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1. INTRODUCTION

In the last years, the extension of the theory of fixed point to generalized structures
as cone metrics, partial metric spaces and quasi-metric spaces has received a lot of
attention. One of the most interesting is partial metric space. Partial metric space is
a generalized metric space in which each object does not necessarily have to have a
zero distance from itself [8]. A motivation behind introducing the concept of a partial
metric was to obtain appropriate mathematical models in the theory of computation
and, in particular, give a modified version of the Banach contraction principle, more
suitable in this context [8]. Subsequently, Valero [11], Oltra and Valero [9] and Al-
tun et al [4] gave some generalizations of the result of Matthews. Romaguera [10]
proved the Caristi type fixed point theorem on this space. Lately, I. Altun and M.
Imdad [1] have introduced a partial ordering on uniform spaces utilizing E- distance
function and have used the same to prove a fixed point theorem for single-valued
non-decreasing mappings on ordered uniform spaces. In this paper, we use the par-
tial ordering on partial metric spaces which is defined by [1], so we prove some fixed
point theorems of multivalued monotone mappings which are given for ordered met-
ric spaces in [12] on ordered uniform spaces.

First, we recall some definitions and results needed in the sequel. The reader
interested in fixed point theory in partial metric spaces is referred to the work of
[2, 6, 8–11] and references therein.
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In what follows N will denote the set of all natural numbers and RC the set of all
positive real numbers.

A partial metric on a nonempty set X is a mapping p WX �X ! RC such that for
all x;y;´ 2X W

(p1) x D y if and only if p.x;x/D p.x;y/D p.y;y/;
(p2) p.x;x/� p.x;y/;
(p3) p.x;y/D p.y;x/;
(p4) p.x;y/� p.x;´/Cp.´;y/�p.´;´/:

A partial metric space is a pair .X;p/ such that X is a nonempty set and p is a
partial metric on X . It is clear that, if p.x;y/D 0; then from (p1) and (p2) x D y.
But if x D y, p.x;y/ may not be 0. A basic example of a partial metric space is the
pair .RC;p/, where p.x;y/ D maxfx;yg for all x;y 2 RC. Other examples of the
partial metric spaces which are interesting from a computational point of view may
be found in [7] and [8].

Let .X;d/ and .X;p/ be a metric space and partial metric space, respectively.

Lemma 1. Mappings �i WX �X �! RC (i 2 f1;2;3g) defined by

�1.x;y/D d.x;y/Cp.x;y/

�2.x;y/D d.x;y/Cmaxf!.x/;!.y/g

�3.x;y/D d.x;y/Ca

define partial metrics on X; where ! WX �! RC is an arbitrary function and a � 0.

In addition in above Lemma the partial metric �3 is a special case of �2, and �2 is
a special case of �1.

Each partial metric p on X generates a T0 topology �p on X which has as a base
the family of open p- balls

fBp.x;"/ W x 2X;" > 0g;

where Bp.x;"/D fy 2X W p.x;y/ < p.x;x/C "g for all x 2X and " > 0.

Definition 1. A subsetA of a partial metric space .X;p/ is called open if for every
x 2 A there exists r > 0 such that Bp.x;r/� A.

Let �p be the set of all open subsets X , then �p is a topology on X (induced by
the partial metric p).

Definition 2. A sequence fxng in a partial metric space .X;p/ converges to x if
and only if p.x;x/D lim

n!1
p.xn;x/. That is, for each " > 0 there exists n0 2N such

that
p.x;xn/ < p.x;x/C " 8n� n0:
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Definition 3. A sequence fxng in a partial metric .X;p/ is called a Cauchy sequ-
ence if there exists lim

n;m!1
p.xn;xm/ which is finite.

A partial metric space .X;p/ is said to be complete if every Cauchy sequence
fxng in X converges, with respect to �p, to a point x 2 X such that p.x;x/ D
limn;m!1p.xn;xm/.

Suppose that fxng is a sequence in partial metric space .X;p/; then we define
L.xn/D fxjxn �! xg.

The following example shows that every convergent sequence fxng in a partial
metric space X may not be Cauchy. In particular, it shows that the limit of a conver-
gent sequence is not unique.

Example 1. Let X D Œ0;1/ and p.x;y/Dmaxfx;yg. Let

xn D

�
0; nD 2k;

1; nD 2kC1:

Then clearly it is convergent sequence and for every x � 1 we have lim
n!1

p.xn;x/D

p.x;x/, therefore L.xn/D Œ1;1/. But lim
n;m!1

p.xn;xm/ does not exist.

The following Lemma shows that under certain conditions the limit is unique.

Lemma 2. Let fxng be a convergent sequence in partial metric space X such that
xn �! x and xn �! y. If

lim
n!1

p.xn;xn/D p.x;x/D p.y;y/;

then x D y:

Proof. As
p.x;y/� p.x;xn/Cp.xn;y/�p.xn;xn/;

therefore
p.xn;xn/� p.x;xn/Cp.xn;y/�p.x;y/:

By given assumptions, we have lim
n!1

p.xn;x/D p.x;x/, lim
n!1

p.xn;y/D p.y;y/,

and lim
n!1

p.xn;xn/D p.x;x/: Therefore

p.x;x/� p.x;x/Cp.y;y/�p.x;y/

which shows that p.y;y/� p.x;y/� p.y;y/: Also,the inequality

p.x;x/� p.x;y/� p.x;x/

follow directly from the first part of the proof by replacing x and y, and using property
(p3). Thus p.x;x/D p.x;y/D p.y;y/, therefore x D y. �
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Lemma 3. Let fxng and fyng be two sequences in partial metric space X such
that

lim
n!1

p.xn;x/D lim
n!1

p.xn;xn/D p.x;x/;

and
lim

n!1
p.yn;y/D lim

n!1
p.yn;yn/D p.y;y/;

then lim
n!1

p.xn;yn/D p.x;y/: In particular, lim
n!1

p.xn;´/D p.x;´/ for every ´ 2
X .

Proof. As fxng and fyng converge to a x 2 X and y 2 X respectively, therefore
for each � > 0 there exist n0 2N such that

p.x;xn/ < p.x;x/C
�

2
; p.y;yn/ < p.y;y/C

�

2
; p.x;xn/ < p.xn;xn/C

�

2

and
p.y;yn/ < p.yn;yn/C

�

2
for n� n0: Now

p.xn;yn/� p.xn;x/Cp.x;yn/�p.x;x/

� p.xn;x/Cp.x;y/Cp.y;yn/�p.y;y/�p.x;x/

< p.x;y/C
�

2
C
�

2
D p.x;y/C �;

and so we have
p.xn;yn/�p.x;y/ < �:

Also,

p.x;y/� p.x;xn/Cp.xn;y/�p.xn;xn/

� p.x;xn/Cp.xn;yn/Cp.yn;y/�p.yn;yn/�p.xn;xn/

<
�

2
C
�

2
Cp.xn;yn/D p.xn;yn/C �

implies that
p.x;y/�p.xn;yn/ < �:

Hence for all n � n0, we have jp.xn;yn/�p.x;y/j < �. Hence the result follows.
�

Lemma 4. If p is a partial metric on X , then mappings ps;pm W X �X ! RC

given by
ps.x;y/D 2p.x;y/�p.x;x/�p.y;y/

and
pm.x;y/Dmax

˚
p.x;y/�p.x;x/;p.x;y/�p.y;y/

	
define equivalent metrics on X .
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Proof. It is easy to see that ps and pm are metrics on X . Obviously,

pm.x;y/� ps.x;y/

for every x;y 2 X: As for every nonneative real numbers a and b; we have aCb �
2maxfa;bg, therefore

ps.x;y/D 2p.x;y/�p.x;x/�p.y;y/

� 2max
˚
p.x;y/�p.x;x/;p.x;y/�p.y;y/

	
D 2pm.x;y/:

Hence
1

2
ps.x;y/� pm.x;y/� ps.x;y/:

So ps and pm are equivalent. �

Lemma 5 ([8],[9]). Let .X;p/ be a partial metric space.
(a) fxng is a Cauchy sequence in .X;p/ if and only if it is a Cauchy sequence in

the metric space .X;ps/.
(b) A partial metric space .X;p/ is complete if and only if the metric space .X;ps/

is complete. Furthermore, lim
n!1

ps.xn;x/D 0 if and only if

p.x;x/D lim
n!1

p.xn;x/D lim
n;m!1

p.xn;xm/:

Lemma 6. If fxng is a convergent sequence in .X;ps/; then it is a convergent
sequence in the partial metric space .X;p/.

Proof. As, lim
n!1

ps.xn;x/D 0; and p.xn;xn/� p.xn;x/.Therefor

0� p.xn;x/�p.x;x/� p
s.xn;x/

implies that
0� limsup

n!1
p.xn;x/�p.x;x/� lim

n!1
ps.xn;x/

and consequently, lim
n!1

p.xn;x/D p.x;x/: �

2. MAIN RESULT

We begin this section giving the concept of weakly increasing mappings (see [5]).

Definition 4. Let .X;�/ be a partially ordered set. Two mappings S;T WX �!X

are said to be weakly increasing if Sx � TSx and T x � ST x for all x 2X .

Note that, two weakly increasing mappings need not be nondecreasing. There
exist some examples to illustrate this fact in [3].

Definition 5. Let .X;�/ be a partially ordered set. If there exists a partial metric
p in X such that x � y implies that p.x;x/ � p.y;y/ for x;y 2 X then we said that
partial metric p have p-property.
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Example 2. Let X D RC and � be a partially ordered on X . Define p.x;y/ D
maxfx;yg. It is easy to see that partial metric p have p-property.

Example 3. Let X D RC and � be a partially ordered on X . Define p.x;y/ D
maxf.1

2
/x; .1

2
/yg. It is easy to see that partial metric p have not p-property.

Lemma 7. Let .X;p/ be a partial metric space and ' W X �! R. Define the
relation � on X as follows:

x � y” x D y or p.x;y/�p.x;x/� '.x/�'.y/:

Then � is a (partial) order on X induced by '.

Proof. i) Since x D x hence x � x.
ii) Let x � y then p.x;y/�p.x;x/� '.x/�'.y/: Also, if y � x then p.x;y/�

p.y;y/� '.y/�'.x/: Therefore,

ps.x;y/D 2p.x;y/�p.x;x/�p.y;y/� 0;

thus x D y.
iii) Let x � y then p.x;y/�p.x;x/� '.x/�'.y/: Also, if y � ´ then p.y;´/�

p.y;y/� '.y/�'.´/: Therefore,

p.x;´/� p.x;y/Cp.y;´/�p.y;y/� '.x/�'.´/�p.x;x/;

thus x � ´. �

Example 4. LetX Dfa;b;cg. Define p.a;a/D 1;p.b;b/D 2;p.c;c/D 4;p.a;b/D
p.b;a/D 2;p.a;c/D p.c;a/D 4;p.b;c/D p.c;b/D 4. Define '.a/D 5;'.b/D
3;'.c/D 1: It is easy to see that a� b � c. That is� is a (partial) order on X induced
by '.

Theorem 1. Let .X;p/ be a complete partial metric space such that partial metric
p in X have p-property and ' W X �! R be a function which is bounded from below
and � the order introduced by '. Let T W X �! 2X be a multivalued mapping,
Œx;1/D fy 2X W x � yg and M D fx 2X j T .x/\ Œx;1/¤¿g. Suppose that

(i) T is upper semicontinuous, that is, xn 2 X and yn 2 T .xn/ with xn �! x0

and yn �! y0, implies y0 2 T .x0/,
(ii) M ¤¿,

(iii) for each x 2M , T .x/\M \ Œx;1/¤¿.
Then T has a fixed point x� and there exists a sequence fxng with

xn�1 � xn 2 T .xn/; nD 1;2;3; � � �

such that xn �! x�. Moreover if ' is lower semicontinuous, then xn � x
� for all n.

Proof. By the condition (ii), take x0 2M . From (iii), there exist x1 2 T .x0/\M

and x0� x1. Again from (iii), there exist x2 2 T .x1/\M . Thus x1� x2. Continuing
this procedure we get a sequence fxng satisfying

xn�1 � xn 2 T .xn�1/; nD 1;2;3; � � � :
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So by the definition of �, we have

0� p.xn�1;xn/�p.xn�1;xn�1/� '.xn�1/�'.xn/;

that is � � �'.x2/ � '.x1/ � '.x0/; that is, the sequence f'.xn/g is a nonincreasing
sequence in R. Since ' is bounded from below, f'.xn/g is convergent and hence it is
Cauchy, that is, for all " > 0, there exists n0 2N such that for allm>n> n0 we have
j'.xm/�'.xn/j< ". Since xn � xm, we have xn D xm or p.xn;xm/�p.xn;xn/�

'.xn/�'.xm/. Therefore,

p.xn;xm/�p.xn;xn/� '.xn/�'.xm/

D j'.xn/�'.xm/j

< ":

On the other hand, since partial metric p has p-property we have

p.xn;xm/�p.xm;xm/� p.xn;xm/�p.xn;xn/ < ":

Therefore

ps.xn;xm/D 2p.xn;xm/�p.xn;xn/�p.xm;xm/

< 2":

That is fxng is a Cauchy sequence in the metric space .X;ps/: Since .X;p/ is comp-
lete then from Lemma 5, the sequence fxng converges in the metric space .X;ps/,
say lim

n!1
ps.xn;x

�/D 0: Again from Lemma 5, we have

p.x�;x�/D lim
n!1

p.xn;x
�/D lim

n;m!1
p.xn;xm/:

Since T is upper semicontinuous, x� 2 T .x�/.
Moreover, when ' is lower semicontinuous, by Lemma 3 and above equality for

each n we have:

p.xn;x
�/�p.xn;xn/D lim

m!1
p.xn;xm/�p.xn;xn/

� lim
m!1

sup.'.xn/�'.xm//

D '.xn/� lim
m!1

inf '.xm/

� '.xn/�'.x
�/:

So xn � x
�, for all n. �

Similarly, we can prove the following.

Theorem 2. Let .X;p/ be a complete partial metric space such that partial metric
p in X have p-property and ' W X �! R be a function which is bounded from below
and � the order introduced by '. Let T W X �! 2X be a multivalued mapping,
.�1;x�D fy 2X W y � xg andM D fx 2X j T .x/\ .�1;x�¤¿g. Suppose that
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(i) T is upper semicontinuous, that is, xn 2 X and yn 2 T .xn/ with xn �! x0

and yn �! y0, implies y0 2 T .x0/,
(ii) M ¤¿,

(iii) for each x 2M , T .x/\M \ .�1;x�¤¿.
Then T has a fixed point x� and there exists a sequence fxng with

xn�1 � xn 2 T .xn�1/; nD 1;2;3; � � �

such that xn �! x�. Moreover if ' is upper semicontinuous, then x� � xn for all n.

Theorem 3. Let .X;p/ be a complete partial metric space such that partial metric
p in X have p-property and ' WX �! R be a function which is bounded below and �
the order introduced by '. Let S;T WX �!X are two weakly increasing mappings,
then

(i) there exists a sequence fxng with

xn � xnC1; nD 1;2;3; � � � and lim
n!1

Sx2n D x
� ; lim

n!1
T x2nC1 D x

�;

(ii) if S;T are continuous in .X;ps/ then x� is common fixed point of S;T .

Proof. Let x0 be an arbitrary point of X. Set Sx0 D x1 and T x1 D x2. We can
define a sequence in X as follows:

Sx2n D x2nC1 and T x2nC1 D x2nC2 for n 2 f0;1; � � � g:

Note that, since S and T are weakly increasing, we have

x1 D Sx0 � TSx0 D T x1 D x2 � ST x1 D Sx2 D x3

and continuing this process we have

x1 � x2 � � � � � xn � xnC1 � � � � :

So by the definition of �, we have

0� p.xn;xnC1/�p.xn;xn/� '.xn/�'.xnC1/;

that is � � �'.xnC1/� '.xn/; that is, the sequence f'.xn/g is a nonincreasing sequence
in R. Since ' is bounded from below, f'.xn/g is convergent and hence it is Cauchy,
that is, for all " > 0, there exists n0 2 N such that for all m > n > n0 we have
j'.xm/�'.xn/j< ". Since xn � xm, we have xn D xm or p.xn;xm/�p.xn;xn/�

'.xn/�'.xm/. Therefore,

p.xn;xm/�p.xn;xn/� '.xn/�'.xm/

D j'.xn/�'.xm/j

< ":

On the other hand, since partial metric p has p-property we have

p.xn;xm/�p.xm;xm/� p.xn;xm/�p.xn;xn/ < ":
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Therefore

ps.xn;xm/D 2p.xn;xm/�p.xn;xn/�p.xm;xm/

< 2":

That is fxng is a Cauchy sequence in the metric space .X;ps/: Since .X;p/ is comp-
lete then from Lemma 5, the sequence fxng converges in the metric space .X;ps/,
say lim

n!1
ps.xn;x

�/D 0: Again from Lemma 5, we have

p.x�;x�/D lim
n!1

p.xn;x
�/D lim

n;m!1
p.xn;xm/:

(ii)
Sx� D lim

n!1
Sx2n D lim

n!1
x2nC1 D x

�;

and
T x� D lim

n!1
T x2nC1 D lim

n!1
x2nC2 D x

�:

�

Example 5. Now, consider the X D Œ0;1�. Define ' W X �! R by '.x/ D 1�x
and define S;T W X �! X by Sx D xC1

2
and T x D 2xC1

3
. If p.x;y/D maxfx;yg

then it is easy to see that � is a partial order relation on X induced by ', T x � ST x
and Sx � TSx, that is S;T are two weakly increasing mappings.

Hence all of the conditions of Theorem 3 are hold. That is there exists x�D 1 2X
such that T x� D Sx� D x� D 1:
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[7] M. Hötzel Escardó, “PCF extended with real numbers,” Theor. Comput. Sci., vol. 162, no. 1, pp.
79–115, 1996.

[8] S. G. Matthews, “Partial metric topology,” in Papers on general topology and applications, ser.
Papers from the 8th summer conference at Queens College, New York, NY, USA, June 18–20,
1992, S. Andima, Ed. New York: The New York Academy of Sciences, 1994, vol. 728, pp.
183–197.



254 SHABAN SEDGHI, NABIOLLAH SHOBKOLAEI, AND DURAN TURKOGLU

[9] S. Oltra and O. Valero, “Banach’s fixed point theorem for partial metric spaces,” Rend. Ist. Mat.
Univ. Trieste, vol. 36, no. 1-2, pp. 17–26, 2004.

[10] S. Romaguera, “A Kirk type characterization of completeness for partial metric spaces,” Fixed
Point Theory Appl., vol. 2010, p. 6, 2010.

[11] O. Valero, “On Banach fixed point theorems for partial metric spaces,” Appl. Gen. Topol., vol. 6,
no. 2, pp. 229–240, 2005.

[12] X. Zhang, “Fixed point theorems of multivalued monotone mappings in ordered metric spaces,”
Appl. Math. Lett., vol. 23, no. 3, pp. 235–240, 2010.

Authors’ addresses

Shaban Sedghi
Department of Mathematics, Qaemshahr Branch, Islamic Azad University, Qaemshahr, Iran
E-mail address: sedghi gh@yahoo.com, sedghi.gh@qaemshahriau.ac.ir

Nabiollah Shobkolaei
Department of Mathematics,, Islamic Azad University, Science and Research Branch, 14778 93855

Tehran, Iran
E-mail address: nabi shobe@yahoo.com

Duran Turkoglu
Department of Mathematics, Faculty of Science and Arts, University of Gazi, 06500-Teknikokullar,

Ankara, Turkey, Department of Mathematics, Faculty of Science and Arts, University of Amasya,
Amasya, Turkey

E-mail address: dturkoglu@gazi.edu.tr


