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TOLERANCES ON POSETS
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Abstract. The concept of a tolerance relation, shortly called tolerance, was studied on various
algebras since the seventies of the twentieth century by B. Zelinka and the first author (see e.g. [6]
and the monograph [1] and the references therein). Since tolerances need not be transitive, their
blocks may overlap and hence in general the set of all blocks of a tolerance cannot be converted
into a quotient algebra in the same way as in the case of congruences. However, G. Czédli ([7])
showed that lattices can be factorized by means of tolerances in a natural way, and J. Grygiel and
S. Radeleczki ([8]) proved some variant of an Isomorphism Theorem for tolerances on lattices.
The aim of the present paper is to extend the concept of a tolerance on a lattice to posets in such
a way that results similar to those obtained for tolerances on lattices can be derived.
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Tolerance relations play an important role both in algebra and in applications. For
corresponding results, examples and references see the monograph [1]. Tolerances
were studied by several authors within the last decades. Up to now, tolerances were
treated on various algebras, in particular on lattices, but not on posets. The aim of
this paper is to extend this investigation also to posets.

Let L = (L,∨,∧) be a lattice. A tolerance on L is a reflexive and symmetric binary
relation T on L satisfying the following condition:

• If (x,y),(z,u) ∈ T then (x∨ z,y∨u),(x∧ z,y∧u) ∈ T .
The congruences on L are exactly the transitive tolerances on L.

G. Czédli ([7]) showed that for every lattice L = (L,∨,∧) and each tolerance T on
L, the set L/T of all blocks of T forms a lattice again, the so-called quotient lattice
of L by T . His famous result in this paper is that every lattice can be embedded into
the quotient lattice of a distributive lattice by a suitable tolerance.
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Unfortunately, quotients by tolerances cannot be introduced in a similar way even
for semilattices since the join of two blocks of a tolerance on a semilattice need not
exist, see e.g. [2].

Now there arises the question if results similar to those by G. Czédli can be ob-
tained also for posets. In other words, we ask if tolerances on posets can be defined
in such a way that

(i) in case of lattices this concept coincides with that for lattices as introduced
above,

(ii) the set of all blocks of a tolerance forms a poset again.
In accordance with [6], every block of a non-trivial tolerance should be convex and
directed.

It was shown in [5] that every tolerance on a relatively complemented lattice is a
congruence. The corresponding result for posets should hold for our new concept.

Let us note that results on tolerances on algebras can be found in the monograph
[1], see also [2, 3] and [8]. It is worth noticing that a similar attempt for defining
congruences on posets was introduced and treated in [4].

Now let P = (P,≤) be a poset. A tolerance on P is a reflexive and symmetric
binary relation T on P satisfying the following conditions:
(1) If (x,y),(z,u) ∈ T and x∨ z and y∨u exist then (x∨ z,y∨u) ∈ T ,
(2) if (x,y),(z,u) ∈ T and x∧ z and y∧u exist then (x∧ z,y∧u) ∈ T ,
(3) if x,y,z ∈ P and (x,y),(y,z) ∈ T 6= P2 then there exist u,v ∈ P with u≤ x,y,z≤ v

and (u,y),(y,v) ∈ T ,
(4) if (x,y) ∈ T 6= P2 then there exists some (z,u) ∈ T with both z ≤ x,y ≤ u and

(v,z),(v,u) ∈ T for all v ∈ P with (v,x),(v,y) ∈ T .
Conditions (3) and (4) are quite natural since they are satisfied by every tolerance on
a lattice. In condition (3) one can take u := x∧y∧z and v := x∨y∨z, and in condition
(4) one can take z := x∧ y and u := x∨ y.

Let TolP denote the set of all tolerances on P. Obviously,
⋃

x∈P
{x}2 is the smallest

tolerance on P and P2 the greatest one. These tolerances are called the trivial ones.
A block of a tolerance T on P is a maximal subset B of P satisfying B2 ⊆ T . Let
P/T denote the set of all blocks of T . Clearly, T =

⋃
B∈P/T

B2. A congruence on P is a

transitive tolerance on P. Let ConP denote the set of all congruences on P.
Let A ⊆ P. Then A is called directed if for every x,y ∈ A there exist z,u ∈ A with

z≤ x,y≤ u. Further, A is called convex if for all x,y∈ A with x≤ y we have [x,y]⊆ A.
If P has a bottom element a and a top element b then P is called complemented if for
every x ∈ P there exists some y ∈ P satisfying x∨ y = b and x∧ y = a. Every such
element y is called a complement of x. The poset P is called relatively complemented
if for all x,y ∈ P with x≤ y the poset ([x,y],≤) is complemented.

At first, we investigate intervals in blocks of tolerances.
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Proposition 1. Let P = (P,≤) be a poset, T ∈ TolP and a,b ∈ P with a≤ b. Then
the following assertions hold:

(i) If (a,b) ∈ T then [a,b]2 ⊆ T ,
(ii) if B ∈ P/T has bottom element a and top element b then B = [a,b].

Proof. The case T = P2 is trivial. Hence assume T 6= P2.
(i) Assume (a,b) ∈ T and let c,d ∈ [a,b]. Now

(a,b),(d,d) ∈ T implies (a,d) = (a∧d,b∧d) ∈ T,

(b,a),(c,c) ∈ T implies (c,a) = (b∧ c,a∧ c) ∈ T.

Hence (a,d),(c,a) ∈ T which implies (c,d) = (a ∨ c,d ∨ a) ∈ T showing
[a,b]2 ⊆ T .

(ii) Assume B ∈ P/T to have bottom element a and top element b. Then B⊆ [a,b].
If B 6= [a,b] then B would not be a maximal subset C of P satisfying C2 ⊆ T .
Therefore B = [a,b] and hence B is convex. �

Using the previous result, we can show that blocks of non-trivial tolerances on
posets share the essential properties of blocks of tolerances on lattices.

Theorem 1. Every block of a non-trivial tolerance on a poset is directed and
convex.

Proof. Let P = (P,≤) be a poset, T a non-trivial tolerance on P and B ∈ P/T . We
first prove that B is directed. Let a,b ∈ B. Then (a,b) ∈ T . According to (4) there
exists some (c,d) ∈ T with both c ≤ a,b ≤ d and (x,c),(x,d) ∈ T for all x ∈ P with
(x,a),(x,b) ∈ T . Now let e ∈ B. Since (e,a),(e,b) ∈ T we have (e,c),(e,d) ∈ T .
This shows (B∪{c})2 ∪ (B∪{d})2 ⊆ T . If c /∈ B then B would not be a maximal
subset C of P satisfying C2 ⊆ T . Hence c ∈ B. Analogously, we obtain d ∈ B. This
shows that B is directed. Now let f ,g ∈ B with f ≤ g and h ∈ [ f ,g]. Further let
i ∈ B. Since B is directed there exist j,k ∈ B with j ≤ f , i and g, i ≤ k. Now we
have j ≤ f ≤ h ≤ g ≤ k, j ≤ i ≤ k and ( j,k) ∈ T . According to Proposition 1 (i),
(h, i)∈ [ j,k]2 ⊆ T . This means that (h,x)∈ T for all x ∈ B and hence (B∪{h})2 ⊆ T .
If h /∈ B then B would not be a maximal subset C of P satisfying C2 ⊆ T . Hence h∈ B
showing the convexity of B. �

A poset P = (P,≤) is said to satisfy the Ascending Chain Condition (ACC) if there
do not exist infinite ascending chains in P, and it is said to satisfy the Descending
Chain Condition (DCC) if there do not exist infinite descending chains in P. In
particular, every finite poset satisfies both conditions ACC and DCC, respectively.

Corollary 1. Every block of a non-trivial tolerance on a poset satisfying the ACC
and the DCC, respectively, especially every block of a non-trivial tolerance on a finite
poset is an interval of the form [a,b] with a≤ b.
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The following two examples show that the intersection of two tolerances need not
be a tolerance and that the posets (TolP,⊆) and (ConP,⊆) need not be lattices.

Example 1. Consider the poset P depicted in Figure 1:
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FIGURE 1.
If

T1 := {0,a,b,c}2∪{b,c,d,1}2,

T2 := {0,a,b,d}2∪{a,c,d,1}2

then T1,T2 ∈ TolP are not congruences on P and

T1∩T2 = {0,a,b}2∪{a,c}2∪{b,d}2∪{c,d,1}2,

but T1∩T2 /∈ TolP since {0,a,b} and {c,d,1} are not directed.

Example 2. Consider the poset P visualized in Figure 2:

uu u
u u

@
@
�
�

�
�
�
�

@
@

@
@

0

a b

c d

FIGURE 2.
If

T1 := {0,a}2∪{b}2∪{c}2∪{d}2,

T2 := {0,b}2∪{a}2∪{c}2∪{d}2,

T3 := {0,a,b,c}2∪{d}2,

T4 := {0,a,b,d}2∪{c}2

then T1,T2,T3,T4 ∈ TolP and T3 and T4 are minimal upper bounds of {T1,T2} in
(TolP,⊆) and hence T1 ∨T2 does not exist, i.e. (TolP,⊆) is not a lattice. Observe
that T1, . . . ,T4 ∈ ConP. Hence, also (ConP,⊆) need not be a lattice.
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As shown by Theorem 1, non-trivial blocks of tolerances on posets have similar
properties as those on lattices. Hence our next task is to show when the set P/T of all
blocks of a tolerance T on a poset P is again a poset. In other words, we ask if there
can be introduced a partial order relation on the set P/T which in the case that P is
a lattice coincides with the partial order relation induced by the lattice (P/T,∨,∧)
introduced by G. Czédli ([7]). For this, we need the following.

Let P = (P,≤) be a poset, T ∈ TolP and B1,B2 ∈ P/T . We define

B1 v B2 if for every b1 ∈ B1 there exists some b′2 ∈ B2 with b1 ≤ b′2 and

for every b2 ∈ B2 there exists some b′1 ∈ B1 with b′1 ≤ b2.

In the proof of Theorem 3 we will use the following famous theorem by G. Czédli
showing that for any lattice L and any T ∈ TolL the set L/T forms again a lattice in
some natural way.

Theorem 2 ([7]). Let L = (L,∨,∧) be a lattice, T ∈ TolL and B1,B2 ∈ L/T . Then
there exist unique B3,B4 ∈ L/T such that b1∨b2 ∈ B3 and b1∧b2 ∈ B4 for all b1 ∈ B1
and all b2 ∈ B2. Put B1 ∨B2 := B3 and B1 ∧B2 := B4. Then (L/T,∨,∧) is again a
lattice.

Now we show that the ordering of blocks introduced above for arbitrary posets
extends the lattice ordering mentioned in Theorem 2 from lattices to posets. In the
proofs of the following two theorems we frequently use Theorem 1.

Theorem 3. Let L = (L,∨,∧) be a lattice and T ∈ TolL. Then the relation v
defined above is the partial order relation induced by the lattice (L/T,∨,∧).

Proof. Let B1,B2 ∈ L/T and let ≤ denote the partial order relation induced by the
lattice (L/T,∨,∧). Then the following are equivalent:

(i) B1 ≤ B2,
(ii) B1∨B2 = B2 and B1∧B2 = B1,

(iii) b1∨b2 ∈ B2 and b1∧b2 ∈ B1 for all b1 ∈ B1 and all b2 ∈ B2,
(iv) for every b1 ∈ B1 there exists some b′2 ∈ B2 with b1 ≤ b′2, and for every b2 ∈ B2

there exists some b′1 ∈ B1 with b′1 ≤ b2,
(v) B1 v B2.

(i)⇔ (ii):
This is clear.
(ii)⇔ (iii):
This follows from Theorem 2.
(iii)⇒ (iv):
If b1 ∈ B1 and b2 ∈ B2 then b1 ≤ b1∨b2 ∈ B2 and b2 ≥ b1∧b2 ∈ B1.
(iv)⇒ (iii):
Let b1 ∈ B1 and b2 ∈ B2. Then there exists some b′2 ∈ B2 with b1 ≤ b′2 and there
exists some b′1 ∈ B! with b′1 ≤ b2. Since B2 is directed there exists some b′′2 ∈ B2
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with b2,b′2 ≤ b′′2 . Now b2 ≤ b1∨b2 ≤ b′′2 . Since B2 is convex we obtain b1∨b2 ∈ B2.
Analogously, since B1 is directed there exists some b′′1 ∈ B1 with b′′1 ≤ b1,b′1. Now
b′′1 ≤ b1∧b2 ≤ b1. Since B1 is convex we obtain b1∧b2 ∈ B1.
(iv)⇔ (v): This follows from the definition of v. �

Now we can state and prove our result revealing the structure of P/T for T ∈ TolP.

Theorem 4. Let P = (P,≤) be a poset and T ∈ TolP. Then (P/T,v) is again a
poset, called the quotient poset P/T of P with respect to T .

Proof. If T =
⋃

x∈P
{x}2 and a,b ∈ P then {a} v {b} if and only if a ≤ b. Hence

(P/T,v) is a poset in this case. If T = P2 then (P/T,v) is the one-element poset.
Hence assume T to be non-trivial. We are going to show that v is a partial order
relation on P/T . For this purpose let B1,B2,B3 ∈ P/T .
Reflexivity of v is trivial.
Now assume B1 v B2 v B1. Let b1 ∈ B1 and b2 ∈ B2. Then there exist b′1,b

′′
1 ∈ B1

and b′2,b
′′
2 ∈ B2 with b1 ≤ b′2, b′1 ≤ b2, b2 ≤ b′′1 and b′′2 ≤ b1. Together we obtain

b′′2 ≤ b1 ≤ b′2 and b′1 ≤ b2 ≤ b′′1 which because of the convexity of B2 and B1 yields
b1 ∈ B2 and b2 ∈ B1. This shows B1 ⊆ B2 and B2 ⊆ B1, i.e. B1 = B2, and v is
antisymmetric.
Finally, assume B1 v B2 v B3. Let b1 ∈ B1 and b3 ∈ B3. Since B1 v B2 there exists
some b2 ∈ B2 with b1 ≤ b2. Since B2 v B3 there exists some b′3 ∈ B3 with b2 ≤ b′3.
Together we obtain b′3 ∈ B3 and b1 ≤ b2 ≤ b′3. Since b3 ∈ B3 and B2 v B3 there exists
some b′2 ∈ B2 with b′2 ≤ b3. Since B1 v B2 there exists some b′1 ∈ B1 with b′1 ≤ b′2.
Together we obtain b′1 ∈ B1 and b′1 ≤ b′2 ≤ b3, i.e. B1 v B3, and v is transitive. �

Example 3. Consider the poset P depicted in Figure 1 and the following tolerances
on P:

T1 = {0,a,b,c}2∪{b,c,d,1}2 = B2
1∪B2

2,

T2 = {0,a}2∪{b,c}2∪{d,1}2 =C2
1 ∪C2

2 ∪C2
3 .

Then the quotient posets P/Ti (i = 1,2) are visualized in Figure 3.

u
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B1

B2

P/T1

u
u
u

C1

C3

C2

P/T2

FIGURE 3.
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Remark 1. If B1 and B2 are intervals of the form [a,b] and [c,d], respectively, then
[a,b]v [c,d] if and only if a≤ c and b≤ d.

It was shown in [5] that every tolerance on a relatively complemented lattice L is
a congruence. We are going to prove an analogous result also for posets.

Theorem 5. Let P = (P,≤) be a relatively complemented poset. Then TolP =
ConP.

Proof. Let a,b,c ∈ P and T ∈ TolP and assume (a,b),(b,c) ∈ T . If T = P2 then
T ∈ ConP. Hence assume T 6= P2. According to (3) there exist d,e ∈ P with d ≤
a,b,c≤ e and (d,b),(b,e)∈ T . Since P is relatively complemented, there exists some
complement f of b in [d,e]. Now d∨ f , b∨ f , f ∧b and e∧ e exist, thus

(d,b),( f , f ) ∈ T implies ( f ,e) = (d∨ f ,b∨ f ) ∈ T,

( f ,e),(b,e) ∈ T implies (d,e) = ( f ∧b,e∧ e) ∈ T.

Since (d,e) ∈ T , from Proposition 1 (i) we obtain (a,c) ∈ [d,e]2 ⊆ T , i.e. T is trans-
itive and hence T ∈ ConP. �

Example 4. The poset depicted in Figure 4 is relatively complemented, but not a
lattice:
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FIGURE 4.

Example 5. Another example of a relatively complemented poset P which is not
directed is visualized in Figure 5:
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FIGURE 5.
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The list of congruences of P is as follows:

C1 = {a}2∪{b}2∪{c}2∪{d}2,

C2 = {a}2∪{c}2∪{b,d}2,

C3 = {a}2∪{d}2∪{b,c}2,

C4 = {b}2∪{c}2∪{a,d}2,

C5 = {b}2∪{d}2∪{a,c}2,

C6 = {a,c}2∪{b,d}2,

C7 = {a,d}2∪{b,c}2,

C8 = {a,b,c,d}2.

The poset (ConP,⊆) is depicted in Figure 6:
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FIGURE 6.
It is easy to see that ConP = TolP.

J. Grygiel and S. Radeleczki ([8]) showed that a partial order relation ≤ on the set
TolL of tolerances on a lattice L can be introduced in such a way that for S,T ∈ TolL
with S ≤ T a tolerance T/S on the quotient lattice L/S can be defined such that the
Isomorphism Theorem for tolerances

(L/S)/(T/S)∼= L/T

holds. For posets, we proceed as follows.
Let P = (P,≤) be a poset and S,T ∈ TolP. We say that S ≤ T if the following

conditions hold:

• If B1 ∈ P/S then there exists exactly one B2 ∈ P/T with B1 ⊆ B2,
• every block of T is a union of blocks of S.

Note that the first condition implies S ⊆ T . It is easy to see that ≤ is reflexive and
antisymmetric.
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In case S≤ T for S,T ∈ TolP define a binary relation T/S on P/S as follows: For
B1,B2 ∈ P/S we have (B1,B2)∈ T/S if there exists some B3 ∈ P/T with B1,B2 ⊆ B3.

The following lemma is obvious.

Lemma 1. Let P = (P,≤) be a poset and S,T ∈ TolP and assume S ≤ T . Then
T/S is reflexive and symmetric.

Proof. If B1 ∈ P/S then there exists some B2 ∈ P/T with B1 ⊆ B2 which shows
(B1,B1) ∈ T/S. Symmetry of T/S is clear. �

Example 7 shows that the Isomorphism Theorem as it was mentioned above in the
case of lattices does not hold for tolerances on posets. However, for tolerances S and
T on a poset P = (P,≤) such that S ≤ T and T/S ∈ Tol(P/S) we can construct an
injective mapping from P/T to (P/S)/(T/S), see the following theorem.

Theorem 6. Let P= (P,≤) be a poset and S,T ∈TolP and assume S≤ T . Further
assume that T/S satisfies (1) – (4). Then

(i) T/S ∈ Tol(P/S),
(ii) |(P/S)/(T/S)| ≥ |P/T |.

Proof. (i) follows from Lemma 1.
(ii) Define f (B1) := {B2 ∈ P/S | B2 ⊆ B1} for all B1 ∈ P/T . Observe that because

of S≤ T , f (B1) 6=∅ for all B1 ∈ P/T . We show that f is an injective mapping
from P/T to (P/S)/(T/S). Let B1 ∈ P/T . Then (B2,B3) ∈ T/S for all B2,B3 ∈
f (B1). Now let B4 ∈ P/S and assume (B4,B2) ∈ T/S for all B2 ∈ f (B1). Let
B5 ∈ f (B1). Then there exists some B6 ∈ P/T with B4,B5 ⊆ B6. Now B5 ∈ P/S,
B1,B6 ∈ P/T and B5 ⊆ B1,B6. Since S ≤ T we conclude B1 = B6. This shows
B4 ⊆ B6 = B1, i.e. B4 ∈ f (B1). Therefore f (B1) ∈ (P/S)/(T/S). Injectivity of
f follows from the fact that because of S ≤ T we have B1 =

⋃
B2∈ f (B1)

B2 for all

B1 ∈ P/T .
�

The following example demonstrates that in some cases not only |(P/S)/(T/S)| ≥
|P/T |, but |(P/S)/(T/S)|= |P/T |.

Example 6. Let P be the poset visualized in Figure 2 and put

S := {0,a}2∪{b,c}2∪{d}2 = B2
1∪B2

2∪B2
3,

T := {0,a,b,c}2∪{d}2 =C2
1 ∪C2

2 .

Then S,T ∈ TolP, S≤ T and P/S and P/T look as follows:

uu u
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�

B1

B2 B3

P/S

FIGURE 7.

u u
C1 C2

P/T
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Further,
T/S = {B1,B2}2∪{B3}2 = D2

1∪D2
2 ∈ Tol(P/S),

and (P/S)/(T/S) looks as follows: u u
D1 D2

(P/S)/(T/S)

FIGURE 8.

This shows P/T ∼= (P/S)/(T/S).

If in addition to the assumptions of Theorem 6 we assume S,T ∈ConP then we can
show that there exists even a bijection from (P/S)/(T/S) to P/T which is, moreover,
order-preserving. Unfortunately, in general this bijection is not an order-isomorphism
since its inverse need not be order-preserving, see Example 7.

Theorem 7. Let P = (P,≤) be a poset and S,T ∈ ConP and assume S ≤ T
and T/S ∈ Tol(P/S). Then there exists a bijective order-preserving mapping from
(P/S)/(T/S) onto P/T .

Proof. Since S,T ∈ ConP, the blocks of S as well as the blocks of T form a par-
tition of P and every block of T is a disjoint union of blocks of S. Hence two blocks
of S are in relation T/S if and only if they are contained in the same block of T . It
is clear that the blocks of T/S are exactly the sets of the form {C ∈ P/S | C ⊆ B}
with B ∈ P/T . Define a mapping f from (P/S)/(T/S) to P/T by f (B) :=

⋃
C∈B

C for

all B ∈ (P/S)/(T/S). Since every block of T/S is the set of all blocks of S that are
contained in a fixed block of T , f is a bijection. We show that it is order-preserving.
Let B1,B2 ∈ (P/S)/(T/S) and assume B1 v B2. Let a ∈ f (B1). Then there exists
some B3 ∈ B1 with a ∈ B3. Since B1 v B2 there exists some B4 ∈ B2 with B3 v B4.
Hence there exists some b ∈ B4 with a ≤ b. Therefore b ∈ f (B2) and a ≤ b. Con-
versely, let b ∈ f (B2). Then there exists some B4 ∈ B2 with b ∈ B4. Since B1 v B2
there exists some B3 ∈ B1 with B3 v B4. Hence there exists some a ∈ B3 with a≤ b.
Therefore a ∈ f (B1) and a≤ b. Together, we have proved that f (B1)v f (B2), i.e. f
is order-preserving. �

If we apply the proof of Theorem 7 to Example 6 we obtain f (Di) =Ci for i = 1,2.
That the inverse of the bijective order-preserving mapping mentioned in The-

orem 7 need not be order-preserving is demonstrated by the following example.

Example 7. Let P be the poset depicted in Figure 1 and put

S := {0,a}2∪{b}2∪{c}2∪{d,1}2 = B2
1∪B2

2∪B2
3∪B2

4,

T := {0,a}2∪{b,c}2∪{d,1}2 =C2
1 ∪C2

2 ∪C2
3 .

Then S,T ∈ TolP, S≤ T and P/S and P/T look as follows:
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B3 B4

P/S

u
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P/T

FIGURE 9.

Further,

T/S = {B1}2∪{B2,B3}2∪{B4}2 = D2
1∪D2

2∪D2
3 ∈ Tol(P/S),

and (P/S)/(T/S) looks as follows:

u
u u

D1

D3

D2

(P/S)/(T/S)

FIGURE 10.

The mapping f from the proof of Theorem 7 maps Di onto Ci for i = 1,2,3.
Since C1 v C2, but f−1(C1) = D1 6v D2 = f−1(C2), the mapping f−1 is not order-
preserving. Even more, there does not exist a bijective order-preserving mapping
from P/T to (P/S)/(T/S). Hence, the Isomorphism Theorem for tolerances on
posets does not hold in general even in the case when the tolerances in question
are congruences.
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