

AMPLY ESSENTIAL G-SUPPLEMENTED MODULES

BERNA KOŞAR AND HASAN HÜSEYIN ÖKTEN

Received 12 December, 2021

Abstract. Let M be an R-module. If every essential submodule of M has a g-supplement in M, then M is called an essential g-supplemented (or briefly, eg-supplemented) module. If every essential submodule has ample g-supplements in M, then M is called an amply essential g-supplemented (or briefly, amply eg-supplemented) module. In this work, some properties of these modules are investigated. It is proved that every factor module and every homomorphic image of an amply eg-supplemented module are amply eg-supplemented. Let M be a projective and eg-supplemented module. Then every finitely M- generated R-module is amply eg-supplemented.

2010 Mathematics Subject Classification: 16D10; 16D70

Keywords: g-small submodules, generalized radical, essential submodules, g-supplemented modules

1. INTRODUCTION

Throughout this paper all rings are associative with identity and all modules are unital left modules.

Let *R* be a ring and *M* be an *R*-module. We denote a submodule *N* of *M* by $N \le M$. Let *M* be an *R*-module and $N \le M$. If L = M for every submodule *L* of *M* such that M = N + L, then *N* is called a *small* (or *superfluous*)submodule of *M* and denoted by $N \ll M$. A submodule *N* of an *R*-module *M* is called an *essential* submodule, denoted by $N \le M$, in case $K \cap N \ne 0$ for every submodule $K \ne 0$, or equivalently, $N \cap L = 0$ for $L \le M$ implies that L = 0. Let *M* be an *R*-module and *K* be a submodule of *M*. K is called a *generalized small* (briefly, *g-small*) submodule of *M* if for every essential submodule *T* of *M* with the property M = K + T implies that T = M, we denote this by $K \ll_g M$. It is clear that every small submodule is generalized small but the converse is not true generally. Let *M* be an *R*-module and $U, V \le M$. If M = U + V and *V* is minimal with respect to this property, or equivalently, M = U + V and $U \cap V \ll V$, then *V* is called a *supplement* of *U* in *M*. *M* is said to be *supplemented* if every submodule of *M* has a supplement in *M*. *M* is said to be *supplemented* if the every submodule of *M* has a supplement in *M*.

© 2023 Miskolc University Press

The authors would like to thank Celil Nebiyev for his help and suggestions.

B. KOŞAR AND H. H. ÖKTEN

Let M be an R-module and $U \leq M$. If for every $V \leq M$ such that M = U + V, U has a supplement V' with $V' \leq V$, we say U has ample supplements in M. M is said to be *amply supplemented* if every submodule of *M* has ample supplements in *M*. *M* is said to be *amply essential supplemented* (briefly, *amply e-supplemented*) if every essential submodule of M has ample supplements in M. Let M be an R-module and $U, V \leq M$. If M = U + V and M = U + T with $T \leq V$ implies that T = V, or equivalently, M = U + V and $U \cap V \ll_g V$, then V is called a *g*-supplement of U in M. M is said to be g-supplemented if every submodule of M has a g-supplement in M. Let *M* be an *R*-module and $U \leq M$. If for every $V \leq M$ such that M = U + V, *U* has a g-supplement V' with $V' \leq V$, we say U has ample g-supplements in M. M is said to be amply g-supplemented if every submodule of M has ample g-supplements in M. The intersection of maximal submodules of an *R*-module *M* is called the *radical* of *M* and denoted by *RadM*. If *M* have no maximal submodules, then we denote RadM = M. The intersection of essential maximal submodules of an R-module M is called the generalized radical (briefly, g-radical) of M and denoted by Rad_gM. If M have no essential maximal submodules, then we denote $Rad_g M = M$. An *R*-module *M* is said to be *g-semilocal* if $M/Rad_{\varrho}M$ is semisimple (see [13]). The sum of all simple submodules of an R-module M is called the *socle* of M and denoted by *SocM*. Let *M* be an *R*-module and $K \le V \le M$. We say *V* lies above *K* in *M* if $V/K \ll M/K$.

More details about (amply) supplemented modules are in [2, 9, 15]. More details about (amply) essential supplemented modules are in [8, 12]. More informations about g-small submodules and g-supplemented modules are in [3, 4, 10].

Lemma 1. Let M be an R-module and $K \le N \le M$. If K is a generalized small submodule of N, then K is a generalized small submodule in every submodule of M which contains N.

Proof. See [3, Lemma 1 (2)].

Lemma 2. Let M be an R -module. Then $Rad_g M = \sum_{L < <_g M} L$.

Proof. See [3, Lemma 5 and Corollary 5].

Lemma 3. The following assertions are hold.

(1) If M is an R-module, then $\operatorname{Rm} \ll_g M$ for every $m \in \operatorname{Rad}_g M$.

(2) If $N \leq M$, then $Rad_g N \leq Rad_g M$.

Proof. See [4, Lemma 3].

2. ESSENTIAL G-SUPPLEMENTED MODULES

Definition 1. Let M be an R-module. If every essential submodule of M has a g-supplement in M, then M is called an essential g-supplemented (or briefly, eg-supplemented) module. (See also [6,7,11]).

Definition 2 ([11]). Let *M* be an *R*-module and $X \le M$. If *X* is a g-supplement of an essential submodule of *M*, then *X* is called an eg-supplement submodule in *M*.

Proposition 1. Let M be an eg-supplemented module. Then M is g-semilocal.

Proof. Since *M* is eg-supplemented, by [11, Proposition 2.5], M/Rad_gM have no proper essential submodules. Then by [15, 21.1], $Soc(M/Rad_gM) = M/Rad_gM$. Hence M/Rad_gM is semisimple and *M* is g-semilocal.

Lemma 4. Let M be an R-module, V be an eg-supplement in M and $K \ll_g M$. Then $K \cap V \ll_g V$.

Proof. Since V is an eg-supplement in M, there exists $U \leq M$ such that V is a g-supplement of U in M. Let $K \cap V + T = V$ with $T \leq V$. Then $M = U + V = U + T + K \cap V$, and since $K \cap V \leq K \ll_g M$ and $(U + T) \leq M$, U + T = M. By V being a g-supplement of U in M and $T \leq V$, T = V. Hence $K \cap V \ll_g V$.

Corollary 1 ([10, Lemma 2.3]). Let M be an R-module, V be an eg-supplement in M and $K \leq V$. Then $K \ll_g M$ if and only if $K \ll_g V$.

Proof. Clear from Lemma 1 and Lemma 4.

Corollary 2 ([10, Theorem 2.4]). *Let M be an R*-module and V be an eg-supplement in M. Then $Rad_gV = V \cap Rad_gM$.

Proof. By Lemma 3, $Rad_gV \leq V \cap Rad_gM$. Let $y \in V \cap Rad_gM$. Then $y \in V$ and $y \in Rad_gM$. Since $y \in Rad_gM$, by Lemma 3, $Ry \ll_g M$ and by Lemma 4, $Ry \ll_g V$. By Lemma 2, $Ry \leq Rad_gV$ and $y \in Rad_gV$. Hence $V \cap Rad_gM \leq Rad_gV$. Therefore, $Rad_gV = V \cap Rad_gM$.

We can also prove this corollary as follows:

Proof. Since *V* is an eg-supplement in *M*, there exists $U \leq M$ such that *V* is a g-supplement of *U* in *M*. Here M = U + V and $U \cap V \ll_g V$. Let *K* be a generalized maximal submodule of *V*. Since $U \cap V \ll_g V$, by Lemma 2, $U \cap V \leq Rad_g V \leq K$. By $\frac{M}{U+K} = \frac{U+K+V}{U+K} \cong \frac{V}{V \cap (U+K)} = \frac{V}{U \cap V+K} = \frac{V}{K}$ and $U + K \leq M$, U + K is a generalized maximal submodule of *M* and $Rad_g M \leq U + K$. This case $V \cap Rad_g M \leq V \cap (U+K) = U \cap V + K = K$ and $V \cap Rad_g M \leq Rad_g V$. By Lemma 3, $Rad_g V \leq V \cap Rad_g M$. Hence $Rad_g V = V \cap Rad_g M$.

Lemma 5 ([10, Lemma 2.5]). Let M be an R-module, V be a g-supplement of U in M and $K \leq V$. Then for $T \leq V$, T is a g-supplement of K in V if and only if T is a g-supplement of U + K in M.

Lemma 6 ([11, Lemma 2.11]). *Let M be an eg-supplemented module. Then every finitely M-generated R-module is eg-supplemented.*

B. KOŞAR AND H. H. ÖKTEN

3. Amply Essential G-Supplemented Modules

Definition 3. Let M be an R-module. If every essential submodule of M has ample g-supplements in M, then M is called an amply essential g-supplemented (or briefly, amply eg-supplemented) module. (See also [5]).

Clearly, every amply essential g-supplemented module is essential g-supplemented.

Lemma 7. Let M be an amply eg-supplemented module. Then M/Rad_gM have no proper essential submodules.

Proof. Since *M* is amply eg-supplemented, then *M* is eg-supplemented. Then by [11, Proposition 2.5], M/Rad_gM have no proper essential submodules.

Corollary 3. If M is amply eg-supplemented, then M is g-semilocal.

Proof. By Lemma 7, M/Rad_gM have no proper essential submodules. Then by [15, 21.1], $Soc(M/Rad_gM) = M/Rad_gM$. Hence M/Rad_gM is semisimple and M is g-semilocal.

Proposition 2. Let *M* be an amply eg-supplemented module. Then every eg-supplement submodule in *M* is amply eg-supplemented.

Proof. Let *V* be an eg supplement submodule in *M*. Then there exists $U \trianglelefteq M$ such that *V* is a g-supplement of *U* in *M*. Let V = K + X with $K \trianglelefteq V$ and $X \le V$. Here M = U + K + X. Since *M* is amply eg-supplemented and $U + K \trianglelefteq M$, U + K has a g-supplement *T* in *M* such that $T \le X$. By Lemma 5, *T* is a g-supplement of *K* in *V*. Moreover, $T \le X$. Hence *V* is amply eg-supplemented.

Lemma 8. Let *M* be an amply eg-supplemented module. Then every factor module of *M* is amply eg-supplemented.

Proof. Let $\frac{M}{K}$ be any factor module of M. Let $\frac{U}{K} \leq \frac{M}{K}$ and $\frac{M}{K} = \frac{U}{K} + \frac{V}{K}$. Then $U \leq M$ and M = U + V. Since M is amply eg-supplemented, U has a g-supplement X in M with $X \leq V$. Since $K \leq U$, by [3, Lemma 4], $\frac{X+K}{K}$ is a g-supplement of $\frac{U}{K}$ in $\frac{M}{K}$. Moreover, $\frac{X+K}{K} \leq \frac{V}{K}$. Hence $\frac{M}{K}$ is amply eg-supplemented.

Corollary 4. Every homomorphic image of an amply eg-supplemented module is amply eg-supplemented.

Proof. Clear from Lemma 8.

Lemma 9. If M is a π -projective and eg-supplemented module, then M is an amply eg-supplemented module.

Proof. Let $U \leq M$, M = U + V and X be a g-supplement of U in M. Here M = U + X and $U \cap X \ll_g X$. Since M is π -projective and M = U + V, there exists an R -module homomorphism $f: M \to M$ such that $Imf \subset V$ and $Im(1-f) \subset U$. So, we have M = f(M) + (1-f)(M) = f(U) + f(X) + U = U + f(X). Suppose

that $a \in U \cap f(X)$. Since $a \in f(X)$, then there exists $x \in X$ such that a = f(x). Since a = f(x) = f(x) - x + x = x - (1 - f)(x) and $(1 - f)(x) \in U$, we have x = x - (1 - f)(x) = 0 $a + (1 - f)(x) \in U$. Thus $x \in U \cap X$ and so, $a = f(x) \in f(U \cap X)$. Therefore, we have $U \cap f(X) \leq f(U \cap X)$. Since $U \cap X \ll_g X$, $f(U \cap X) \ll_g f(X)$. Hence $U \cap f(X) \ll_g f(X)$. f(X) and since M = U + f(X), f(X) is a g-supplement of U in M. Moreover, $f(X) \subset V$. Therefore, *M* is amply eg-supplemented.

Corollary 5. If M is a projective and eg-supplemented module, then M is amply eg-supplemented.

Proof. Clear from Lemma 9.

Lemma 10. Let M be a π -projective R-module. If every essential submodule of M is β_{ρ}^{*} equivalent to an eg-supplement submodule in M, then M is amply egsupplemented. (The definition of β_{ρ}^{*} relation and some properties of this relation are in [14].)

Proof. By [11, Lemma 2.13], *M* is eg-supplemented. Then by Lemma 9, *M* is amply eg-supplemented.

Corollary 6. Let M be a projective R-module. If every essential submodule of M is β_{e}^{*} equivalent to an eg-supplement submodule in M, then M is amply egsupplemented.

Proof. Clear from Lemma 10.

Corollary 7. Let M be a π -projective R-module. If every essential submodule of M is β^* equivalent to an eg-supplement submodule in M, then M is amply egsupplemented. (The definition of β^* relation and some properties of this relation are *in* [1].)

Proof. Clear from Lemma 10.

Corollary 8. Let M be a π -projective R-module. If every essential submodule of *M* lies above an eg-supplement submodule in *M*, then *M* is amply eg-supplemented.

Proof. Clear from Corollary 7.

Corollary 9. Let M be a projective R-module. If every essential submodule of M is β^* equivalent to an eg-supplement submodule in M, then M is amply egsupplemented.

Proof. Clear from Corollary 7.

Corollary 10. Let M be a projective R-module. If every essential submodule of *M* lies above an eg-supplement submodule in *M*, then *M* is amply eg-supplemented.

Proof. Clear from Corollary 9.

B. KOŞAR AND H. H. ÖKTEN

Lemma 11. Let Λ be a finite index set and $\{M_{\lambda}\}_{\Lambda}$ be a family of projective R-modules. If M_{λ} is eg-supplemented for every $\lambda \in \Lambda$, then $\bigoplus_{\lambda \in \Lambda} M_{\lambda}$ is amply eg-supplemented.

Proof. Since M_{λ} is eg-supplemented for every $\lambda \in \Lambda$, by [11, Corollary 2.8], $\bigoplus_{\lambda \in \Lambda} M_{\lambda}$ is eg-supplemented. Since M_{λ} is projective for every $\lambda \in \Lambda$, by [15, 18.1], $\bigoplus_{\lambda \in \Lambda} M_{\lambda}$ is projective. Since $\bigoplus_{\lambda \in \Lambda} M_{\lambda}$ is projective and eg-supplemented, by Corollary 5, $\bigoplus_{\lambda \in \Lambda} M_{\lambda}$ is amply eg-supplemented. \Box

Corollary 11. Let M be a projective R-module. If M is eg-supplemented, then $M^{(\Lambda)}$ is amply eg-supplemented for every finite index set Λ .

Proof. Clear from Lemma 11.

Corollary 12. Let M be a projective R-module. If M is eg-supplemented, then every finitely M-generated R-module is amply eg-supplemented.

Proof. Let *N* be a finitely *M*-generated *R*-module. Then there exist a finite index set Λ and an *R*-module epimorphism $f: M^{(\Lambda)} \longrightarrow N$. Since *M* is projective and egsupplemented, by Corollary 11, $M^{(\Lambda)}$ is amply eg-supplemented. Then by Corollary 4, *N* is amply eg-supplemented.

Lemma 12. Let *M* be an *R*-module. If every submodule of *M* is eg-supplemented, then *M* is amply eg-supplemented.

Proof. Let $U \leq M$ and M = U + V with $V \leq M$. Since $U \leq M$, $U \cap V \leq V$. By hypothesis, V is eg-supplemented. Then $U \cap V$ has a g-supplement X in V. By this, $V = U \cap V + X$ and $U \cap X = U \cap V \cap X \ll_g X$. Then $M = U + V = U + U \cap V + X = U + X$ and $U \cap X \ll_g X$. Moreover, $X \leq V$. Hence M is amply eg-supplemented. \Box

Proposition 3. Let R be any ring. Then every R-module is eg-supplemented if and only if every R-module is amply eg-supplemented.

Proof. (\Longrightarrow) Let *M* be any *R*-module. Since every *R*-module is eg-supplemented, every submodule of *M* is eg-supplemented. Then by Lemma 12, *M* is amply eg-supplemented.

 (\Leftarrow) Clear.

Proposition 4. Let R be a ring. The following assertions are equivalent.

- (i) $_{R}R$ is eg-supplemented.
- (ii) $_{R}R$ is amply eg-supplemented.
- (iii) Every finitely generated R-module is eg-supplemented.
- (iv) Every finitely generated *R*-module is amply eg-supplemented.

Proof. (*i*) \iff (*ii*) Clear from Corollary 5, since _RR is projective.

 $(i) \Longrightarrow (iii)$ Clear from Lemma 6.

 $(iii) \Longrightarrow (iv)$ Let *M* be a finitely generated *R*-module. Since every finitely generated *R*-module is eg-supplemented, _{*R*}*R* is eg-supplemented. Then by Corollary 12, *M* is amply eg-supplemented.

 $(iv) \Longrightarrow (i)$ Clear.

REFERENCES

- G. F. Birkenmeier, F. Takil Mutlu, C. Nebiyev, N. Sokmez, and A. Tercan, "Goldie*-supplemented modules." *Glasg. Math. J.*, vol. 52A, pp. 41–52, 2010, doi: 10.1017/S0017089510000212.
- [2] J. Clark, C. Lomp, N. Vanaja, and R. Wisbauer, *Lifting modules. Supplements and projectivity in module theory.* Basel: Birkhäuser, 2006.
- [3] B. Koşar, C. Nebiyev, and N. Sökmez, "g-supplemented modules," Ukr. Math. J., vol. 67, no. 6, pp. 975–980, 2015, doi: 10.1007/s11253-015-1127-8.
- [4] B. Koşar, C. Nebiyev, and A. Pekin, "A generalization of g-supplemented modules," *Miskolc Math. Notes*, vol. 20, no. 1, pp. 345–352, 2019, doi: 10.18514/MMN.2019.2586.
- [5] C. Nebiyev and H. H. Ökten, "Amply ge-supplemented modules," in Karadeniz Uluslararası Multidisipliner Çalışmalar Kongresi, Giresun, Turkey, 2019.
- [6] C. Nebiyev and H. H. Ökten, "On essential g-supplemented modules," in 9th International Eurasian Conference on Mathematical Science and Applications (IECMSA), 2020.
- [7] C. Nebiyev and H. H. Ökten, "On eg-supplemented modules," in 5th International Online Conference on Mathematics, An Istanbul Meeting for World Mathematicians, Istanbul, Turkey, 2021.
- [8] C. Nebiyev, H. H. Ökten, and A. Pekin, "Essential supplemented modules," *International Journal of Pure and Applied Mathematics*, vol. 120, no. 2, pp. 253–257, 2018.
- [9] C. Nebiyev and A. Pancar, "On supplement submodules." Ukr. Math. J., vol. 65, no. 7, pp. 1071– 1078, 2013, doi: 10.1007/s11253-013-0842-2.
- [10] C. Nebiyev, "On a generalization of supplement submodules," *International Journal of Pure and Applied Mathematics*, vol. 113, no. 2, pp. 283–289, 2017.
- [11] C. Nebiyev and H. H. Ökten, "Essential g-supplemented modules," *Turkish Studies Information Technologies and Applied Sciences*, vol. 14, no. 1, pp. 83–89, 2019.
- [12] C. Nebiyev, H. H. Ökten, and A. Pekin, "Amply essential supplemented modules," *Journal of Scientific Research and Reports*, vol. 21, no. 4, pp. 1–4, Dec. 2018, doi: 10.9734/JSRR/2018/45651.
- [13] C. Nebiyev and H. H. Ökten, "Weakly g-supplemented modules," *Eur. J. Pure Appl. Math.*, vol. 10, no. 3, pp. 521–528, 2017.
- [14] C. Nebiyev and N. Sökmez, "Beta G-star relation on modules," *Eur. J. Pure Appl. Math.*, vol. 11, no. 1, pp. 238–243, 2018.
- [15] R. Wisbauer, Foundations Of Module And Ring Theory. A Handbook For Study And Research. Philadelphia etc.: Gordon and Breach Science Publishers, 1991, vol. 3.

Authors' addresses

Berna Koşar

Üsküdar University, Department of Health Management, Üsküdar, Istanbul, Turkey *E-mail address:* bernak@omu.edu.tr

Hasan Hüseyin Ökten

(Corresponding author) Amasya University, Technical Sciences Vocational School, Amasya, Turkey

E-mail address: hokten@gmail.com