0) or G(y0,x0)⊥ y0,
(iv) G is ⊥-continuous;

Then G has a coupled fixed point.
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Proof. Here take ( Y = X× X ,d) is O-complete orthogonal metric space. Define
the mapping T : Y → Y by T (x,y) = ( G(x,y), G(y,x)), for all (x,y) ∈ X × X .
From (3.1), we have

d( T (ξ,η))≤ α(d(ξ,η)) d(ξ,η),

for all ξ = (ξ1,ξ2),η = (η1,η2) ∈ Y . So using Theorem 2, we get the result. �

Remark 2. On the same lines of Theorem 3, we can prove other coupled fixed
point results.

3.3. Illustration

In this section, we provide an example to show the usability of our obtained results.

Example 4. Let

X = {−1
2
, . . . ,− 1

2n , . . .}∪{0}∪{
1
2
, . . . ,

1
2n , . . .}

and d : X× X → [0,∞) be a mapping defined by d(x,y) = |x− y| for all x,y ∈ X .
Define a relation ⊥ on X by x⊥ y if and only if xy ∈ {x,y} ⊆ X .

Thus ( X ,⊥,d) is an O-complete orthogonal metric space. Now, we define a map-
ping T : X → CB( X) by

T x =

{
{0}, x = 0
{ 1

22n ,
1

22n+1 }, x =− 1
2n ,

1
2n ,n≥ 1.

Here T satisfies all the hypothesis of Theorem 1 for

α(t) =

{
1
2 , t > 0,
0, t = 0

.

Hence T has a fixed point.

4. APPLICATIONS

Many researchers worked on different problems and obtained the solution using
fixed point approach, see [2, 3, 23]. Ulam [14, 25] stability has attracted attention of
several authors in fixed point theory, see [4, 8, 9, 13, 23]. In this section, we investig-
ate the existence of a solution to a differential equation and its Ulam stability as an
application of the results presented in previous sections.

4.1. Existence of solution for differential equations

The purpose of this section is to find the existence of solution for a first order
boundary value problem using the results proved in the paper.
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In this section, we examine the following boundary value problem:{
u′(t) = T (t,u(t)), t ∈ I = [0,T ],T > 0
u(0) = u(T ),

(4.1)

where u ∈C(I,R) and N : I×R→ R is a continuous function.
Let X := C([0,1],R) be the set of continuous real valued functions defined on I,

endowed with the metric d : X × X → [0,∞) defined as d(u,v) = sup
t∈[0,1]

|u(t)− v(t)|,

for all u,v ∈ X . Define an orthogonal relation u ⊥ v if and only if uv ≥ 0, for all
u,v ∈ X . Then ( X ,⊥,d) is OMS.

Clearly, (4.1) is equivalent to the following linear first order equation

u′(t)+µu(t) = L(t,u(t)), t ∈ I,u(0) = u(T ), (4.2)

where L(t,u(t)) = T (t,u(t))+ µu(t) and µ > 0. Also, a solution of the equation
(4.2) is a fixed point of an integral equation

T u(t) =
1

eµT −1

∫ t

0
eµ(T+s−t) L(s,u(s)) ds (4.3)

+
1

eµT −1

∫ T

t
eµ(s−t) L(s,u(s)) ds, for some µ > 0.

Also, u 7→ L(t,u(t)) is ⊥-continuous.

Theorem 4. Assume that there is µ > 0 such that for all u,v ∈C(I,R) with u⊥ v,

| L(s,u(s))− L(s,v(s))| ≤ e−µ µ |u(s)− v(s)|,

for each s∈ [0,T ]. Then equation (4.1) with given boundary conditions has a solution
in C(I,R).

Proof. Define T : X → X as in (4.3). So T is ⊥-continuous. First, we show
that T is ⊥-preserving, let u(t)⊥ v(t) for all t ∈ [0,1]. Now, from (4.3) we have

T u(t) =
1

eµT −1

∫ t

0
eµ(T+s−t) L(s,u(s)) ds

+
1

eµT −1

∫ T

t
eµ(s−t) L(s,u(s)) ds > 0,

for some µ > 0. It implies that T u⊥ T v.
Now, we have to show that T satisfies (iv) of Theorem 2 for α(r) = e−r,r > 0.

For all t ∈ [0,1], u(t)⊥ v(t), we have

| T u(t)− T v(t)|= | 1
eµT −1

∫ t

0
eµ(T+s−t) L(s,u(s)) ds

+
1

eµT −1

∫ T

t
eµ(s−t) L(s,u(s)) ds
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− (
1

eµT −1

∫ t

0
eµ(T+s−t) L(s,v(s)) ds

+
1

eµT −1

∫ T

t
eµ(s−t) L(s,v(s)) ds)|

≤ 1
eµT −1

∫ t

0
eµ(T+s−t)| L(s,u(s))− L(s,v(s))| ds

+
1

eµT −1

∫ T

t
eµ(s−t)| L(s,u(s))− L(s,v(s))| ds

≤ 1
eµT −1

∫ t

0
eµ(T+s−t)e−µ µ sup

s∈[0,1]
|u(s)− v(s)|] ds

+
1

eµT −1

∫ T

t
eµ(s−t)e−µ µ sup

s∈[0,1]
|u(s)− v(s)|] ds

≤ [e−µ µ sup
s∈[0,1]

|u(s)− v(s)|]× sup
t∈[0,1]

{ 1
eµT −1

∫ t

0
eµ(T+s−t) ds

+
∫ T

t
eµ(s−t) ds}

≤ e−µ sup
s∈[0,1]

|u(s)− v(s)|]

= e−µd(u,v),

for all u,v ∈ X . Therefore, the condition (iv) of Theorem 2 holds. Accordingly all
axioms of Theorem 2 are verified and T has a unique fixed point. It yields that the
differential equation (4.1) possesses a unique solution. �

Remark 3. Theorem 4 will used to analyse some of the following real life appli-
cations:

1. To study the flow of current in the electric circuit in the engineering problems,
for example: LI′(t)+RI(t) = E, where I(t) is the current in the circuit at time t, L is
inductance, R is resistance, E is electromotive force.

2. To study the velocity of the sky driver at any time. Once the sky diver jumps
from an airplane, there are two forces that determine his motion : The pull of the
earth’s gravity acting down ward and the opposing force of air resistance acting up-
ward. At high speeds, the strength of the air resistance force (the drag force) is
proportional to the square of velocity, so the upward resistance force due to the air
resistance can be expressed as v′(t) = g− k

m v2, where v(t) is velocity of sky-driver at
any time t, g is acceleration due to gravity, the air resistance force has strength kv.

4.2. Ulam stability of differential equation

In this section, we discuss the Ulam stability of the differential equation (4.1).
Equation (4.1) is called Ulam stable if it satisfies the following condition:
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(AI) there is a constant δ > 0, for each ε > 0 and for every solution u ∈ X satisfying

|u′(t)− L(t,u(t))| ≤ ε, (4.4)

that is,

| T u(t)− 1
eµT −1

∫ t

0
eµ(T+s−t) L(s,u(s)) ds− 1

eµT −1

∫ T

t
eµ(s−t) L(s,u(s)) ds| ≤ ε,

there exists some v ∈ X satisfying v⊥ x and

T v(t) =
1

eµT −1

∫ t

0
eµ(T+s−t) L(s,v(s)) ds+

1
eµT −1

∫ T

t
eµ(s−t) L(s,v(s)) ds,

(4.5)

such that

|v− x| ≤ δε. (4.6)

Theorem 5. Under the hypothesis of Theorem 4, the differential equation (4.1), is
Ulam stable.

Proof. On the account of Theorem 4, we guarantee a unique v∗ ∈ X such that
T v∗(t) = 1

eµT−1

∫ t
0 eµ(T+s−t) L(s,v∗(s)) ds + 1

eµT−1

∫ T
t eµ(s−t) L(s,v∗(s)) ds, that is,

v∗ ∈ X forms a solution of differential equation (4.1). Let ε > 0 and u∗ ∈ X be
an ε-solution, that is,

|u∗− T u∗|= |u∗(t)− 1
eµT −1

∫ t

0
eµ(T+s−t) L(s,u∗(s)) ds

− 1
eµT −1

∫ T

t
eµ(s−t) L(s,u∗(s)) ds|

≤ ε.

Using Theorem 4, for v∗ ⊥ u∗ we have

|v∗−u∗|= | T v∗−u∗|
≤ | T v∗− T u∗|+ | T u∗−u∗|
≤ e−µ|v∗−u∗|+ ε.

Hence, |v∗− u∗| ≤ 1
1−e−µ ε = δε, where δ = 1

1−e−µ > 0. Therefore, equation (4.1) is
Ulam stable.

�

4.3. Ulam stability of fixed point problem

On OMS ( X ,⊥,d), T : X → X , we investigate the fixed point equation

T v = v (4.7)

and the inequality (for ε > 0)

d( T x,x)≤ ε. (4.8)
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Equation (4.7) is called Ulam stable if it satisfies the following condition:
(A) there is a constant δ > 0, for each ε > 0 and for every solution x∗ of the inequality
(4.8), there is a solution v∗ ∈ X of the equation (4.7) with v∗ ⊥ x∗ such that

d(v∗,x∗)≤ δε. (4.9)

Theorem 6. Under the hypothesis of Theorem 2, the fixed point equation (4.7) is
Ulam stable.

Proof. On the account of Theorem 2, we guarantee a unique v∗ ∈ X such that
v∗ = T v∗, that is, v∗ ∈ X forms a solution of (4.7). Let ε > 0 and x∗ ∈ X be an
ε-solution, that is,

d( T x∗,x∗)≤ ε.

Using Theorem 2, for v∗ ⊥ x∗ we have

d(v∗,x∗) = d( T v∗,x∗)≤ d( T v∗, T x∗)+d( T x∗,x∗)

≤ α(d(v∗,x∗)) d(v∗,x∗)+ ε.

Hence, d(v∗,x∗) ≤ 1
1−α(d(v∗,x∗))ε = kε, where k = 1

1−α(d(v∗,x∗)) > 0. Therefore, equa-
tion (4.7) is Ulam stable. �

Conclusions. In this manuscript, we provide a partial answer to Reich’s problem
in the context of incomplete metric spaces.
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[10] S. Chandok, R. K. Sharma, and S. Radenović, “Multivalued problems via orthogonal contraction
mappings with application to fractional differential equation,” J. Fixed Point Theory Appl., vol. 23,
no. 2, pp. 1–14, 2021, doi: 10.1007/s11784-021-00850-8.

[11] P. Z. Daffer, H. Kaneko, and W. Li, “On a conjecture of S. Reich,” Proc. Amer. Math. Soc., vol.
124, pp. 3159–3162, 1996.

[12] M. E. Gordji, M. Rameani, M. D. L. Sen, and Y. J. Cho, “On orthogonal sets and Banach fixed
point theorem,” Fixed Point Theory, vol. 18, pp. 569––578, 2017.

[13] A. M. Hassan, E. Karapinar, and H. H. Alsulami, “Ulam-Hyers stability for MKC map-
pings via fixed point theory,” J. Func. Spaces, vol. 2016, 2016, article Id: 9623597, doi:
10.1155/2016/9623597.

[14] D. H. Hyers, “On the stability of the linear functional equation,” Proc. Nat. Acad. Sci. (USA),
vol. 27, pp. 222–224, 1941, doi: 10.1073/pnas.27.4.222.

[15] E. Karapinar, A. Petrusel, and G. Petrusel, “Frum-Ketkov type multivalued operators,” Carpathian
J. Math., vol. 37, pp. 203– 210, 2021, doi: 10.37193/CJM.2021.02.06.

[16] E. Karapinar and B. Samet, “Generalized (α−ψ) contractive type mappings and related fixed
point theorems with applications,” Abstr. Appl. Anal., vol. 2012, 2012, article id: 793486, doi:
10.1155/2012/793486.

[17] N. Mizoguchi and W. Takahashi, “Fixed point theorems for multivalued mappings on complete
metric spaces,” J. Math. Anal. Appl., vol. 141, pp. 475–488, 1989.

[18] S. B. Nadler, “Multivalued contraction mappings,” Pacific J. Math., vol. 30, pp. 475–488, 1969.
[19] S. Reich, “Some fixed point problems,” Atti. Acad. Naz. Lincei Rend. CI. Sci. Fis. Mat. Natur.,

vol. 57, pp. 194–198, 1974.
[20] S. Reich, “Some problems and results in fixed point theory, Topological Methods in Nonlinear

Functional Analysis (Toronto, Ontario, 1982),” Contemp. Math., vol. 21, pp. 179–187, 1983.
[21] B. Samet, C. Vetro, and P. Vetro, “Fixed point theorems for α−ψ-contractive type mappings,”

Nonlinear Anal., vol. 75, pp. 2154–2165, 2012, doi: 10.1016/j.na.2011.10.014.
[22] M. Samreen, W. Ullah, and E. Karapinar, “Multivalued ϕ-contractions on extended b-metric

spaces,” J. Function Spaces, vol. 2020, 2020, article ID 5989652.
[23] R. K. Sharma and S. Chandok, “Multivalued problems, orthogonal mappings, and frac-

tional integro-differential equation,” J. Math., vol. 2020, 2020, article ID 6615478, doi:
10.1155/2020/6615478.

[24] T. Suzuki, “Mizoguchi–Takahashi’s fixed point theorem is a real generalization of Nadler’s,” J.
Math. Anal. Appl., vol. 340, pp. 752–755, 2008, doi: 10.1016/j.jmaa.2007.08.022.

[25] S. Ulam, Problems in Modern Mathematics. New York: John Wiley Sons, 1964.

Author’s address

Sumit Chandok
Thapar Institute of Engineering & Technology, School of Mathematics, Patiala-147004, Punjab,

India
E-mail address: sumit.chandok@thapar.edu

http://dx.doi.org/10.1155/2013/825293
http://dx.doi.org/10.1016/j.jmaa.2018.07.022
http://dx.doi.org/10.1007/s11784-021-00850-8
http://dx.doi.org/10.1155/2016/9623597
http://dx.doi.org/10.1073/pnas.27.4.222
http://dx.doi.org/10.37193/CJM.2021.02.06
http://dx.doi.org/10.1155/2012/793486
http://dx.doi.org/10.1016/j.na.2011.10.014
http://dx.doi.org/10.1155/2020/6615478
http://dx.doi.org/10.1016/j.jmaa.2007.08.022

	1. Introduction and preliminaries
	2. Main results
	3. Consequences
	3.1. Single valued result
	3.2. Coupled fixed point
	3.3. Illustration

	4. Applications
	4.1. Existence of solution for differential equations
	4.2. Ulam stability of differential equation
	4.3. Ulam stability of fixed point problem

	Acknowledgements
	References

