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Abstract. In the present paper, we characterize Lie (Jordan) σ-centralizers of generalized
matrix algebras. More precisely, we obtain some conditions under which every Lie σ-centralizer
of a generalized matrix algebra can be expressed as the sum of a σ-centralizer and a center-
valued mapping. Further, it is shown that under certain appropriate assumptions every Jordan
σ-centralizer of a generalized matrix algebra is a σ-centralizer. Finally, the main results are
applied to triangular algebras.
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1. INTRODUCTION

Let A be an algebra over a commutative unital ring R with center Z(A). For
any a,b ∈ A , [a,b] = ab− ba (resp. a ◦ b = ab+ ba) denotes the Lie product (resp.
Jordan product). Let σ be an automorphism of A . An R -linear mapping L : A → A
is called a left σ-centralizer (resp. right σ-centralizer) if L(ab) = L(a)σ(b) (resp.
L(ab) = σ(a)L(b)) for all a,b ∈ A . It is called a σ-centralizer if it is both a left
σ-centralizer as well as a right σ-centralizer. An R -linear mapping L : A → A is
called a Lie σ-centralizer if L([a,b]) = [L(a),σ(b)] (or L([a,b]) = [σ(a),L(b)]) for
all a,b ∈ A . An R -linear mapping L : A → A is called a Jordan σ-centralizer if
L(a ◦ b) = L(a) ◦σ(b) (or L(a ◦ b) = σ(a) ◦ L(b)) for all a,b ∈ A . One can easily
see that the conditions L([a,b]) = [L(a),σ(b)] (resp. L(a ◦ b) = L(a) ◦ σ(b)) and
L([a,b]) = [σ(a),L(b)] (resp. L(a◦b) = σ(a)◦L(b)) are equivalent. Obviously, every
σ-centralizer is a Lie σ-centralizer as well as a Jordan σ-centralizer but the converse
statements are not true in general. If d : A → A is a σ-centralizer and ` : A → Z(A)
is a linear mapping, then d + ` is a Lie σ-centralizer on A if and only if `([a,b]) = 0
for all a,b ∈ A . A Lie σ-centralizer is called proper if it can be written as the sum of
a σ-centralizer and a center-valued mapping.

The first author is partially supported by a research grant from NBHM (No.
02011/5/2020NBHM(R.P.) R & D II/6243) and the second author by a research grant from DST
(No. DST/INSPIRE/03/2017/IF170834).

© 2023 Miskolc University Press

http://dx.doi.org/10.18514/MMN.2023.4038


580 M. ASHRAF AND M. A. ANSARI

Let R be a commutative ring with identity. A Morita context consists of two R -
algebras A and B , two bimodules A MB and BNA , and two bimodule homomorph-
isms called the pairings ζM N : M

⊗
B N →A and ψN M : N

⊗
A M →B satisfying

the following commutative diagrams:

M ⊗
B

N ⊗
A

M
ζM N ⊗IM //

IM⊗ψN M

��

A⊗
A

M

∼=

��
M ⊗

B
B

∼= // M

and N ⊗
A

M ⊗
B

N
ψN M⊗IN //

IN ⊗ζM N

��

B⊗
B

N

∼=

��
N ⊗

A
A

∼= // N .

We denote this Morita context by (A ,B,M ,N ,ζM N ,ψN M ). If (A ,B,M ,N ,
ζM N ,ψN M ) is a Morita context, then the set(

A M
N B

)
=

{(
a m
n b

)
a ∈ A ,m ∈M ,n ∈N ,b ∈ B

}
forms an R -algebra under the usual matrix operations, where at least one of the two
bimodules M and N is distinct from zero. Such an R -algebra is called a generalized
matrix algebra and it is denoted by G = G(A ,M ,N ,B).

Throughout the paper, we assume that A and B are unital algebras with identity
elements 1A and 1B , respectively and M is a faithful (A ,B)-bimodule, but no any
restrictions on N . In view of [19, Lemma 3.1], the center of G is given by

Z(G) =

{
a⊕b a ∈ A , b ∈ B, am = mb, na = bn for all m ∈M , n ∈N

}
,

where a ⊕ b =

(
a 0
0 b

)
. Define two natural projections πA : G → A and

πB : G → B by πA

(
a m
n b

)
= a and πB

(
a m
n b

)
= b. By [19, Lemmas 3.1

and 3.2], it is easy to see that πA(Z(G)) ⊆ Z(A), πB(Z(G)) ⊆ Z(B) and there ex-
ists a unique algebra isomorphism ξ : πA(Z(G))→ πB(Z(G)) such that am = mξ(a)
and na = ξ(a)n for all m ∈M , n ∈N .

The aim of this paper is to characterize Lie (Jordan) σ-centralizers of generalized
matrix algebras. Over the past few decades, a lot of work concerning characteriz-
ations of Lie (Jordan) mappings on various rings and algebras have been done (see
[2, 3, 5, 9, 10, 15, 16, 21] and references therein). A related problem in this area is to
characterize centralizers on various rings and algebras. Centralizers on different rings
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and algebras have been broadly examined by many algebraists (see [6–8] and refer-
ences therein). Zalar [20] introduced the notion of Jordan centralizers and proved that
every Jordan centralizer on a 2-torsion free semiprime ring is a centralizer. Vukman
and Kosi-Ulbl [17, 18] extensively studied centralizers mainly on semiprime rings.
In the year 2019, Fošner and Jing [6] introduced the notion of Lie centralizers and
investigated the additivity of Lie centralizers of triangular rings. Recently, in [14],
Liu studied the structure of nonlinear Lie centralizers of generalized matrix algebras.
Inspired by these results, in this paper we investigate Lie (Jordan) σ-centralizers of
generalized matrix algebras. In fact, we prove that under certain restrictions every
Lie σ-centralizer of a generalized matrix algebra is proper (Theorem 1), and every
Jordan σ-centralizer of a generalized matrix algebra is a σ-centralizer (Theorem 2).

The study of group of automorphisms is an important key for understanding the
underlying algebraic structure. Hence, the study of group of automorphisms of vari-
ous kinds of algebraic structures have been extensively investigated in the literature
(see [1, 4, 11–13] and references therein). However, it is not always possible to de-
termine all the automorphisms of the given algebraic structure in the general case.
For example, Boboc et al. in [4, Remark 4.8] explained that Morita context rings are
the rings with non-trivial idempotents, and hence there is virtually no hope of finding
all automorphisms of Morita context rings in the general case. Therefore, we shall
use the following class of automorphisms of a generalized matrix algebra G which,
under certain restrictions on G , coincides with the group of all automorphisms of G .

Lemma 1. [4, Proposition 2.1] Let (γ,δ,u,v,m0,n0) be a 6-tuple such that γ : A→
A and δ : B→ B are automorphisms, u : M →M is a (γ,δ)-bimodule isomorphism,
v : N →N is a (δ,γ)-bimodule isomorphism, m0 ∈M and n0 ∈N are fixed elements,
such that the following conditions are satisfied:

(i) m0N = 0 and N m0 = 0,
(ii) M n0 = 0 and n0M = 0,
(iii) u(m)v(n) = γ(mn) and v(n)u(m) = δ(nm) for all m ∈M and n ∈N .

Then the mapping σ : G → G defined by

σ

(
a m
n b

)
=

(
γ(a) γ(a)m0−m0δ(b)+u(m)

n0γ(a)−δ(b)n0 + v(n) δ(b)

)
is an automorphism.

Let us denote the set of all automorphisms of G defined in Lemma 1 by Aut0
0(G)

and the group of all automorphisms of G by Aut(G). It is easy to see that Aut0
0(G) is a

subgroup Aut(G) containing the identity automorphism. In [4, Theorem 4.7], Boboc
et al. proved that if G = G(A ,M ,N ,B) is a generalized matrix algebra such that A
and B have only trivial idempotents and both the bilinear mappings ζM N ,ψN M are
zero, then Aut0

0(G)∪Aut1
0(G) = Aut(G), where Aut1

0(G) is the set of all automorph-
isms of G as given in [4, Proposition 2.2]. Note that if A and B are not isomorphic,
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then Aut1
0(G) =∅. Therefore, if G = G(A ,M ,N ,B) is a generalized matrix algebra

such that A and B have only trivial idempotents, A and B are not isomorphic and both
the bilinear mappings ζM N ,ψN M are zero, then Aut0

0(G) coincides with Aut(G).

2. σ-CENTRALIZERS OF GENERALIZED MATRIX ALGEBRAS

In this section, we give the structure of a σ-centralizer ∆ : G → G with associated
automorphism σ of G as given in Lemma 1.

Proposition 1. Let ∆ : G → G be a σ-centralizer with associated automorphism
σ of G as given in Lemma 1. Then ∆ is of the form

∆

(
a m
n b

)
=

(
A11(a) A11(a)m0−m0B22(b)+C12(m)

n0A11(a)−B22(b)n0 +D21(n) B22(b)

)
,

where A11 : A → A , C12 : M →M , D21 : N → N and B22 : B → B are R -linear
mappings satisfying the following conditions:

(i) A11 is a γ-centralizer of A , B22 is a δ-centralizer of B;
(ii) A11(mn)=C12(m)v(n)= u(m)D21(n), B22(nm)=D21(n)u(m)= v(n)C12(m);
(iii) C12(am) =A11(a)u(m) = γ(a)C12(m),C12(mb) =C12(m)δ(b) = u(m)B22(b);
(iv) D21(na) = v(n)A11(a) = D21(n)γ(a), D21(bn) = δ(b)D21(n) = B22(b)v(n).

Proof. Suppose that the σ-centralizer ∆ is of the form

∆

(
a m
n b

)
=

(
A11(a)+B11(b)+C11(m)+D11(n) A12(a)+B12(b)+C12(m)+D12(n)
A21(a)+B21(b)+C21(m)+D21(n) A22(a)+B22(b)+C22(m)+D22(n)

)
,

where A11,B11,C11,D11 are R -linear mappings from A ,B,M ,N to A , respect-
ively; A12,B12,C12,D12 are R -linear mappings from A ,B,M ,N to M , respectively;
A21,B21,
C21,D21 are R -linear mappings from A ,B,M ,N to N , respectively; and A22,B22,C22,
D22 are R -linear mappings from A ,B,M ,N to B, respectively.

Since ∆ is a σ-centralizer, we have

∆(xy) = ∆(x)σ(y) = σ(x)∆(y) for all x,y ∈ G . (2.1)

Let us choose x =
(

a 0
0 0

)
and y =

(
0 m
0 0

)
in (2.1). Then, we find that(

C11(am) C12(am)
C21(am) C22(am)

)
=

(
0 A11(a)u(m)
0 A21(a)u(m)

)
=

(
γ(a)C11(m) γ(a)C12(m)+ γ(a)m0C22(m)

n0γ(a)C11(m) n0γ(a)C12(m)

)
.

Thus,

C11(am) = 0 = γ(a)C11(m),

C12(am) = A11(a)u(m) = γ(a)C12(m)+ γ(a)m0C22(m),

C21(am) = 0 = n0γ(a)C11(m) and
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C22(am) = A21(a)u(m) = n0γ(a)C12(m).

Putting a = 1A , we get

C11(m) = 0,m0C22(m) = 0,C21(m) = 0 and C22(m) = n0C12(m) = 0.

Hence, C12(am) = A11(a)u(m) = γ(a)C12(m). Similarly, choose x =
(

0 m
0 0

)
and

y =
(

0 0
0 b

)
in (2.1) to obtain C12(mb) =C12(m)δ(b) = u(m)B22(b).

If we take x =
(

0 0
n 0

)
and y =

(
a 0
0 0

)
in (2.1), then we have(

D11(na) D12(na)
D21(na) D22(na)

)
=

(
D11(n)γ(a) D11(n)γ(a)m0

D21(n)γ(a)+D22(n)n0γ(a) D21(n)γ(a)m0

)
=

(
0 0

v(n)A11(a) v(n)A12(a)

)
.

This implies that D11(na)=D11(n)γ(a)= 0, D12(na)=D11(n)γ(a)m0 = 0, D21(na)=
D21(n)γ(a)+D22(n)n0γ(a)= v(n)A11(a) and D22(na)=D21(n)γ(a)m0 = v(n)A12(a).
Putting a= 1A , we get D11(n)= 0, D12(n)= 0, D22(n)n0 = 0 and D22(n) =D21(n)m0

= 0. Hence, D21(na) =D21(n)γ(a) = v(n)A11(a). Similarly, by taking x=
(

0 0
0 b

)
and y =

(
0 0
n 0

)
in (2.1), we can obtain D21(bn) = B22(b)v(n) = δ(b)D21(n).

Consider x =
(

a1 0
0 0

)
, y =

(
a2 0
0 0

)
in (2.1). Then(

A11(a1a2) A12(a1a2)
A21(a1a2) A22(a1a2)

)
=

(
A11(a1)γ(a2) A11(a1)γ(a2)m0

A21(a1)γ(a2)+A22(a1)n0γ(a2) A21(a1)γ(a2)m0

)
=

(
γ(a1)A11(a2) γ(a1)A12(a2)+ γ(a1)m0A22(a2)

n0γ(a1)A11(a2) n0γ(a1)A12(a2)

)
.

From the above expression, we see that

A11(a1a2) = A11(a1)γ(a2) = γ(a1)A11(a2);

A12(a1a2) = A11(a1)γ(a2)m0 = γ(a1)A12(a2)+ γ(a1)m0A22(a2);

A21(a1a2) = A21(a1)γ(a2)+A22(a1)n0γ(a2) = n0γ(a1)A11(a2);

A22(a1a2) = A21(a1)γ(a2)m0 = n0γ(a1)A12(a2).

Putting a2 = 1A , we get A12(a1) = A11(a1)m0 and A22(a1) = A21(a1)m0 = 0. Taking
a1 = 1A , we have A21(a2)= n0A11(a2), A22(a2)= n0A12(a2)= 0. Since a1,a2 ∈A are
arbitrary, we conclude that A11 is a γ-centralizer of A , A12(a) = A11(a)m0, A21(a) =
n0A11(a) and A22(a) = 0 for all a ∈ A . Repeating the same computational process
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and choosing x =

(
0 0
0 b1

)
and y =

(
0 0
0 b2

)
in (2.1), we obtain B22(b1b2) =

B22(b1)δ(b2) = δ(b1)B22(b2), for all b1,b2 ∈ B, i.e., B22 is a δ-centralizer of B and
B11(b) = 0, B12(b) =−m0B22(b), B21(b) =−B22(b)n0 for all b ∈ B.

Putting x =
(

0 m
0 0

)
and y =

(
0 0
n 0

)
in (2.1), we arrive at(

A11(mn) A12(mn)
A21(mn) A22(mn)

)
=

(
C12(m)v(n) 0
C22(m)v(n) 0

)
=

(
u(m)D21(n) u(m)D22(n)

0 0

)
.

This yields A11(mn)=C12(m)v(n)= u(m)D21(n). Similarly, choosing x=
(

0 0
n 0

)
and y =

(
0 m
0 0

)
in (2.1), we get B22(nm) = D21(n)u(m) = v(n)C12(m). �

If M is a faithful (A ,B)-bimodule, then condition (i) in Proposition 1 become
redundant and we obtain the following result:

Corollary 1. Let G = G(A ,M ,N ,B) be a generalized matrix algebra with faith-
ful M and ∆ : G → G be a σ-centralizer with associated automorphism σ of G as
given in Lemma 1. Then ∆ is of the form

∆

(
a m
n b

)
=

(
A11(a) A11(a)m0−m0B22(b)+C12(m)

n0A11(a)−B22(b)n0 +D21(n) B22(b)

)
,

where A11 : A → A , C12 : M →M , D21 : N → N and B22 : B → B are R -linear
mappings satisfying the following conditions:

(i) A11(mn)=C12(m)v(n)= u(m)D21(n), B22(nm)=D21(n)u(m)= v(n)C12(m);
(ii) C12(am) =A11(a)u(m) = γ(a)C12(m), C12(mb) =C12(m)δ(b) = u(m)B22(b);
(iii) D21(na) = v(n)A11(a) = D21(n)γ(a), D21(bn) = δ(b)D21(n) = B22(b)v(n).

Proof. In view of Proposition 1, it is sufficient to show that if M is a faithful
(A ,B)-bimodule, then A11 is a γ-centralizer of A and B22 is a δ-centralizer of B. For
all a1,a2 ∈ A and m ∈M , we see that

A11(a1a2)u(m) =C12(a1a2m) = A11(a1)u(a2m) = A11(a1)γ(a2)u(m).

Thus, {A11(a1a2)−A11(a1)γ(a2)}M = {0}. Since M is a faithful left A-module, we
have A11(a1a2) = A11(a1)γ(a2). Further,

A11(a1a2)u(m) =C12(a1a2m) = γ(a1)C12(a2m) = γ(a1)A11(a2)u(m)

for all a1,a2 ∈A , m∈M . Hence {A11(a1a2)−γ(a1)A11(a2)}M = {0}which implies
that A11(a1a2) = γ(a1)A11(a2). Therefore, A11 is a γ-centralizer of A . In a similar
manner, one can prove that B22 is a δ-centralizer of B. �
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3. LIE σ-CENTRALIZERS OF GENERALIZED MATRIX ALGEBRAS

In this section, we prove that under certain conditions every Lie σ-centralizer of
a generalized matrix algebra is proper. To prove this, we first characterize a Lie
σ-centralizer L : G → G with associated automorphism σ as given in Lemma 1.

Proposition 2. Let L : G → G be a Lie σ-centralizer with associated automorph-
ism σ of G as given in Lemma 1. Then L is of the form

L
(

a m
n b

)
=

(
R11(a)+S11(b)

n0(R11(a)+S11(b))− (R22(a)+S22(b))n0 +U21(n)

(R11(a)+S11(b))m0−m0(R22(a)+S22(b))+T12(m)
R22(a)+S22(b)

)
,

where R11 : A→A , S11 : B→Z(A), T12 : M →M , U21 : N →N , R22 : A→Z(B)
and S22 : B → B are R -linear mappings satisfying the following conditions:

(i) R11 is a Lie γ-centralizer of A , R11(mn)−S11(nm)=T12(m)v(n)= u(m)U21(n);
(ii) S22 is a Lie δ-centralizer of B , S22(nm)−R22(mn)=U21(n)u(m)= v(n)T12(m);
(iii) T12(am)=R11(a)u(m)−u(m)R22(a)= γ(a)T12(m), T12(mb)= T12(m)δ(b)=

u(m)S22(b)−S11(b)u(m);
(iv) U21(na) = v(n)R11(a)−R22(a)v(n) = U21(n)γ(a), U21(bn) = δ(b)U21(n) =

S22(b)v(n)− v(n)S11(b);
(v) R22([a1,a2]) = 0 and S11([b1,b2]) = 0.

Proof. Suppose that the Lie σ-centralizer L is of the form

L
(

a m
n b

)
=

(
R11(a)+S11(b)+T11(m)+U11(n) R12(a)+S12(b)+T12(m)+U12(n)
R21(a)+S21(b)+T21(m)+U21(n) R22(a)+S22(b)+T22(m)+U22(n)

)
,

where R11,S11,T11,U11 are R -linear mappings from A ,B,M ,N to A , respectively;
R12,S12,T12,U12 are R -linear mappings from A ,B,M ,N to M , respectively; R21,S21,
T21,U21 are R -linear mappings from A ,B,M ,N to N , respectively; R22,S22,T22,U22
are R -linear mappings from A ,B,M ,N to B, respectively.

Since L is a Lie σ-centralizer, we have

L([x,y]) = [L(x),σ(y)] = [σ(x),L(y)] for all x,y ∈ G . (3.1)

Choosing x =
(

a 0
0 0

)
and y =

(
0 m
0 0

)
into (3.1), we get(

T11(am) T12(am)
T21(am) T22(am)

)
=

(
u(m)R21(a) R11(a)u(m)−u(m)R22(a)

0 R21(a)u(m)

)
=

(
[γ(a),T11(m)] γ(a)T12(m)+ γ(a)m0T22(m)−T11(m)γ(a)m0

n0γ(a)T11(m)−T21(m)γ(a)−T22(m)n0γ(a) n0γ(a)T12(m)−T21(m)γ(a)m0

)
.

Thus, T11(am)= u(m)R21(a)= [γ(a),T11(m)], T12(am)=R11(a)u(m)−u(m)R22(a)=
γ(a)T12(m)+γ(a)m0T22(m)−T11(m)γ(a)m0, T21(am)= 0 = n0γ(a)T11(m)−T21(m)γ(a)
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−T22(m)n0γ(a) and T22(am) = R21(a)u(m) = n0γ(a)T12(m)− T21(m)γ(a)m0. Put-
ting a = 1A , we get T11(m) = 0, T21(m) = 0, and T22(m) = 0. Thus, T12(am) =

R11(a)u(m)− u(m)R22(a) = γ(a)T12(m). Similarly, choose x =

(
0 m
0 0

)
and y =(

0 0
0 b

)
to obtain T12(mb) = u(m)S22(b)−S11(b)u(m) = T12(m)δ(b).

If we take x =
(

0 0
n 0

)
and y =

(
a 0
0 0

)
in (3.1), then we have(

U11(na) U12(na)
U21(na) U22(na)

)
=

(
[U11(n),γ(a)] U11(n)γ(a)m0− γ(a)U12(n)− γ(a)m0U22(n)

U21(n)γ(a)+U22(n)n0γ(a)−n0γ(a)U11(n) U21(n)γ(a)m0−n0γ(a)U12(n)

)
=

(
−R12(a)v(n) 0

v(n)R11(a)−R22(a)v(n) v(n)R12(a)

)
.

Thus,

U11(na) = [U11(n),γ(a)] =−R12(a)v(n)

U12(na) =U11(n)γ(a)m0− γ(a)U12(n)− γ(a)m0U22(n) = 0

U21(na) =U21(n)γ(a)+U22(n)n0γ(a)−n0γ(a)U11(n) = v(n)R11(a)−R22(a)v(n)
and

U22(na) =U21(n)γ(a)m0−n0γ(a)U12(n) = v(n)R12(a)

=U21(n)γ(a)m0−n0γ(a)U12(n).

Putting a = 1A , we get U11(n) = 0, U12(n) = 0 and U22(n) = 0. Hence, U21(na) =

U21(n)γ(a) = v(n)R11(a) − R22(a)v(n). Similarly, take x =

(
0 0
0 b

)
and

y =
(

0 0
n 0

)
to obtain U21(bn) = δ(b)U21(n) = S22(b)v(n)− v(n)S11(b).

Taking x =
(

a1 0
0 0

)
and y =

(
a2 0
0 0

)
in (3.1), we get(

R11([a1,a2]) R12([a1,a2])
R21([a1,a2]) R22([a1,a2])

)
=

(
[R11(a1),γ(a2)] R11(a1)γ(a2)m0− γ(a2)R12(a1)− γ(a2)m0R22(a1)

R21(a1)γ(a2)+R22(a1)n0γ(a2)−n0γ(a2)R11(a1) 0

)
=

(
[γ(a1),R11(a2)] γ(a1)R12(a2)+ γ(a1)m0R22(a2)−R11(a2)γ(a1)m0

n0γ(a1)R11(a2)−R21(a2)γ(a1)−R22(a2)n0γ(a1) 0

)
.

Thus, R11([a1,a2]) = [R11(a1),γ(a2)] = [γ(a1),R11(a2)], i.e., R11 is a Lie γ-centralizer
of A , R12([a1,a2])=R11(a1)γ(a2)m0−γ(a2)R12(a1)−γ(a2)m0R22(a1), R21([a1,a2])=
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R21(a1)γ(a2)+R22(a1)n0γ(a2)−n0γ(a2)R11(a1), and R22([a1,a2]) = 0. Taking a1 =
a and a2 = 1A , we get R12(a) =R11(a)m0−m0R22(a), R21(a) = n0R11(a)−R22(a)n0.

Similarly, choosing x =
(

0 0
0 b1

)
and y =

(
0 0
0 b2

)
in (3.1), we get

S11([b1,b2]) = 0, S12(b1) = S11(b1)m0−m0S22(b1), S21(b1) = n0S11(b1)−S22(b1)n0
and S22([b1,b2]) = [S22(b1),δ(b2)] = [δ(b1),S22(b2)], i.e., S22 is a Lie δ-centralizer
of B.

If we consider x =
(

a 0
0 0

)
and y =

(
0 0
0 b

)
in (3.1), then we have(

0 0
0 0

)
=

(
0 −R11(a)m0δ(b)+R12(a)δ(b)+m0δ(b)R22(b)

−R22δ(b)n0 +δ(b)n0R11(a)−δ(b)R21(a) [R22(a),δ(b)]

)
=

(
[γ(a),S11(b)] γ(a)S12(b)+ γ(a)m0S22(b)−S11(b)γ(a)m0

n0γ(a)Sb−S21(b)γ(a)−S22(b)n0γ(a) 0

)
.

This gives [R22(a),δ(b)] = 0 and [γ(a),S11(b)] = 0 for all a ∈ A , b ∈ B . Since γ

and δ are automorphisms of A and B, respectively, we conclude R22(a) ∈ Z(B) and
S11(b) ∈ Z(A).

Furthermore, if we take x =
(

0 m
0 0

)
and y =

(
0 0
n 0

)
in (3.1), then we have(

R11(mn)−S11(nm) R12(mn)−S12(nm)
R21(mn)−S21(nm) R22(mn)−S22(nm)

)
=

(
T12(m)v(n) 0

0 −v(n)T12(n)

)
=

(
u(m)U21(n) 0

0 −U21(n)u(m)

)
.

This implies that R11(mn) − S11(nm) = T12(m)v(n) = u(m)U21(n) and
R22(mn)−S22(nm) =−v(n)T12(n) =−U21(n)u(m). �

If M is a faithful (A ,B)-bimodule, then condition (v) in the above theorem can
be obtained using condition (iii). Thus, we have

Corollary 2. Let G = G(A ,M ,N ,B) be a generalized matrix algebra with faith-
ful M and L : G → G be a Lie σ-centralizer with associated automorphism σ of G
as given in Lemma 1. Then L is of the form

L
(

a m
n b

)
=(

R11(a)+S11(b) n0(R11(a)+S11(b))− (R22(a)+S22(b))n0 +U21(n)
(R11(a)+S11(b))m0−m0(R22(a)+S22(b))+T12(m) R22(a)+S22(b)

)
,

where R11 : A→A , S11 : B→Z(A), T12 : M →M , U21 : N →N , R22 : A→Z(B)
and S22 : B → B are R -linear mappings satisfying the following conditions:
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(i) R11 is a Lie γ-centralizer of A , R11(mn) − S11(nm) = T12(m)v(n)
= u(m)U21(n);

(ii) S22 is a Lie δ-centralizer of B , S22(nm) − R22(mn) = U21(n)u(m)
= v(n)T12(m);

(iii) T12(am)=R11(a)u(m)−u(m)R22(a)= γ(a)T12(m), T12(mb)= T12(m)δ(b)=
u(m)S22(b)−S11(b)u(m);

(iv) U21(na) = v(n)R11(a)−R22(a)v(n) = U21(n)γ(a), U21(bn) = δ(b)U21(n) =
S22(b)v(n)− v(n)S11(b).

The following proposition gives necessary and sufficient conditions for a Lie σ-
centralizer with associated automorphism σ of G as given in Lemma 1 to be proper.

Proposition 3. Let G = G(A ,M ,N ,B) be a generalized matrix algebra. A Lie
σ-centralizer L : G → G of the form presented in Proposition 2 is proper if and only
if there exist linear mappings `A : A → Z(A) and `B : B → Z(B) satisfying the
following conditions:

(i) R11− `A is a γ-centralizer of A and S22− `B is a δ-centralizer of B;
(ii) `A(a)⊕R22(a) ∈ Z(G) and S11(b)⊕ `B(b) ∈ Z(G) for all a ∈ A , b ∈ B;
(iii) `A(mn) = S11(nm) and R22(mn) = `B(nm) for all m ∈M , n ∈N .

Proof. Assume that L is a Lie σ-centralizer of G of the form presented in Propos-
ition 2 and there exist linear mappings `A : A→Z(A) and `B : B→Z(B) satisfying
conditions (i)− (iii). Define two mappings ∆ and τ as follows:

∆

(
a m
n b

)
=
(

(R11− `A )(a) (R11− `A )(a)m0−m0(S22− `B )(b)+T12(m)

n0(R11− `A )(a)− (S22− `B )(b)n0 +U21(n) (S22− `B )(b)

)
and

τ

(
a m
n b

)
=

(
`A(a)+S11(b) 0

0 R22(a)+ `B(b)

)
.

It is easy to see that ∆ and τ are R -linear mappings and L = ∆+ τ. Moreover, it
follows from Proposition 1 that ∆ is a σ-centralizer of G . It only remains to show that
τ(G)⊆ Z(G). Using assumption (ii), we have

(`A(a)+S11(b))m = `A(a)m+S11(b)m = mR22(a)+m`B(b) = m(R22(a)+ `B(b))

for all m ∈ M . Similarly, n(`A(a) + S11(b)) = (R22(a) + `B(b))n for all n ∈ N .
Hence, it follows that τ(G)⊆ Z(G).

Conversely, suppose that L is proper, that is, L = ∆+τ, where ∆ is a σ-centralizer
and τ is a center-valued mapping. In view of the representations of L and ∆, the
mapping τ = L−∆ has the following form:

τ

(
a m
n b

)
=

(
(R11−A11)(a)+S11(b) 0

0 R22(a)+(S22−B22)(b)

)
.

Set `A = R11−A11 and `B = S22−B22. Then, it is straightforward to check that `A
and `B are the desired mappings satisfying assumptions (i)− (iii). �
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By Corollary 1, if M is a faithful (A ,B)-bimodule, then condition (i) of the above
proposition becomes superfluous. Thus, as a consequence of Proposition 3, we have
the following corollary:

Corollary 3. Let G = G(A ,M ,N ,B) be a generalized matrix algebra and
L : G → G be a Lie σ-centralizer with associated automorphism σ of G as given
in Lemma 1. If L is proper, then the following conditions hold:

(i) R22(A)⊆ πB(Z(G)) and S11(B)⊆ πA(Z(G));
(ii) S11(nm)⊕R22(mn) ∈ Z(G) for all m ∈M , n ∈N .

The converse also holds provided M is faithful.

Proof. If L is a proper Lie σ-centralizer of G , then the required conditions follow
directly from Proposition 3. For the converse, suppose that M is a faithful (A ,B)-
bimodule and L is a Lie σ-centralizer of G of the form presented in Proposition 2
satisfying (i) and (ii). Since M is faithful, there exists a unique algebra isomorphism
ξ : πA(Z(G))→ πB(Z(G)) such that a⊕ξ(a) ∈ Z(G) for all a ∈ πA(Z(G)). Define
`A : A→ Z(A) and `B : B→ Z(B) by `A = ξ−1 ◦R22 and `B = ξ◦S11, respectively.
It is easy to verify that `A and `B are linear mappings satisfying the hypotheses of
Proposition 3. Therefore, L is proper. �

Now we are in a position to give a sufficient condition for a Lie σ-centralizer with
associated automorphism σ of G as given in Lemma 1 to be proper.

Corollary 4. Let G = G(A ,M ,N ,B) be a generalized matrix algebra with faith-
ful M . A Lie σ-centralizer with associated automorphism σ of G as given in Lemma
1 is proper if the following conditions hold:

(i) πA(Z(G)) = Z(A), πB(Z(G)) = Z(B) and
(ii) either A or B does not contain nonzero central ideals.

Proof. Suppose that L is a Lie σ-centralizer of G of the form presented in Propos-
ition 2. We shall use Corollary 3 to prove that L is proper. Obviously, the condition
R22(A) ⊆ πB(Z(G)) and S11(B) ⊆ πA(Z(G)) of Corollary 3 follows from the as-
sumption (i). We only need to show that S11(nm)⊕R22(mn) ∈ Z(G) for all m ∈M ,
n ∈ N . Without loss of generality, assume that A does not contain nonzero central
ideals. Define `A(a) = ξ−1(R22(a)). Then `A(a)⊕R22(a) ∈ Z(G) for all a ∈ A . Set
A11 = R11−`A and ν(a,b) = `A(a)+S11(b). Using Proposition 2(iii), one can easily
show that A11 is a γ-centralizer. Again, using Proposition 2, we have

ν(mn,−nm) = `A(mn)−S11(nm) = R11(mn)−A11(mn)−S11(nm)

= T12(m)v(n)−A11(mn)

for all m ∈M , n ∈N . Thus, using the fact that A11 is a γ-centralizer, we have

ν(amn,−nam) = T12(am)v(n)−A11(amn) = γ(a)T12(m)v(n)− γ(a)A11(mn)

= γ(a)(T12(m)v(n)−A11(mn)) = γ(a)ν(mn,−nm)
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for all a ∈ A . Since γ is an automorphism of A , the set Aν(mn,−nm) is a central
ideal of A for each m ∈M , n ∈ N . Hence, `A(mn)− S11(nm) = ν(mn,−nm) = 0.
Therefore, S11(nm)⊕R22(mn) = `A(mn)⊕R22(mn) ∈ Z(G). �

Recall that if G = G(A ,M ,N ,B) is a generalized matrix algebra such that A and
B have only trivial idempotents, A and B are not isomorphic and both the bilinear
mappings ζM N ,ψN M are zero, then the class of all automorphisms presented in
Lemma 1 coincides with the group of all automorphisms of G . Thus, in view of
Corollary 4, we have the first main result of the paper which characterizes an arbitrary
Lie σ-centralizer of a generalized matrix algebra.

Theorem 1. Let G =G(A ,M ,N ,B) be a generalized matrix algebra. Then every
Lie σ-centralizer of G is proper if the following conditions hold:

(i) πA(Z(G)) = Z(A) and M is a faithful left A-module;
(ii) πB(Z(G)) = Z(B) and M is a faithful right B-module;
(iii) A and B have only trivial idempotents and A and B are not isomorphic;
(iv) either A or B does not contain nonzero central ideals;
(v) both the bilinear mappings ζM N ,ψN M are zero.

4. JORDAN σ-CENTRALIZER OF GENERALIZED MATRIX ALGEBRAS

In this section, we show that under certain restrictions every Jordan σ-centralizer
of a generalized matrix algebra is a σ-centralizer. We begin this section with the
following proposition which provides the structure of a Jordan σ-centralizer with
associated automorphism σ as given in Lemma 1.

Proposition 4. Let G = G(A ,M ,N ,B) be a 2-torsion free generalized matrix
algebra. Then a Jordan σ-centralizer J : G → G with associated automorphism σ of
G as given in Lemma 1 is of the form

J
(

a m
n b

)
=

(
R11(a) R11(a)m0−m0S22(b)+T12(m)

n0R11(a)−S22(b)n0 +U21(n) S22(b)

)
,

where R11 : A→A , S11 : B→Z(A), T12 : M →M , U21 : N →N , S11 : A→Z(B)
and S22 : B → B are R -linear mappings satisfying the following conditions:

(i) R11 is a Jordan γ-centralizer of A , S22 is a Jordan δ-centralizer of B;
(ii) R11(mn) = T12(m)v(n) = u(m)U21(n), S22(nm) =U21(n)u(m) = v(n)T12(m);
(iii) T12(am) = R11(a)u(m) = γ(a)T12(m), T12(mb) = T12(m)δ(b) = u(m)S22(b);
(iv) U21(na) = v(n)R11(a) =U21(n)γ(a), U21(bn) = δ(b)U21(n) = S22(b)v(n).

Proof. Suppose that the Jordan σ-centralizer J is of the form

J
(

a m
n b

)
=

(
R11(a)+S11(b)+T11(m)+U11(n) R12(a)+S12(b)+T12(m)+U12(n)
R21(a)+S21(b)+T21(m)+U21(n) R22(a)+S22(b)+T22(m)+U22(n)

)
,

where R11,S11,T11,U11 are R -linear mappings from A ,B,M ,N to A , respectively;
R12,S12,T12,U12 are R -linear mappings from A ,B,M ,N to M , respectively; R21,S21,
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T21,U21 are R -linear mappings from A ,B,M ,N to N , respectively; R22,S22,T22,U22
are R -linear mappings from A ,B,M ,N to B, respectively.

Since J is a Jordan σ-centralizer, we have

J(x◦ y) = J(x)◦σ(y) = σ(x)◦ J(y) for all x,y ∈ G . (4.1)

Let us choose x =
(

a 0
0 0

)
and y =

(
0 m
0 0

)
in (4.1). Then(

T11(am) T12(am)
T21(am) T22(am)

)
=

(
u(m)R21(a) R11(a)u(m)+u(m)R22(a)

0 R21(a)u(m)

)
=

(
γ(a)◦T11(m) γ(a)T12(m)+ γ(a)m0T22(m)+T11(m)γ(a)m0

n0γ(a)T11(m)+T21(m)γ(a)+T22(m)n0γ(a) n0γ(a)T12(m)+T21(m)γ(a)m0

)
.

This yields T11(am) = u(m)R21(a) = γ(a) ◦ T11(m), T12(am) = R11(a)u(m)
+u(m)R22(a) = γ(a)T12(m) + γ(a)m0T22(m) + T11(m)γ(a)m0, T21(am) = 0
= n0γ(a)T11(m) + T21(m)γ(a) + T22(m)n0γ(a) and T22(am) = R21(a)u(m)
= n0γ(a)T12(m)+ T21(m)γ(a)m0. Putting a = 1A , we get T11(m) = 0, T21(m) = 0,
and T22(m) = 0. Thus, T12(am) = R11(a)u(m) + u(m)R22(a) = γ(a)T12(m). Simil-

arly, choosing x =
(

0 m
0 0

)
and y =

(
0 0
0 b

)
to obtain T12(mb) = u(m)S22(b)+

S11(b)u(m) = T12(m)δ(b).

Taking x =
(

0 0
n 0

)
and y =

(
a 0
0 0

)
in (4.1), we get(

U11(na) U12(na)
U21(na) U22(na)

)
=
(

U11(n)◦ γ(a) U11(n)γ(a)m0 + γ(a)U12(n)+ γ(a)m0U22(n)
U21(n)γ(a)+U22(n)n0γ(a)+n0γ(a)U11(n) U21(n)γ(a)m0 +n0γ(a)U12(n)

)
=

(
R12(a)v(n) 0

v(n)R11(a)+R22(a)v(n) v(n)R12(a)

)
.

Thus, U11(na)=U11(n)◦γ(a)=R12(a)v(n), U12(na)=U11(n)γ(a)m0+γ(a)U12(n)+
γ(a)m0U22(n) = 0, U21(na) = U21(n)γ(a) + U22(n)n0γ(a) + n0γ(a)U11(n)
= v(n)R11(a) + R22(a)v(n) and U22(na) = U21(n)γ(a)m0 + n0γ(a)U12(n)
= v(n)R12(a) = U21(n)γ(a)m0 + n0γ(a)U12(n). Putting a = 1A , we get U11(n) = 0,
U12(n) = 0 and U22(n) = 0. Hence U21(na) =U21(n)γ(a) = v(n)R11(a)+R22(a)v(n).

Similarly, by taking x =

(
0 0
0 b

)
and y =

(
0 0
n 0

)
in (4.1), one can obtain

U21(bn) = δ(b)U21(n) = S22(b)v(n)+ v(n)S11(b).

If we consider x =
(

a1 0
0 0

)
and y =

(
a2 0
0 0

)
in (4.1). Then(

R11(a1 ◦a2) R12(a1 ◦a2)
R21(a1 ◦a2) R22(a1 ◦a2)

)
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=
(

R11(a1)◦ γ(a2) R11(a1)γ(a2)m0 + γ(a2)R12(a1)+ γ(a2)m0R22(a1)
R21(a1)γ(a2)+R22(a1)n0γ(a2)+n0γ(a2)R11(a1) 0

)
=
(

γ(a1)◦R11(a2) γ(a1)R12(a2)+ γ(a1)m0R22(a2)+R11(a2)γ(a1)m0
n0γ(a1)R11(a2)+R21(a2)γ(a1)+R22(a2)n0γ(a1) 0

)
.

It follows from the above relation that R11(a1 ◦ a2) = R11(a1) ◦ γ(a2) + γ(a1)
◦R11(a2), i.e., R11 is a Jordan γ-centralizer on A , R12(a1) = R11(a1)m0 +m0R22(a1),
R21(a1) = n0R11(a1)+R22(a1)n0, and R22(a1 ◦a2) = 0. Symmetrically, consider x =(

0 0
0 b1

)
and y =

(
0 0
0 b2

)
in (4.1) to obtain S11(b1 ◦ b2) = 0,

S12(b1)= S11(b1)m0+m0S22(b1), S21(b1)= n0S11(b1)+S22(b1)n0 and S22(b1◦b2)=
S22(b1)◦ γ(b2)+ γ(b1)◦S22(b2), i.e., S22 is a Jordan δ-centralizer on B.

Considering x =
(

a 0
0 0

)
and y =

(
0 0
0 b

)
in (4.1), we have

(
0 0
0 0

)
=

(
0 −R11(a)m0δ(b)+R12(a)δ(b)−m0δ(b)R22(b)

−R22δ(b)n0−δ(b)n0R11(a)+δ(b)R21(a) R22(a)◦δ(b)

)
=

(
γ(a)◦S11(b) γ(a)S12(b)+ γ(a)m0S22(b)+S11(b)γ(a)m0

n0γ(a)Sb +S21(b)γ(a)+S22(b)n0γ(a) 0

)
.

It follows from the above equation that R22(a)◦δ(b) = 0 and γ(a)◦S11(b) = 0 for all
a ∈ A , b ∈ B . Putting b = 1B and a = 1A in the above equations, respectively, we
get 2R22(a) = 0 and 2S11(b) = 0. Since G is 2-torsion free, we obtain R22(a) = 0 and
S11(b) = 0.

Furthermore, if we choose x =

(
0 m
0 0

)
and y =

(
0 0
n 0

)
in (4.1), then we

have(
R11(mn) R12(mn)+S12(nm)

R21(mn)+S21(nm) S22(nm)

)
=

(
T12(m)v(n) 0

0 v(n)T12(n)

)
=

(
u(m)U21(n) 0

0 U21(n)u(m)

)
.

Thus, R11(mn)=T12(m)v(n)= u(m)U21(n) and S22(nm)= v(n)T12(n)=U21(n)u(m).
�

If M is a faithful (A ,B)-bimodule, then condition (i) in Proposition 4 become
superfluous.
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Corollary 5. Let G = G(A ,M ,N ,B) be a 2-torsion free generalized matrix al-
gebra with faithful M . Then a Jordan σ-centralizer J : G → G with associated auto-
morphism σ of G as given in Lemma 1 is of the form

J
(

a m
n b

)
=

(
R11(a) R11(a)m0−m0S22(b)+T12(m)

n0R11(a)−S22(b)n0 +U21(n) S22(b)

)
,

where R11 : A→A , S11 : B→Z(A), T12 : M →M , U21 : N →N , S11 : A→Z(B)
and S22 : B → B are R -linear mappings satisfying the following conditions:

(i) R11(mn) = T12(m)v(n) = u(m)U21(n), S22(nm) =U21(n)u(m) = v(n)T12(m);
(ii) T12(am) = R11(a)u(m) = γ(a)T12(m), T12(mb) = T12(m)δ(b) = u(m)S22(b);
(iii) U21(na) = v(n)R11(a) =U21(n)γ(a), U21(bn) = δ(b)U21(n) = S22(b)v(n).

Proof. In view of Proposition 4, it suffices to show that if M is a faithful (A ,B)-
bimodule, then R11 is a Jordan γ-centralizer of A and S22 is a Jordan δ-centralizer of
B . For any a1,a2 ∈ A and m ∈M , we have

R11(a1 ◦a2)m = T12((a1 ◦a2)m) = T12(a1a2m+a2a1m)

= R11(a1)u(a2m)+ γ(a2)T12(a1m)

= R11(a1)γ(a2)u(m)+ γ(a2)R11(a1)u(m) = (R11(a1)◦ γ(a2))u(m).

This implies that {R11(a1 ◦ a2)−R11(a1) ◦ γ(a2)}M = {0}. Since M is faithful as
a left A-module, we conclude R11(a1 ◦ a2) = R11(a1) ◦ γ(a2). Thus, R11 is a Jordan
γ-centralizer of A . Similarly, we can show that S22 is a Jordan δ-centralizer of B. �

Combining Corollaries 1 and 5, we get the following proposition:

Proposition 5. Let G = G(A ,M ,N ,B) be a 2-torsion free generalized matrix
algebra with faithful M . Then a Jordan σ-centralizer of G with associated auto-
morphism σ of G as given in Lemma 1 is a σ-centralizer.

In view of Proposition 5, we now obtain the second main result of the paper which
characterizes an arbitrary Jordan σ-centralizer of a generalized matrix algebra.

Theorem 2. Let G = G(A ,M ,N ,B) be a 2-torsion free generalized matrix al-
gebra with faithful M . Then every Jordan σ-centralizer of G is a σ-centralizer if the
following conditions hold:

(i) A and B have only trivial idempotents;
(ii) A and B are not isomorphic;
(iii) both the bilinear mappings ζM N ,ψN M are zero.

5. APPLICATIONS

In this section, we apply Theorems 1 and 2 to triangular algebras. Recall that a
triangular algebra is an algebra

A= Tri(A ,M ,B) =

{(
a m
0 b

)
a ∈ A ,m ∈M ,b ∈ B

}
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with the usual matrix operations consisting of two unital algebras A , B and an
(A ,B)-bimodule M . Triangular algebras are classical example of generalized mat-
rix algebras. Indeed, if we take N = {0} in the definition of generalized matrix
algebra G = G(A ,M ,N ,B), then G exactly degenerates to a triangular algebra
A=Tri(A ,M ,B). It is easy to see that the conditions “either A or B does not contain
nonzero central ideals” and “both the bilinear mappings ζM N ,ψN M are zero” are not
required in case of triangular algebras. Further, in the case where A= Tri(A ,M ,B)
is a triangular algebras such that A and B have only trivial idempotents, we have
Aut0

0(A) = Aut(G). Hence the condition “A and B are not isomorphic” in Theorems
1 and 2 also become redundant. Therefore, as an application of Theorems 1 and 2,
we have the following results:

Corollary 6. Let A= Tri(A ,M ,B) be a triangular algebra. Suppose that A and
B have only trivial idempotents and M is a faithful (A ,B)-bimodule. Then every Lie
σ-centralizer of A is proper if πA(Z(G)) = Z(A) and πB(Z(G)) = Z(B).

Corollary 7. Let A = Tri(A ,M ,B) be a 2-torsion free triangular algebra.
Suppose that A and B have only trivial idempotents and M is a faithful (A ,B)-
bimodule. Then every Jordan σ-centralizer of A is a σ-centralizer.
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