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Abstract. We characterize the α-large submodules of α-modules in terms of certain sequences
of ordinals, and give some of their interesting properties. Also, we deal with α-large submodules
of the closure of an unbounded direct sum of uniserial modules, and the α-large submodules of
the smallest α-pure fully invariant submodules of the closure containing a given element.
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1. INTRODUCTION AND FUNDAMENTALS

Let R be any ring with unity. A uniserial module M is a module over a ring R,
whose submodules are totally ordered by inclusion. This means simply that for any
two submodules N1 and N2 of M, either N1 ⊆ N2 or N2 ⊆ N1. A module M is called a
serial module if it is a direct sum of uniserial modules. An element x ∈M is uniform,
if xR is a non-zero uniform (hence uniserial) module and for any R-module M with a
unique decomposition series, d(M) denotes its decomposition length.

In 1976 Singh [16] introduced a class of modules called TAG-modules, defined by
satisfying two properties relating to uniserial modules.

(I) Every finitely generated submodule of any homomorphic image of M is a
direct sum of uniserial modules.

(II) Given any two uniserial submodules U and V of a homomorphic image of
M, for any submodule W of U , any non-zero homomorphism f : W →V can
be extended to a homomorphism g : U→V , provided the composition length
d(U/W )≤ d(V/ f (W )).

It was shown that the theory of these modules very closely paralleled the theory
of torsion abelian groups; for this reason they were referred to as TAG-modules. In
1987 Singh showed that the second property, with minimal additional hypotheses, can
be deduced from the first and studied the modules satisfying only the first property
and called them QTAG-modules. The study of QTAG-modules and their structure
began with work of Singh in [17]. Since then, many authors have written about the
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structure of QTAG-modules. Not surprisingly, many of the developments parallel the
earlier development of the structure of torsion abelian groups. Our main goal here
is to study α-modules, a class of the QTAG-modules and further advance the study
of the structure of QTAG-modules and the parallels with torsion abelian groups. The
present paper is a natural extension of work already done in this field and certainly
contributes to the overall knowledge of the structure of QTAG-modules.

All rings below are assumed to be associative and with nonzero identity ele-
ment; all modules are assumed to be unital QTAG-modules. For a uniform element

x∈M, e(x)= d(xR) and HM(x)= sup
{

d
(

yR
xR

)
| y ∈M, x ∈ yR and y uniform

}
are

the exponent and height of x in M, respectively. Hk(M) denotes the submodule of M
generated by the elements of height at least k and Hk(M) is the submodule of M
generated by the elements of exponents at most k. Let us denote by M1, the sub-
module of M, containing elements of infinite height. The module M is h-divisible

[9] if M = M1 =
∞⋂

k=0
Hk(M) and it is h-reduced if it does not contain any h-divisible

submodule. In other words, it is free from the elements of infinite height. The mod-
ule M is said to be bounded [16], if there exists an integer k such that HM(x) ≤ k
for every uniform element x ∈ M. A submodule N of M is h-pure [8] in M if
N ∩Hk(M) = Hk(N), for every integer k ≥ 0. A submodule B ⊆ M is a basic sub-
module [9] of M, if B is h-pure in M, B = ⊕Bi, where each Bi is the direct sum of
uniserial modules of length i and M/B is h-divisible. A submodule F of M is said
to be fully invariant [1] if each endomorphism of M sends F into itself. A fully in-
variant submodule L⊆M is large [2], if L+B=M, for every basic submodule B in M.

For a module M and an ordinal α, Hα(M) is defined as Hα(M) =
⋂

β<α

Hβ(M). For

an ordinal α, a submodule N of M is said to be α-pure [14], if Hβ(M)∩N = Hβ(N)
for all β≤ α. A submodule N ⊂M is nice [11] in M, if Hα(M/N) = (Hα(M)+N)/N
for all ordinals α, i.e. every coset of M modulo N may be represented by an element
of the same height. The sum of all simple submodules of M is called the socle of M,
denoted by Soc(M). The cardinality of the minimal generating set of M is denoted
by g(M). For all ordinals α, fM(α) is the αth-Ulm invariant of M and it is equal to
g
(
Soc(Hα(M))/Soc(Hα+1(M))

)
. An ordinal α is said to be confinal with ω, if α is

the limit of a countable ascending sequence of ordinals.
Imitating [12], for any uniform element x ∈ M, there exist uniform elements x1,

x2, . . . such that xR⊇ x1R⊇ x2R⊇ . . . and d
(

xiR
xi+1R

)
= 1. Now the Ulm-sequence of

x is defined as UM(x) = (HM(x), HM(x1), HM(x2), . . .). These sequences are partially
ordered because UM(x)≤UM(y) if HM(xi)≤ HM(yi) for every i.
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An h-reduced module M is totally projective [10] if it has a collection N of nice
submodules such that (i) 0∈N (ii) if {Ni}i∈I is any subset of N , then ∑

i∈I
Ni ∈N (iii)

given any N ∈ N and any countable subset X of M, there exists K ∈ N containing
N∪X , such that K/N is countably generated.

It is interesting to note that almost all the results which hold for TAG-modules
are also valid for QTAG-modules [14]. Many results, stated in the present paper, are
clearly motivated from the paper [3]. Most of our notations and terminology will be
standard being in agreement with [4] and [5].

2. α-MODULES

These α-modules were originally defined and carefully explored in [13]. Recall
that a QTAG-module M is an α-module, where α is a limit ordinal, if M/Hβ(M) is
totally projective for every ordinal β < α. But there are some other closely related
concepts which have been of interest: recall that a submodule B ⊆ M is an α-basic
submodule of an α-module M if B is totally projective of length at most α, B is α-
pure submodule of M, and M/B is h-divisible; while a fully invariant submodule L of
the α-module M is α-large if M = B+L, for all α-basic submodules B of M. A few
recurring relationships between them, and certain related assertions in this direction
were established in [6]. The same type of study was continued in [7] and a number of
results have been obtained in terms of α-basic submodules and α-large submodules.
Some new achievements in this theme for other important sorts of α-modules were
established in [15]. The motivation for writing the present article is to promote in
this direction some new concepts and to explore some structural consequences in the
light of generalized submodules.

We start with the following subsection.

2.1. α-large submodules

The study of α-large submodules and its fascinating properties makes the theory
of α-modules more interesting. We summarize only for information a few standard
properties of this notion in the following: If L is an α-large submodule of M and β <
length of L/Hα(M), then Hβ(L) is α-large submodule of M. Likewise, an α-large
submodule L⊆M is totally projective, if M is totally projective.

Mimicking [12], for a sequence n(L) = (n0,n1,n2, . . .) of non-negative, non-
decreasing integers we may consider L = {x : x ∈M,UM(x)≥ n(L)} as the submod-
ule of M. This submodule is a large submodule of M. Since for any endomorphism f
of M, HM(x)≤HM( f (x)), L is fully invariant. Therefore with every large submodule
L of M we may associate a sequence n(L). In fact for every large submodule there is
a sequence and, for every sequence, there is a large submodule.

If n is replaced by an arbitrary ordinal less than or equal to σ, then n(L) may
be extended to σ(L), and all the definitions and results which hold for n(L) may be
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extended for σ(L). In σ(L), for any large submodule L of M, the sequence of L as
σ(L) denoted by Mσ. It is fairly easy to see that Mσ is a fully invariant submodule of
M.

We first give the following strengthening concept.

Definition 1. Let σ = {σn}n∈N be an increasing sequence of ordinals and symbol
∞; that is, for each n, either σn is an ordinal or σn < ∞ and ∞ < ∞. With each such
sequence σ we associate the fully invariant submodule Mσ of the QTAG-module M
as

Mσ = {x ∈M : x ∈ Hσn−n(M),∀ n ∈ N}
Now we prove the following lemma.

Lemma 1. Let α be an ordinal cofinal with ω and M a QTAG-module with a
fully invariant submodule F such that Hα(M) = Hα(F) and let a∈ Socn(M) for some
natural n. Then there exists b ∈ F such that UM(a− b) = UM(a) and (a− b)R∩
Hα(M) = 0.

Proof. Let a ∈ Socn(M) be any uniform element of exponent n and let UM(a) =
(σ0,σ1 . . .). Now σn+i = ∞ i = 0,1, . . . . If all σ j = ∞, j = 0,1, . . . , then a ∈ Hα(M)
and since Hα(M) = Hα(F), we get a = b. Similarly if σ j 6= ∞, 0 ≤ j ≤ n, then
aR∩Hα(M) = 0, and we get b = 0. Thus the lemma is true for the trivial cases. Now
suppose that σk = ∞ with 0 < k < n, and k is the smallest index for which σk = ∞. Let

a′ ∈ Hα(M), c ∈ F such that a′ = c′ where d
(

aR
a′R

)
= k, d

(
cR
c′R

)
= m+1 and m >

σk−1. Then b= c′ where d
(

cR
bR

)
=m−k+1. In this case HM(b′)≥m−k+ i+1>σi

where d
(

bR
b′R

)
= i and 0≤ i≤ k. This shows that HM(Hi((a−b)R)) = HM(a′) = σi

where d
(

aR
a′R

)
= i and 0≤ i≤ k. Therefore, HM(Hi((a−b)R)) = ∞, for i≥ k, and

we are done. �

We continue in this way by the following.

Lemma 2. Let L be an α-large submodule of an α-module M, where α is cofinal
with ω. Then Socn(L) is a large submodule of Socn(M) for some natural n.

Proof. Let a∈ Socn(L) and let ψ be an endomorphism of Socn(M). Then Hα(M)=
Hα(L) since Hn(L) is α-large for every n and Hα(M) is contained in every α-large
submodule of M. Thus by Lemma 1, one can easily deduce that (a−b)R∩Hα(M) =
0 = (ψ(a)−c)R, and UM(a−b) =UM(a)≤UM(ψ(a)) =UM(ψ(a)−c) for all b,c ∈
L. We are now in the hypothesis of [7, Lemma 2.3], there exists an endomorphism
φ of M such that φ(a− b) = ψ(a)− c. Therefore, a− b ∈ L and L is fully invariant
in M. Hence ψ(a)− c ∈ L, and it follows that ψ(a) ∈ L∩ Socn(M) = Socn(L). The
proof is over. �
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And so, we prepare to prove the following.

Proposition 1. Let L be an α-large submodule of an α-module M, where α is
cofinal with ω. Then L = Mσ where σ = (σn)n∈N is a strictly increasing sequence of
ordinals.

Proof. Clearly, Socn(L) is a large submodule of Socn(M) by Lemma 2. Since
owing to the criterion from [7], there exists a strictly increasing sequence of or-
dinals such that Socn(L) = Socn(Mσ). Now L + Socn(M) = M and L/Socn(L) is
h-divisible. Therefore, UM(x) ≥ σ, for every x ∈ L, and L ⊂ Mσ. But Socn(Mσ) =
Mσ∩Socn(L). Furthermore, M/Socn(L) = L/Socn(L)⊕Socn(M)/Socn(L), therefore
Mσ/Socn(L) = L/Socn(L), and L = Mσ. �

The next corollary is a valuable consequence of the above proposition.

Corollary 1. Let M be an α-module, where α is cofinal with ω. Then Mσ is an
α-large submodule of M if and only if M = Mσ + Socn(M), where σ = (σn)n∈N and
σn < ∞ for each n ∈ N.

We also need the following simple but however useful

Definition 2. Let µ = {µn}n∈N be an increasing sequence of ordinals and symbol
∞. We say that µ is larger than σ almost everywhere if there exists a non-negative
integer n such that µi ≥ σi, for all i > n. With each such sequence σ we associate the
fully invariant submodule Ṁσ of the QTAG-module M containing Socn(M)+Mσ as

Ṁσ =

{
x ∈M : x′ ∈Mσ, d

(
xR
x′R

)
= n for some n ∈ N

}
We are now in a position to proceed by proving the following theorem.

Theorem 1. Let L be a submodule of an α-module M, where α is cofinal with ω.
Then L is an α-large submodule of M if and only if L = Mσ and M = Ṁσ for some
strictly increasing sequence of ordinals.

Proof. Let L be an α-large submodule of M. By Proposition 1, there exists a
sequence σ such that L = Mσ. But, by virtue of Corollary 1, Ṁσ ⊃ Socn(M)+Mσ =
M, so that with Definition 2 at hand we are done.

Conversely, suppose L = Mσ and M = Ṁσ. Let x be any uniform element in M,
then UM(x) ≥ σ, for some increasing sequence µ of ordinals with µi ≥ σi, for all

i > n and for each n ∈ N. Therefore, HM(x′) ≥ σi where d
(

xR
x′R

)
= i. Now we

choose y ∈M such that x′ = y′ where d
(

xR
x′R

)
= n+1, d

(
yR
y′R

)
= r, and r ≥ σn+1.

Therefore there exists an element z ∈M such that z = y′ where d
(

yR
y′R

)
= r−n−1.
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Of course we claim that z ∈Mσ. Indeed, z′ = x′ where d
(

xR
x′R

)
= d

(
zR
z′R

)
= i for

i > n. Thus, HM(z′) = HM(x′) ≥ σi where d
(

xR
x′R

)
= d

(
zR
z′R

)
= i. But HM(z′) ≥

r−n−1+ i ≥ σn+1− (n+1)+ i where d
(

zR
z′R

)
= i for 0 ≤ i ≤ n. Now, σ being a

strictly increasing sequence of ordinals, we have σ j+1 ≥ σ j + 1, j = 0,1, . . . . Thus,
by continuing the same process, we obtain σn+1 ≥ σi+n− i+1 for i≤ j≤ n. Hence

HM(z′) ≥ σi where d
(

zR
z′R

)
= i. It follows that z ∈ Mσ, x− z ∈ Socn(M), and x =

z+(x− z) ∈ Mσ + Socn(M). This shows that M = Mσ + Socn(M). Thus, by what
we have just seen above, in view of the Corollary 1, L = Mσ is an α-large in M, as
desired. The proof of the theorem is completed. �

As immediate consequence, we yield the following.

Corollary 2. If N is an α-pure submodule of an α-module M and L is an α-large
submodule of M, then N∩L is an α-large submodule of N, where α is cofinal with ω.

The next proposition shed some light about the relationships between generalized
submodules.

Proposition 2. Let B be an α-basic submodule of an α-module M and let L be
an α-large submodule of M, where α is cofinal with ω. Then B∩ L is an α-basic
submodule of M and M/L is a direct sum of uniserial modules.

Proof. Choose B∩L=B∩Socn(L), for some n. Since Socn(L) is large in Socn(M),
B∩L is an α-basic submodule of Socn(L). But Socn(L) is h-pure in L and L/Socn(L)
is h-divisible. Therefore B∩L is an α-basic submodule of L. Now M/L∼= B/(B∩L)
and by Corollary 2, B∩L is fully invariant in B. Henceforth, it follows that B/(B∩L)
is a direct sum of uniserial modules. �

We thus deduce the following statement.

Proposition 3. Let L1 be an α-large submodule of an α-module M and let L2 be an
α-large submodule of L1, where α is cofinal with ω. Then L2 is an α-large submodule
of M.

2.2. α-pure fully invariant submodules.

The notion of a fully invariant submodule of a module is, of course, a classical
notion in the theory of QTAG-modules. There are numerous observations of fully
invariant submodules more enlightening than the definition: If F is a fully invariant
submodule of an α-module M of length α, and if α is an ordinal cofinal with ω, then
M/F is also an α-module. In addition, if F is an unbounded of length µ, then M/F
is a totally projective module, and F is a µ-module. Moreover, if F is an unbounded,
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fully invariant submodule of an α-module M, and if α is an ordinal cofinal with ω,
then F is totally projective module only if M is totally projective module.

However, we now have the following.

Definition 3. Let σ = {σn}n∈N be a strictly increasing sequence of ordinals. We
say that σ has a gap at n if σn + 1 < σn+1 and finitely many gaps if there exists n
such that σn + i < σn+i for every i = 1,2, . . . . If no such n exists we say that σ has
infinitely many gaps. Now σ satisfies the gap condition for a QTAG-module M if the
Ulm-invariant of M corresponding to σn is non-zero.

Now, we proceed by proving

Lemma 3. Let α be an ordinal cofinal with ω and let σ = {σn}n∈N be a sequence
of ordinals. If M is an α-module and σ has finitely many gaps, then Mσ ⊃ Ht(M) for
some t ≥ 0.

Proof. By hypothesis, there exists n such that σn+ i=σn+i, i= 1,2, . . . . Let t =σn

and suppose x ∈ Ht(M). Then x = y′ where d
(

yR
y′R

)
= t for some y ∈ M. Thus,

HM(x′) ≥ σn + i = σn+i ≥ σi where d
(

xR
x′R

)
= i, for every i = 0,1, . . . . Therefore

x ∈Mσ and Ht(M)⊂Mσ, �

Definition 4. For a sequence σ and an element x of a QTAG-module M, we let

Γ
σ
x =

{
i : HM(x′)< σi, d

(
xR
x′R

)
= i

}
.

The careful reader will observe that Theorem 1 can be restated in terms of Γσ
x ;

namely

Remark 1. For an α-module M and a sequence σ, Mσ is α-large in M if and only
if Γσ

x is finite for every x ∈M.

So, we come to the following lemma.

Lemma 4. Let M be an α-module, where α is cofinal with ω. If the closure M
of M is an unbounded direct sum of uniserial modules and suppose σ = {σn}n∈N is
a strictly increasing sequence of ordinals. Then there exists x ∈ M such that Γv

x is
infinite.

Proof. Write M =
∞⊕

i=1
Mi where Mi is a direct sum of uniserial modules of length i.

Let t1 be an integer such that σt1 +1<σt1+1 and choose r1≥σt1 +2 such that Mr1 6= 0.
Let xr1 ∈Mr1 be any uniform element such that HMr1

(xr1) = σt1 − t1. Now we repeat
this operation for an integer t2, we get t2≥ e(xr1), σt2 +1<σt2+1 and r2≥σt2 +2 with
Mr2 6= 0 and choose xr2 ∈Mr2 be any uniform element such that HMr2

(xr2) = σt2− t2.
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Thus, by continuing the same process, we obtain a sequence xri of elements such
that HMri

(xri)< HMr(i+1)
(xr(i+1))< .. . and t1 +2≤ e(xr1)≤ t2 < t2 +2≤ e(xr2)≤ . . . .

Now let y = x j ∈
∞

∏
j=1

M j where x j = 0 unless j = ti for some i, in which case x j = xt i.

Since HMt (xt) increases as t increases, and it follows that y ∈ M. Furthermore, Γv
x

is infinite. Consequently, HM(y′) = HM(x′ri
) such that d

(
xriR
x′ri

R

)
= d

(
yR
y′R

)
= ti and

HM(y′) = σti+1 < σti+1 such that d
(

yR
y′R

)
= ti+1 for all i = 1,2, . . . . This ends the

proof. �

Summarizing the above corresponding assertions, we immediately deduce

Proposition 4. Mσ is α-large in M if and only if σ has finitely many gaps.

Definition 5. Let M be a QTAG-module and λ = {λn}n∈N is an increasing se-
quence of ordinals and symbol ∞. With each such sequence λ we associate the α-pure
fully invariant submodule M(x) of the closure M of M containing x as

M(x)
=

{
y ∈M : y′ ∈ Hλn(M), d

(
yR
y′R

)
= n, for some n≥ 0

}
So, we shall now prove the following proposition.

Proposition 5. Let α be an ordinal cofinal with ω and let σ= {σn}n∈N be a strictly
increasing sequence of ordinals with infinitely many gaps. If M is an α-module, then
there exists an α-pure fully invariant submodule F of the closure M of M such that
Fσ is α-large in F.

Proof. Let σ = {σn}n∈N be a given sequence. Now we construct the another se-
quence λ = {λn}n∈N form σ such that λn = σ2n, for every n = 0,1, . . . . The sequence
λ has a gap at each i = 0,1, . . . . Choose M = ⊕Mn such that Mλn+1 6= 0 for every n.
Then there exists x ∈M such that λ = HM(x).

We set F = M(x). It is not difficult to show that Γσ
y is finite for every y ∈ F . Since

y′ ∈ HM(x), where d
(

yR
y′R

)
= t, there exists an endomorphism of M which maps x

onto y′, and hence HF(y′) ≥ HM(x′) = σ2i where d
(

yR
y′R

)
= t + i and d

(
xR
x′R

)
= i.

But HF(y′) = λt+i, where d
(

yR
y′R

)
= t + i. Therefore λt+i ≥ σ2i ≥ σt+i for all i ≥ t

and Γσ
y is finite. Thus, by Remark 1, Fσ is α-large in F . �

The following necessary and sufficient condition is of some interest.
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Lemma 5. Let F = M(x) be an α-pure fully invariant submodule of the α-module
M, where α is cofinal with ω, and let σ = {σn}n∈N be a strictly increasing sequence
of ordinals with infinitely many gaps satisfying the gap condition with respect to the
closure M of M. Then Fσ is α-large in F if and only if for every k ≥ 0, there exists
jk ≥ 0, such that λi ≥ σi+k, whenever λ = {λn}n∈N and i≥ jk.

Proof. “Necessity”. We know that Γσ
x is finite for every x ∈ F . Thus t = 0 there

exists j0 such that i > j0 implies λi ≥ σi. Now Ht(Fσ) is also α-large in F . Define
γ = (γi) where γi = σi+k. We claim that Hk(Fσ) = Fγ. Clearly Hk(Fσ)⊂ Fγ. Indeed,
Fσ = F ∩Mσ since F is α-pure in M.

After this, since σ satisfies the gap condition, there exists a ∈M such that Mσ
=

{φ(a) : φ ∈ EndM} and HM(a) = σ. Thus HM(a′) = γ such that d
(

aR
a′R

)
= k, and

Mγ
= Hk(M

σ
).

Observe that

Fγ = F ∩Mγ
= F ∩Hk(M

σ
)⊂ Hk(F)∩Hk(M

σ
)⊂ Hk(F ∩Mσ

) = Hk(Fσ).

This substantiates our claim.
“Sufficiency”. We need only show that Γσ

x is finite for every x ∈ F . Now, there

exists k such that x′ = Mλ where d
(

xR
x′R

)
= k. Therefore, HF(x′) ≥ λi such that

d
(

xR
x′R

)
= i+k, and for i≥ jk such that λi ≥ σi+k. Hence Γσ

x is finite for every x∈ F

and it follows that Fσ is α-large in F . �
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